Home | History | Annotate | Download | only in common
      1 /*
      2  * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 
      7 #include <arch_helpers.h>
      8 #include <arm_gic.h>
      9 #include <assert.h>
     10 #include <bl_common.h>
     11 #include <debug.h>
     12 #include <gic_v2.h>
     13 #include <interrupt_mgmt.h>
     14 #include <platform.h>
     15 #include <stdint.h>
     16 #include <tegra_def.h>
     17 #include <tegra_private.h>
     18 
     19 /* Value used to initialize Non-Secure IRQ priorities four at a time */
     20 #define GICD_IPRIORITYR_DEF_VAL \
     21 	(GIC_HIGHEST_NS_PRIORITY | \
     22 	(GIC_HIGHEST_NS_PRIORITY << 8) | \
     23 	(GIC_HIGHEST_NS_PRIORITY << 16) | \
     24 	(GIC_HIGHEST_NS_PRIORITY << 24))
     25 
     26 static const irq_sec_cfg_t *g_irq_sec_ptr;
     27 static uint32_t g_num_irqs;
     28 
     29 /*******************************************************************************
     30  * Place the cpu interface in a state where it can never make a cpu exit wfi as
     31  * as result of an asserted interrupt. This is critical for powering down a cpu
     32  ******************************************************************************/
     33 void tegra_gic_cpuif_deactivate(void)
     34 {
     35 	uint32_t val;
     36 
     37 	/* Disable secure, non-secure interrupts and disable their bypass */
     38 	val = gicc_read_ctlr(TEGRA_GICC_BASE);
     39 	val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
     40 	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
     41 	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
     42 	gicc_write_ctlr(TEGRA_GICC_BASE, val);
     43 }
     44 
     45 /*******************************************************************************
     46  * Enable secure interrupts and set the priority mask register to allow all
     47  * interrupts to trickle in.
     48  ******************************************************************************/
     49 static void tegra_gic_cpuif_setup(uint32_t gicc_base)
     50 {
     51 	uint32_t val;
     52 
     53 	val = ENABLE_GRP0 | ENABLE_GRP1 | FIQ_EN | FIQ_BYP_DIS_GRP0;
     54 	val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
     55 
     56 	gicc_write_ctlr(gicc_base, val);
     57 	gicc_write_pmr(gicc_base, GIC_PRI_MASK);
     58 }
     59 
     60 /*******************************************************************************
     61  * Per cpu gic distributor setup which will be done by all cpus after a cold
     62  * boot/hotplug. This marks out the secure interrupts & enables them.
     63  ******************************************************************************/
     64 static void tegra_gic_pcpu_distif_setup(uint32_t gicd_base)
     65 {
     66 	uint32_t index, sec_ppi_sgi_mask = 0;
     67 
     68 	assert(gicd_base != 0U);
     69 
     70 	/* Setup PPI priorities doing four at a time */
     71 	for (index = 0U; index < 32U; index += 4U) {
     72 		gicd_write_ipriorityr(gicd_base, index,
     73 				GICD_IPRIORITYR_DEF_VAL);
     74 	}
     75 
     76 	/*
     77 	 * Invert the bitmask to create a mask for non-secure PPIs and
     78 	 * SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will
     79 	 * update the GICR_IGROUPR0 as well in case we are running on a GICv3
     80 	 * system. This is critical if GICD_CTLR.ARE_NS=1.
     81 	 */
     82 	gicd_write_igroupr(gicd_base, 0, ~sec_ppi_sgi_mask);
     83 }
     84 
     85 /*******************************************************************************
     86  * Global gic distributor setup which will be done by the primary cpu after a
     87  * cold boot. It marks out the non secure SPIs, PPIs & SGIs and enables them.
     88  * It then enables the secure GIC distributor interface.
     89  ******************************************************************************/
     90 static void tegra_gic_distif_setup(uint32_t gicd_base)
     91 {
     92 	uint32_t index, num_ints, irq_num;
     93 	uint8_t target_cpus;
     94 	uint32_t val;
     95 
     96 	/*
     97 	 * Mark out non-secure interrupts. Calculate number of
     98 	 * IGROUPR registers to consider. Will be equal to the
     99 	 * number of IT_LINES
    100 	 */
    101 	num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
    102 	num_ints = (num_ints + 1U) << 5;
    103 	for (index = MIN_SPI_ID; index < num_ints; index += 32U) {
    104 		gicd_write_igroupr(gicd_base, index, 0xFFFFFFFFU);
    105 	}
    106 
    107 	/* Setup SPI priorities doing four at a time */
    108 	for (index = MIN_SPI_ID; index < num_ints; index += 4U) {
    109 		gicd_write_ipriorityr(gicd_base, index,
    110 				GICD_IPRIORITYR_DEF_VAL);
    111 	}
    112 
    113 	/* Configure SPI secure interrupts now */
    114 	if (g_irq_sec_ptr != NULL) {
    115 
    116 		for (index = 0U; index < g_num_irqs; index++) {
    117 			irq_num = g_irq_sec_ptr[index].irq;
    118 			target_cpus = (uint8_t)g_irq_sec_ptr[index].target_cpus;
    119 
    120 			if (irq_num >= MIN_SPI_ID) {
    121 
    122 				/* Configure as a secure interrupt */
    123 				gicd_clr_igroupr(gicd_base, irq_num);
    124 
    125 				/* Configure SPI priority */
    126 				mmio_write_8((uint64_t)gicd_base +
    127 					(uint64_t)GICD_IPRIORITYR +
    128 					(uint64_t)irq_num,
    129 					GIC_HIGHEST_SEC_PRIORITY &
    130 					GIC_PRI_MASK);
    131 
    132 				/* Configure as level triggered */
    133 				val = gicd_read_icfgr(gicd_base, irq_num);
    134 				val |= (3U << ((irq_num & 0xFU) << 1U));
    135 				gicd_write_icfgr(gicd_base, irq_num, val);
    136 
    137 				/* Route SPI to the target CPUs */
    138 				gicd_set_itargetsr(gicd_base, irq_num,
    139 					target_cpus);
    140 
    141 				/* Enable this interrupt */
    142 				gicd_set_isenabler(gicd_base, irq_num);
    143 			}
    144 		}
    145 	}
    146 
    147 	/*
    148 	 * Configure the SGI and PPI. This is done in a separated function
    149 	 * because each CPU is responsible for initializing its own private
    150 	 * interrupts.
    151 	 */
    152 	tegra_gic_pcpu_distif_setup(gicd_base);
    153 
    154 	/* enable distributor */
    155 	gicd_write_ctlr(gicd_base, ENABLE_GRP0 | ENABLE_GRP1);
    156 }
    157 
    158 void tegra_gic_setup(const irq_sec_cfg_t *irq_sec_ptr, uint32_t num_irqs)
    159 {
    160 	g_irq_sec_ptr = irq_sec_ptr;
    161 	g_num_irqs = num_irqs;
    162 
    163 	tegra_gic_cpuif_setup(TEGRA_GICC_BASE);
    164 	tegra_gic_distif_setup(TEGRA_GICD_BASE);
    165 }
    166 
    167 /*******************************************************************************
    168  * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
    169  * The interrupt controller knows which pin/line it uses to signal a type of
    170  * interrupt. This function provides a common implementation of
    171  * plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use
    172  * across platforms. It lets the interrupt management framework determine
    173  * for a type of interrupt and security state, which line should be used in the
    174  * SCR_EL3 to control its routing to EL3. The interrupt line is represented as
    175  * the bit position of the IRQ or FIQ bit in the SCR_EL3.
    176  ******************************************************************************/
    177 static uint32_t tegra_gic_interrupt_type_to_line(uint32_t type,
    178 				uint32_t security_state)
    179 {
    180 	assert((type == INTR_TYPE_S_EL1) ||
    181 	       (type == INTR_TYPE_EL3) ||
    182 	       (type == INTR_TYPE_NS));
    183 
    184 	assert(sec_state_is_valid(security_state));
    185 
    186 	/*
    187 	 * We ignore the security state parameter under the assumption that
    188 	 * both normal and secure worlds are using ARM GICv2. This parameter
    189 	 * will be used when the secure world starts using GICv3.
    190 	 */
    191 #if ARM_GIC_ARCH == 2
    192 	return gicv2_interrupt_type_to_line(TEGRA_GICC_BASE, type);
    193 #else
    194 #error "Invalid ARM GIC architecture version specified for platform port"
    195 #endif /* ARM_GIC_ARCH */
    196 }
    197 
    198 #if ARM_GIC_ARCH == 2
    199 /*******************************************************************************
    200  * This function returns the type of the highest priority pending interrupt at
    201  * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
    202  * interrupt pending.
    203  ******************************************************************************/
    204 static uint32_t tegra_gic_get_pending_interrupt_type(void)
    205 {
    206 	uint32_t id;
    207 	uint32_t index;
    208 	uint32_t ret = INTR_TYPE_NS;
    209 
    210 	id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
    211 
    212 	/* get the interrupt type */
    213 	if (id < 1022U) {
    214 		for (index = 0U; index < g_num_irqs; index++) {
    215 			if (id == g_irq_sec_ptr[index].irq) {
    216 				ret = g_irq_sec_ptr[index].type;
    217 				break;
    218 			}
    219 		}
    220 	} else {
    221 		 if (id == GIC_SPURIOUS_INTERRUPT) {
    222 			ret = INTR_TYPE_INVAL;
    223 		}
    224 	}
    225 
    226 	return ret;
    227 }
    228 
    229 /*******************************************************************************
    230  * This function returns the id of the highest priority pending interrupt at
    231  * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
    232  * interrupt pending.
    233  ******************************************************************************/
    234 static uint32_t tegra_gic_get_pending_interrupt_id(void)
    235 {
    236 	uint32_t id, ret;
    237 
    238 	id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
    239 
    240 	if (id < 1022U) {
    241 		ret = id;
    242 	} else if (id == 1023U) {
    243 		ret = 0xFFFFFFFFU; /* INTR_ID_UNAVAILABLE */
    244 	} else {
    245 		/*
    246 		 * Find out which non-secure interrupt it is under the assumption that
    247 		 * the GICC_CTLR.AckCtl bit is 0.
    248 		 */
    249 		ret = gicc_read_ahppir(TEGRA_GICC_BASE) & INT_ID_MASK;
    250 	}
    251 
    252 	return ret;
    253 }
    254 
    255 /*******************************************************************************
    256  * This functions reads the GIC cpu interface Interrupt Acknowledge register
    257  * to start handling the pending interrupt. It returns the contents of the IAR.
    258  ******************************************************************************/
    259 static uint32_t tegra_gic_acknowledge_interrupt(void)
    260 {
    261 	return gicc_read_IAR(TEGRA_GICC_BASE);
    262 }
    263 
    264 /*******************************************************************************
    265  * This functions writes the GIC cpu interface End Of Interrupt register with
    266  * the passed value to finish handling the active interrupt
    267  ******************************************************************************/
    268 static void tegra_gic_end_of_interrupt(uint32_t id)
    269 {
    270 	gicc_write_EOIR(TEGRA_GICC_BASE, id);
    271 }
    272 
    273 /*******************************************************************************
    274  * This function returns the type of the interrupt id depending upon the group
    275  * this interrupt has been configured under by the interrupt controller i.e.
    276  * group0 or group1.
    277  ******************************************************************************/
    278 static uint32_t tegra_gic_get_interrupt_type(uint32_t id)
    279 {
    280 	uint32_t group;
    281 	uint32_t index;
    282 	uint32_t ret = INTR_TYPE_NS;
    283 
    284 	group = gicd_get_igroupr(TEGRA_GICD_BASE, id);
    285 
    286 	/* get the interrupt type */
    287 	if (group == GRP0) {
    288 		for (index = 0U; index < g_num_irqs; index++) {
    289 			if (id == g_irq_sec_ptr[index].irq) {
    290 				ret = g_irq_sec_ptr[index].type;
    291 				break;
    292 			}
    293 		}
    294 	}
    295 
    296 	return ret;
    297 }
    298 
    299 #else
    300 #error "Invalid ARM GIC architecture version specified for platform port"
    301 #endif /* ARM_GIC_ARCH */
    302 
    303 uint32_t plat_ic_get_pending_interrupt_id(void)
    304 {
    305 	return tegra_gic_get_pending_interrupt_id();
    306 }
    307 
    308 uint32_t plat_ic_get_pending_interrupt_type(void)
    309 {
    310 	return tegra_gic_get_pending_interrupt_type();
    311 }
    312 
    313 uint32_t plat_ic_acknowledge_interrupt(void)
    314 {
    315 	return tegra_gic_acknowledge_interrupt();
    316 }
    317 
    318 uint32_t plat_ic_get_interrupt_type(uint32_t id)
    319 {
    320 	return tegra_gic_get_interrupt_type(id);
    321 }
    322 
    323 void plat_ic_end_of_interrupt(uint32_t id)
    324 {
    325 	tegra_gic_end_of_interrupt(id);
    326 }
    327 
    328 uint32_t plat_interrupt_type_to_line(uint32_t type,
    329 				uint32_t security_state)
    330 {
    331 	return tegra_gic_interrupt_type_to_line(type, security_state);
    332 }
    333