Home | History | Annotate | Download | only in blktrace
      1 /*
      2  * block queue tracing parse application
      3  *
      4  * Copyright (C) 2005 Jens Axboe <axboe (at) suse.de>
      5  * Copyright (C) 2006 Jens Axboe <axboe (at) kernel.dk>
      6  *
      7  *  This program is free software; you can redistribute it and/or modify
      8  *  it under the terms of the GNU General Public License as published by
      9  *  the Free Software Foundation; either version 2 of the License, or
     10  *  (at your option) any later version.
     11  *
     12  *  This program is distributed in the hope that it will be useful,
     13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15  *  GNU General Public License for more details.
     16  *
     17  *  You should have received a copy of the GNU General Public License
     18  *  along with this program; if not, write to the Free Software
     19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     20  *
     21  */
     22 #include <sys/types.h>
     23 #include <sys/stat.h>
     24 #include <unistd.h>
     25 #include <stdio.h>
     26 #include <fcntl.h>
     27 #include <stdlib.h>
     28 #include <string.h>
     29 #include <getopt.h>
     30 #include <errno.h>
     31 #include <signal.h>
     32 #include <locale.h>
     33 #include <libgen.h>
     34 
     35 #include "blktrace.h"
     36 #include "rbtree.h"
     37 #include "jhash.h"
     38 
     39 static char blkparse_version[] = "1.2.0";
     40 
     41 struct skip_info {
     42 	unsigned long start, end;
     43 	struct skip_info *prev, *next;
     44 };
     45 
     46 struct per_dev_info {
     47 	dev_t dev;
     48 	char *name;
     49 
     50 	int backwards;
     51 	unsigned long long events;
     52 	unsigned long long first_reported_time;
     53 	unsigned long long last_reported_time;
     54 	unsigned long long last_read_time;
     55 	struct io_stats io_stats;
     56 	unsigned long skips;
     57 	unsigned long long seq_skips;
     58 	unsigned int max_depth[2];
     59 	unsigned int cur_depth[2];
     60 
     61 	struct rb_root rb_track;
     62 
     63 	int nfiles;
     64 	int ncpus;
     65 
     66 	unsigned long *cpu_map;
     67 	unsigned int cpu_map_max;
     68 
     69 	struct per_cpu_info *cpus;
     70 };
     71 
     72 /*
     73  * some duplicated effort here, we can unify this hash and the ppi hash later
     74  */
     75 struct process_pid_map {
     76 	pid_t pid;
     77 	char comm[16];
     78 	struct process_pid_map *hash_next, *list_next;
     79 };
     80 
     81 #define PPM_HASH_SHIFT	(8)
     82 #define PPM_HASH_SIZE	(1 << PPM_HASH_SHIFT)
     83 #define PPM_HASH_MASK	(PPM_HASH_SIZE - 1)
     84 static struct process_pid_map *ppm_hash_table[PPM_HASH_SIZE];
     85 
     86 struct per_process_info {
     87 	struct process_pid_map *ppm;
     88 	struct io_stats io_stats;
     89 	struct per_process_info *hash_next, *list_next;
     90 	int more_than_one;
     91 
     92 	/*
     93 	 * individual io stats
     94 	 */
     95 	unsigned long long longest_allocation_wait[2];
     96 	unsigned long long longest_dispatch_wait[2];
     97 	unsigned long long longest_completion_wait[2];
     98 };
     99 
    100 #define PPI_HASH_SHIFT	(8)
    101 #define PPI_HASH_SIZE	(1 << PPI_HASH_SHIFT)
    102 #define PPI_HASH_MASK	(PPI_HASH_SIZE - 1)
    103 static struct per_process_info *ppi_hash_table[PPI_HASH_SIZE];
    104 static struct per_process_info *ppi_list;
    105 static int ppi_list_entries;
    106 
    107 static struct option l_opts[] = {
    108  	{
    109 		.name = "act-mask",
    110 		.has_arg = required_argument,
    111 		.flag = NULL,
    112 		.val = 'a'
    113 	},
    114 	{
    115 		.name = "set-mask",
    116 		.has_arg = required_argument,
    117 		.flag = NULL,
    118 		.val = 'A'
    119 	},
    120 	{
    121 		.name = "batch",
    122 		.has_arg = required_argument,
    123 		.flag = NULL,
    124 		.val = 'b'
    125 	},
    126 	{
    127 		.name = "input-directory",
    128 		.has_arg = required_argument,
    129 		.flag = NULL,
    130 		.val = 'D'
    131 	},
    132 	{
    133 		.name = "dump-binary",
    134 		.has_arg = required_argument,
    135 		.flag = NULL,
    136 		.val = 'd'
    137 	},
    138 	{
    139 		.name = "format",
    140 		.has_arg = required_argument,
    141 		.flag = NULL,
    142 		.val = 'f'
    143 	},
    144 	{
    145 		.name = "format-spec",
    146 		.has_arg = required_argument,
    147 		.flag = NULL,
    148 		.val = 'F'
    149 	},
    150 	{
    151 		.name = "hash-by-name",
    152 		.has_arg = no_argument,
    153 		.flag = NULL,
    154 		.val = 'h'
    155 	},
    156 	{
    157 		.name = "input",
    158 		.has_arg = required_argument,
    159 		.flag = NULL,
    160 		.val = 'i'
    161 	},
    162 	{
    163 		.name = "no-msgs",
    164 		.has_arg = no_argument,
    165 		.flag = NULL,
    166 		.val = 'M'
    167 	},
    168 	{
    169 		.name = "output",
    170 		.has_arg = required_argument,
    171 		.flag = NULL,
    172 		.val = 'o'
    173 	},
    174 	{
    175 		.name = "no-text-output",
    176 		.has_arg = no_argument,
    177 		.flag = NULL,
    178 		.val = 'O'
    179 	},
    180 	{
    181 		.name = "quiet",
    182 		.has_arg = no_argument,
    183 		.flag = NULL,
    184 		.val = 'q'
    185 	},
    186 	{
    187 		.name = "per-program-stats",
    188 		.has_arg = no_argument,
    189 		.flag = NULL,
    190 		.val = 's'
    191 	},
    192 	{
    193 		.name = "track-ios",
    194 		.has_arg = no_argument,
    195 		.flag = NULL,
    196 		.val = 't'
    197 	},
    198 	{
    199 		.name = "stopwatch",
    200 		.has_arg = required_argument,
    201 		.flag = NULL,
    202 		.val = 'w'
    203 	},
    204 	{
    205 		.name = "verbose",
    206 		.has_arg = no_argument,
    207 		.flag = NULL,
    208 		.val = 'v'
    209 	},
    210 	{
    211 		.name = "version",
    212 		.has_arg = no_argument,
    213 		.flag = NULL,
    214 		.val = 'V'
    215 	},
    216 	{
    217 		.name = NULL,
    218 	}
    219 };
    220 
    221 /*
    222  * for sorting the displayed output
    223  */
    224 struct trace {
    225 	struct blk_io_trace *bit;
    226 	struct rb_node rb_node;
    227 	struct trace *next;
    228 	unsigned long read_sequence;
    229 };
    230 
    231 static struct rb_root rb_sort_root;
    232 static unsigned long rb_sort_entries;
    233 
    234 static struct trace *trace_list;
    235 
    236 /*
    237  * allocation cache
    238  */
    239 static struct blk_io_trace *bit_alloc_list;
    240 static struct trace *t_alloc_list;
    241 
    242 /*
    243  * for tracking individual ios
    244  */
    245 struct io_track {
    246 	struct rb_node rb_node;
    247 
    248 	struct process_pid_map *ppm;
    249 	__u64 sector;
    250 	unsigned long long allocation_time;
    251 	unsigned long long queue_time;
    252 	unsigned long long dispatch_time;
    253 	unsigned long long completion_time;
    254 };
    255 
    256 static int ndevices;
    257 static struct per_dev_info *devices;
    258 static char *get_dev_name(struct per_dev_info *, char *, int);
    259 static int trace_rb_insert_last(struct per_dev_info *, struct trace *);
    260 
    261 FILE *ofp = NULL;
    262 static char *output_name;
    263 static char *input_dir;
    264 
    265 static unsigned long long genesis_time;
    266 static unsigned long long last_allowed_time;
    267 static unsigned long long stopwatch_start;	/* start from zero by default */
    268 static unsigned long long stopwatch_end = -1ULL;	/* "infinity" */
    269 static unsigned long read_sequence;
    270 
    271 static int per_process_stats;
    272 static int per_device_and_cpu_stats = 1;
    273 static int track_ios;
    274 static int ppi_hash_by_pid = 1;
    275 static int verbose;
    276 static unsigned int act_mask = -1U;
    277 static int stats_printed;
    278 static int bin_output_msgs = 1;
    279 int data_is_native = -1;
    280 
    281 static FILE *dump_fp;
    282 static char *dump_binary;
    283 
    284 static unsigned int t_alloc_cache;
    285 static unsigned int bit_alloc_cache;
    286 
    287 #define RB_BATCH_DEFAULT	(512)
    288 static unsigned int rb_batch = RB_BATCH_DEFAULT;
    289 
    290 static int pipeline;
    291 static char *pipename;
    292 
    293 static int text_output = 1;
    294 
    295 #define is_done()	(*(volatile int *)(&done))
    296 static volatile int done;
    297 
    298 struct timespec		abs_start_time;
    299 static unsigned long long start_timestamp;
    300 
    301 static int have_drv_data = 0;
    302 
    303 #define JHASH_RANDOM	(0x3af5f2ee)
    304 
    305 #define CPUS_PER_LONG	(8 * sizeof(unsigned long))
    306 #define CPU_IDX(cpu)	((cpu) / CPUS_PER_LONG)
    307 #define CPU_BIT(cpu)	((cpu) & (CPUS_PER_LONG - 1))
    308 
    309 static void output_binary(void *buf, int len)
    310 {
    311 	if (dump_binary) {
    312 		size_t n = fwrite(buf, len, 1, dump_fp);
    313 		if (n != 1) {
    314 			perror(dump_binary);
    315 			fclose(dump_fp);
    316 			dump_binary = NULL;
    317 		}
    318 	}
    319 }
    320 
    321 static void resize_cpu_info(struct per_dev_info *pdi, int cpu)
    322 {
    323 	struct per_cpu_info *cpus = pdi->cpus;
    324 	int ncpus = pdi->ncpus;
    325 	int new_count = cpu + 1;
    326 	int new_space, size;
    327 	char *new_start;
    328 
    329 	size = new_count * sizeof(struct per_cpu_info);
    330 	cpus = realloc(cpus, size);
    331 	if (!cpus) {
    332 		char name[20];
    333 		fprintf(stderr, "Out of memory, CPU info for device %s (%d)\n",
    334 			get_dev_name(pdi, name, sizeof(name)), size);
    335 		exit(1);
    336 	}
    337 
    338 	new_start = (char *)cpus + (ncpus * sizeof(struct per_cpu_info));
    339 	new_space = (new_count - ncpus) * sizeof(struct per_cpu_info);
    340 	memset(new_start, 0, new_space);
    341 
    342 	pdi->ncpus = new_count;
    343 	pdi->cpus = cpus;
    344 
    345 	for (new_count = 0; new_count < pdi->ncpus; new_count++) {
    346 		struct per_cpu_info *pci = &pdi->cpus[new_count];
    347 
    348 		if (!pci->fd) {
    349 			pci->fd = -1;
    350 			memset(&pci->rb_last, 0, sizeof(pci->rb_last));
    351 			pci->rb_last_entries = 0;
    352 			pci->last_sequence = -1;
    353 		}
    354 	}
    355 }
    356 
    357 static struct per_cpu_info *get_cpu_info(struct per_dev_info *pdi, int cpu)
    358 {
    359 	struct per_cpu_info *pci;
    360 
    361 	if (cpu >= pdi->ncpus)
    362 		resize_cpu_info(pdi, cpu);
    363 
    364 	pci = &pdi->cpus[cpu];
    365 	pci->cpu = cpu;
    366 	return pci;
    367 }
    368 
    369 
    370 static int resize_devices(char *name)
    371 {
    372 	int size = (ndevices + 1) * sizeof(struct per_dev_info);
    373 
    374 	devices = realloc(devices, size);
    375 	if (!devices) {
    376 		fprintf(stderr, "Out of memory, device %s (%d)\n", name, size);
    377 		return 1;
    378 	}
    379 	memset(&devices[ndevices], 0, sizeof(struct per_dev_info));
    380 	devices[ndevices].name = name;
    381 	ndevices++;
    382 	return 0;
    383 }
    384 
    385 static struct per_dev_info *get_dev_info(dev_t dev)
    386 {
    387 	struct per_dev_info *pdi;
    388 	int i;
    389 
    390 	for (i = 0; i < ndevices; i++) {
    391 		if (!devices[i].dev)
    392 			devices[i].dev = dev;
    393 		if (devices[i].dev == dev)
    394 			return &devices[i];
    395 	}
    396 
    397 	if (resize_devices(NULL))
    398 		return NULL;
    399 
    400 	pdi = &devices[ndevices - 1];
    401 	pdi->dev = dev;
    402 	pdi->first_reported_time = 0;
    403 	pdi->last_read_time = 0;
    404 
    405 	return pdi;
    406 }
    407 
    408 static void insert_skip(struct per_cpu_info *pci, unsigned long start,
    409 			unsigned long end)
    410 {
    411 	struct skip_info *sip;
    412 
    413 	for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
    414 		if (end == (sip->start - 1)) {
    415 			sip->start = start;
    416 			return;
    417 		} else if (start == (sip->end + 1)) {
    418 			sip->end = end;
    419 			return;
    420 		}
    421 	}
    422 
    423 	sip = malloc(sizeof(struct skip_info));
    424 	sip->start = start;
    425 	sip->end = end;
    426 	sip->prev = sip->next = NULL;
    427 	if (pci->skips_tail == NULL)
    428 		pci->skips_head = pci->skips_tail = sip;
    429 	else {
    430 		sip->prev = pci->skips_tail;
    431 		pci->skips_tail->next = sip;
    432 		pci->skips_tail = sip;
    433 	}
    434 }
    435 
    436 static void remove_sip(struct per_cpu_info *pci, struct skip_info *sip)
    437 {
    438 	if (sip->prev == NULL) {
    439 		if (sip->next == NULL)
    440 			pci->skips_head = pci->skips_tail = NULL;
    441 		else {
    442 			pci->skips_head = sip->next;
    443 			sip->next->prev = NULL;
    444 		}
    445 	} else if (sip->next == NULL) {
    446 		pci->skips_tail = sip->prev;
    447 		sip->prev->next = NULL;
    448 	} else {
    449 		sip->prev->next = sip->next;
    450 		sip->next->prev = sip->prev;
    451 	}
    452 
    453 	sip->prev = sip->next = NULL;
    454 	free(sip);
    455 }
    456 
    457 #define IN_SKIP(sip,seq) (((sip)->start <= (seq)) && ((seq) <= sip->end))
    458 static int check_current_skips(struct per_cpu_info *pci, unsigned long seq)
    459 {
    460 	struct skip_info *sip;
    461 
    462 	for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
    463 		if (IN_SKIP(sip, seq)) {
    464 			if (sip->start == seq) {
    465 				if (sip->end == seq)
    466 					remove_sip(pci, sip);
    467 				else
    468 					sip->start += 1;
    469 			} else if (sip->end == seq)
    470 				sip->end -= 1;
    471 			else {
    472 				sip->end = seq - 1;
    473 				insert_skip(pci, seq + 1, sip->end);
    474 			}
    475 			return 1;
    476 		}
    477 	}
    478 
    479 	return 0;
    480 }
    481 
    482 static void collect_pdi_skips(struct per_dev_info *pdi)
    483 {
    484 	struct skip_info *sip;
    485 	int cpu;
    486 
    487 	pdi->skips = 0;
    488 	pdi->seq_skips = 0;
    489 
    490 	for (cpu = 0; cpu < pdi->ncpus; cpu++) {
    491 		struct per_cpu_info *pci = &pdi->cpus[cpu];
    492 
    493 		for (sip = pci->skips_head; sip != NULL; sip = sip->next) {
    494 			pdi->skips++;
    495 			pdi->seq_skips += (sip->end - sip->start + 1);
    496 			if (verbose)
    497 				fprintf(stderr,"(%d,%d): skipping %lu -> %lu\n",
    498 					MAJOR(pdi->dev), MINOR(pdi->dev),
    499 					sip->start, sip->end);
    500 		}
    501 	}
    502 }
    503 
    504 static void cpu_mark_online(struct per_dev_info *pdi, unsigned int cpu)
    505 {
    506 	if (cpu >= pdi->cpu_map_max || !pdi->cpu_map) {
    507 		int new_max = (cpu + CPUS_PER_LONG) & ~(CPUS_PER_LONG - 1);
    508 		unsigned long *map = malloc(new_max / sizeof(long));
    509 
    510 		memset(map, 0, new_max / sizeof(long));
    511 
    512 		if (pdi->cpu_map) {
    513 			memcpy(map, pdi->cpu_map, pdi->cpu_map_max / sizeof(long));
    514 			free(pdi->cpu_map);
    515 		}
    516 
    517 		pdi->cpu_map = map;
    518 		pdi->cpu_map_max = new_max;
    519 	}
    520 
    521 	pdi->cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
    522 }
    523 
    524 static inline void cpu_mark_offline(struct per_dev_info *pdi, int cpu)
    525 {
    526 	pdi->cpu_map[CPU_IDX(cpu)] &= ~(1UL << CPU_BIT(cpu));
    527 }
    528 
    529 static inline int cpu_is_online(struct per_dev_info *pdi, int cpu)
    530 {
    531 	return (pdi->cpu_map[CPU_IDX(cpu)] & (1UL << CPU_BIT(cpu))) != 0;
    532 }
    533 
    534 static inline int ppm_hash_pid(pid_t pid)
    535 {
    536 	return jhash_1word(pid, JHASH_RANDOM) & PPM_HASH_MASK;
    537 }
    538 
    539 static struct process_pid_map *find_ppm(pid_t pid)
    540 {
    541 	const int hash_idx = ppm_hash_pid(pid);
    542 	struct process_pid_map *ppm;
    543 
    544 	ppm = ppm_hash_table[hash_idx];
    545 	while (ppm) {
    546 		if (ppm->pid == pid)
    547 			return ppm;
    548 
    549 		ppm = ppm->hash_next;
    550 	}
    551 
    552 	return NULL;
    553 }
    554 
    555 static struct process_pid_map *add_ppm_hash(pid_t pid, const char *name)
    556 {
    557 	const int hash_idx = ppm_hash_pid(pid);
    558 	struct process_pid_map *ppm;
    559 
    560 	ppm = find_ppm(pid);
    561 	if (!ppm) {
    562 		ppm = malloc(sizeof(*ppm));
    563 		memset(ppm, 0, sizeof(*ppm));
    564 		ppm->pid = pid;
    565 		memset(ppm->comm, 0, sizeof(ppm->comm));
    566 		strncpy(ppm->comm, name, sizeof(ppm->comm));
    567 		ppm->comm[sizeof(ppm->comm) - 1] = '\0';
    568 		ppm->hash_next = ppm_hash_table[hash_idx];
    569 		ppm_hash_table[hash_idx] = ppm;
    570 	}
    571 
    572 	return ppm;
    573 }
    574 
    575 static void handle_notify(struct blk_io_trace *bit)
    576 {
    577 	void	*payload = (caddr_t) bit + sizeof(*bit);
    578 	__u32	two32[2];
    579 
    580 	switch (bit->action) {
    581 	case BLK_TN_PROCESS:
    582 		add_ppm_hash(bit->pid, payload);
    583 		break;
    584 
    585 	case BLK_TN_TIMESTAMP:
    586 		if (bit->pdu_len != sizeof(two32))
    587 			return;
    588 		memcpy(two32, payload, sizeof(two32));
    589 		if (!data_is_native) {
    590 			two32[0] = be32_to_cpu(two32[0]);
    591 			two32[1] = be32_to_cpu(two32[1]);
    592 		}
    593 		start_timestamp = bit->time;
    594 		abs_start_time.tv_sec  = two32[0];
    595 		abs_start_time.tv_nsec = two32[1];
    596 		if (abs_start_time.tv_nsec < 0) {
    597 			abs_start_time.tv_sec--;
    598 			abs_start_time.tv_nsec += 1000000000;
    599 		}
    600 
    601 		break;
    602 
    603 	case BLK_TN_MESSAGE:
    604 		if (bit->pdu_len > 0) {
    605 			char msg[bit->pdu_len+1];
    606 
    607 			memcpy(msg, (char *)payload, bit->pdu_len);
    608 			msg[bit->pdu_len] = '\0';
    609 
    610 			fprintf(ofp,
    611 				"%3d,%-3d %2d %8s %5d.%09lu %5u %2s %3s %s\n",
    612 				MAJOR(bit->device), MINOR(bit->device),
    613 				bit->cpu, "0", (int) SECONDS(bit->time),
    614 				(unsigned long) NANO_SECONDS(bit->time),
    615 				0, "m", "N", msg);
    616 		}
    617 		break;
    618 
    619 	default:
    620 		/* Ignore unknown notify events */
    621 		;
    622 	}
    623 }
    624 
    625 char *find_process_name(pid_t pid)
    626 {
    627 	struct process_pid_map *ppm = find_ppm(pid);
    628 
    629 	if (ppm)
    630 		return ppm->comm;
    631 
    632 	return NULL;
    633 }
    634 
    635 static inline int ppi_hash_pid(pid_t pid)
    636 {
    637 	return jhash_1word(pid, JHASH_RANDOM) & PPI_HASH_MASK;
    638 }
    639 
    640 static inline int ppi_hash_name(const char *name)
    641 {
    642 	return jhash(name, 16, JHASH_RANDOM) & PPI_HASH_MASK;
    643 }
    644 
    645 static inline int ppi_hash(struct per_process_info *ppi)
    646 {
    647 	struct process_pid_map *ppm = ppi->ppm;
    648 
    649 	if (ppi_hash_by_pid)
    650 		return ppi_hash_pid(ppm->pid);
    651 
    652 	return ppi_hash_name(ppm->comm);
    653 }
    654 
    655 static inline void add_ppi_to_hash(struct per_process_info *ppi)
    656 {
    657 	const int hash_idx = ppi_hash(ppi);
    658 
    659 	ppi->hash_next = ppi_hash_table[hash_idx];
    660 	ppi_hash_table[hash_idx] = ppi;
    661 }
    662 
    663 static inline void add_ppi_to_list(struct per_process_info *ppi)
    664 {
    665 	ppi->list_next = ppi_list;
    666 	ppi_list = ppi;
    667 	ppi_list_entries++;
    668 }
    669 
    670 static struct per_process_info *find_ppi_by_name(char *name)
    671 {
    672 	const int hash_idx = ppi_hash_name(name);
    673 	struct per_process_info *ppi;
    674 
    675 	ppi = ppi_hash_table[hash_idx];
    676 	while (ppi) {
    677 		struct process_pid_map *ppm = ppi->ppm;
    678 
    679 		if (!strcmp(ppm->comm, name))
    680 			return ppi;
    681 
    682 		ppi = ppi->hash_next;
    683 	}
    684 
    685 	return NULL;
    686 }
    687 
    688 static struct per_process_info *find_ppi_by_pid(pid_t pid)
    689 {
    690 	const int hash_idx = ppi_hash_pid(pid);
    691 	struct per_process_info *ppi;
    692 
    693 	ppi = ppi_hash_table[hash_idx];
    694 	while (ppi) {
    695 		struct process_pid_map *ppm = ppi->ppm;
    696 
    697 		if (ppm->pid == pid)
    698 			return ppi;
    699 
    700 		ppi = ppi->hash_next;
    701 	}
    702 
    703 	return NULL;
    704 }
    705 
    706 static struct per_process_info *find_ppi(pid_t pid)
    707 {
    708 	struct per_process_info *ppi;
    709 	char *name;
    710 
    711 	if (ppi_hash_by_pid)
    712 		return find_ppi_by_pid(pid);
    713 
    714 	name = find_process_name(pid);
    715 	if (!name)
    716 		return NULL;
    717 
    718 	ppi = find_ppi_by_name(name);
    719 	if (ppi && ppi->ppm->pid != pid)
    720 		ppi->more_than_one = 1;
    721 
    722 	return ppi;
    723 }
    724 
    725 /*
    726  * struct trace and blktrace allocation cache, we do potentially
    727  * millions of mallocs for these structures while only using at most
    728  * a few thousand at the time
    729  */
    730 static inline void t_free(struct trace *t)
    731 {
    732 	if (t_alloc_cache < 1024) {
    733 		t->next = t_alloc_list;
    734 		t_alloc_list = t;
    735 		t_alloc_cache++;
    736 	} else
    737 		free(t);
    738 }
    739 
    740 static inline struct trace *t_alloc(void)
    741 {
    742 	struct trace *t = t_alloc_list;
    743 
    744 	if (t) {
    745 		t_alloc_list = t->next;
    746 		t_alloc_cache--;
    747 		return t;
    748 	}
    749 
    750 	return malloc(sizeof(*t));
    751 }
    752 
    753 static inline void bit_free(struct blk_io_trace *bit)
    754 {
    755 	if (bit_alloc_cache < 1024 && !bit->pdu_len) {
    756 		/*
    757 		 * abuse a 64-bit field for a next pointer for the free item
    758 		 */
    759 		bit->time = (__u64) (unsigned long) bit_alloc_list;
    760 		bit_alloc_list = (struct blk_io_trace *) bit;
    761 		bit_alloc_cache++;
    762 	} else
    763 		free(bit);
    764 }
    765 
    766 static inline struct blk_io_trace *bit_alloc(void)
    767 {
    768 	struct blk_io_trace *bit = bit_alloc_list;
    769 
    770 	if (bit) {
    771 		bit_alloc_list = (struct blk_io_trace *) (unsigned long) \
    772 				 bit->time;
    773 		bit_alloc_cache--;
    774 		return bit;
    775 	}
    776 
    777 	return malloc(sizeof(*bit));
    778 }
    779 
    780 static inline void __put_trace_last(struct per_dev_info *pdi, struct trace *t)
    781 {
    782 	struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
    783 
    784 	rb_erase(&t->rb_node, &pci->rb_last);
    785 	pci->rb_last_entries--;
    786 
    787 	bit_free(t->bit);
    788 	t_free(t);
    789 }
    790 
    791 static void put_trace(struct per_dev_info *pdi, struct trace *t)
    792 {
    793 	rb_erase(&t->rb_node, &rb_sort_root);
    794 	rb_sort_entries--;
    795 
    796 	trace_rb_insert_last(pdi, t);
    797 }
    798 
    799 static inline int trace_rb_insert(struct trace *t, struct rb_root *root)
    800 {
    801 	struct rb_node **p = &root->rb_node;
    802 	struct rb_node *parent = NULL;
    803 	struct trace *__t;
    804 
    805 	while (*p) {
    806 		parent = *p;
    807 
    808 		__t = rb_entry(parent, struct trace, rb_node);
    809 
    810 		if (t->bit->time < __t->bit->time)
    811 			p = &(*p)->rb_left;
    812 		else if (t->bit->time > __t->bit->time)
    813 			p = &(*p)->rb_right;
    814 		else if (t->bit->device < __t->bit->device)
    815 			p = &(*p)->rb_left;
    816 		else if (t->bit->device > __t->bit->device)
    817 			p = &(*p)->rb_right;
    818 		else if (t->bit->sequence < __t->bit->sequence)
    819 			p = &(*p)->rb_left;
    820 		else	/* >= sequence */
    821 			p = &(*p)->rb_right;
    822 	}
    823 
    824 	rb_link_node(&t->rb_node, parent, p);
    825 	rb_insert_color(&t->rb_node, root);
    826 	return 0;
    827 }
    828 
    829 static inline int trace_rb_insert_sort(struct trace *t)
    830 {
    831 	if (!trace_rb_insert(t, &rb_sort_root)) {
    832 		rb_sort_entries++;
    833 		return 0;
    834 	}
    835 
    836 	return 1;
    837 }
    838 
    839 static int trace_rb_insert_last(struct per_dev_info *pdi, struct trace *t)
    840 {
    841 	struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
    842 
    843 	if (trace_rb_insert(t, &pci->rb_last))
    844 		return 1;
    845 
    846 	pci->rb_last_entries++;
    847 
    848 	if (pci->rb_last_entries > rb_batch * pdi->nfiles) {
    849 		struct rb_node *n = rb_first(&pci->rb_last);
    850 
    851 		t = rb_entry(n, struct trace, rb_node);
    852 		__put_trace_last(pdi, t);
    853 	}
    854 
    855 	return 0;
    856 }
    857 
    858 static struct trace *trace_rb_find(dev_t device, unsigned long sequence,
    859 				   struct rb_root *root, int order)
    860 {
    861 	struct rb_node *n = root->rb_node;
    862 	struct rb_node *prev = NULL;
    863 	struct trace *__t;
    864 
    865 	while (n) {
    866 		__t = rb_entry(n, struct trace, rb_node);
    867 		prev = n;
    868 
    869 		if (device < __t->bit->device)
    870 			n = n->rb_left;
    871 		else if (device > __t->bit->device)
    872 			n = n->rb_right;
    873 		else if (sequence < __t->bit->sequence)
    874 			n = n->rb_left;
    875 		else if (sequence > __t->bit->sequence)
    876 			n = n->rb_right;
    877 		else
    878 			return __t;
    879 	}
    880 
    881 	/*
    882 	 * hack - the list may not be sequence ordered because some
    883 	 * events don't have sequence and time matched. so we end up
    884 	 * being a little off in the rb lookup here, because we don't
    885 	 * know the time we are looking for. compensate by browsing
    886 	 * a little ahead from the last entry to find the match
    887 	 */
    888 	if (order && prev) {
    889 		int max = 5;
    890 
    891 		while (((n = rb_next(prev)) != NULL) && max--) {
    892 			__t = rb_entry(n, struct trace, rb_node);
    893 
    894 			if (__t->bit->device == device &&
    895 			    __t->bit->sequence == sequence)
    896 				return __t;
    897 
    898 			prev = n;
    899 		}
    900 	}
    901 
    902 	return NULL;
    903 }
    904 
    905 static inline struct trace *trace_rb_find_last(struct per_dev_info *pdi,
    906 					       struct per_cpu_info *pci,
    907 					       unsigned long seq)
    908 {
    909 	return trace_rb_find(pdi->dev, seq, &pci->rb_last, 0);
    910 }
    911 
    912 static inline int track_rb_insert(struct per_dev_info *pdi,struct io_track *iot)
    913 {
    914 	struct rb_node **p = &pdi->rb_track.rb_node;
    915 	struct rb_node *parent = NULL;
    916 	struct io_track *__iot;
    917 
    918 	while (*p) {
    919 		parent = *p;
    920 		__iot = rb_entry(parent, struct io_track, rb_node);
    921 
    922 		if (iot->sector < __iot->sector)
    923 			p = &(*p)->rb_left;
    924 		else if (iot->sector > __iot->sector)
    925 			p = &(*p)->rb_right;
    926 		else {
    927 			fprintf(stderr,
    928 				"sector alias (%Lu) on device %d,%d!\n",
    929 				(unsigned long long) iot->sector,
    930 				MAJOR(pdi->dev), MINOR(pdi->dev));
    931 			return 1;
    932 		}
    933 	}
    934 
    935 	rb_link_node(&iot->rb_node, parent, p);
    936 	rb_insert_color(&iot->rb_node, &pdi->rb_track);
    937 	return 0;
    938 }
    939 
    940 static struct io_track *__find_track(struct per_dev_info *pdi, __u64 sector)
    941 {
    942 	struct rb_node *n = pdi->rb_track.rb_node;
    943 	struct io_track *__iot;
    944 
    945 	while (n) {
    946 		__iot = rb_entry(n, struct io_track, rb_node);
    947 
    948 		if (sector < __iot->sector)
    949 			n = n->rb_left;
    950 		else if (sector > __iot->sector)
    951 			n = n->rb_right;
    952 		else
    953 			return __iot;
    954 	}
    955 
    956 	return NULL;
    957 }
    958 
    959 static struct io_track *find_track(struct per_dev_info *pdi, pid_t pid,
    960 				   __u64 sector)
    961 {
    962 	struct io_track *iot;
    963 
    964 	iot = __find_track(pdi, sector);
    965 	if (!iot) {
    966 		iot = malloc(sizeof(*iot));
    967 		iot->ppm = find_ppm(pid);
    968 		if (!iot->ppm)
    969 			iot->ppm = add_ppm_hash(pid, "unknown");
    970 		iot->sector = sector;
    971 		track_rb_insert(pdi, iot);
    972 	}
    973 
    974 	return iot;
    975 }
    976 
    977 static void log_track_frontmerge(struct per_dev_info *pdi,
    978 				 struct blk_io_trace *t)
    979 {
    980 	struct io_track *iot;
    981 
    982 	if (!track_ios)
    983 		return;
    984 
    985 	iot = __find_track(pdi, t->sector + t_sec(t));
    986 	if (!iot) {
    987 		if (verbose)
    988 			fprintf(stderr, "merge not found for (%d,%d): %llu\n",
    989 				MAJOR(pdi->dev), MINOR(pdi->dev),
    990 				(unsigned long long) t->sector + t_sec(t));
    991 		return;
    992 	}
    993 
    994 	rb_erase(&iot->rb_node, &pdi->rb_track);
    995 	iot->sector -= t_sec(t);
    996 	track_rb_insert(pdi, iot);
    997 }
    998 
    999 static void log_track_getrq(struct per_dev_info *pdi, struct blk_io_trace *t)
   1000 {
   1001 	struct io_track *iot;
   1002 
   1003 	if (!track_ios)
   1004 		return;
   1005 
   1006 	iot = find_track(pdi, t->pid, t->sector);
   1007 	iot->allocation_time = t->time;
   1008 }
   1009 
   1010 static inline int is_remapper(struct per_dev_info *pdi)
   1011 {
   1012 	int major = MAJOR(pdi->dev);
   1013 
   1014 	return (major == 253 || major == 9);
   1015 }
   1016 
   1017 /*
   1018  * for md/dm setups, the interesting cycle is Q -> C. So track queueing
   1019  * time here, as dispatch time
   1020  */
   1021 static void log_track_queue(struct per_dev_info *pdi, struct blk_io_trace *t)
   1022 {
   1023 	struct io_track *iot;
   1024 
   1025 	if (!track_ios)
   1026 		return;
   1027 	if (!is_remapper(pdi))
   1028 		return;
   1029 
   1030 	iot = find_track(pdi, t->pid, t->sector);
   1031 	iot->dispatch_time = t->time;
   1032 }
   1033 
   1034 /*
   1035  * return time between rq allocation and insertion
   1036  */
   1037 static unsigned long long log_track_insert(struct per_dev_info *pdi,
   1038 					   struct blk_io_trace *t)
   1039 {
   1040 	unsigned long long elapsed;
   1041 	struct io_track *iot;
   1042 
   1043 	if (!track_ios)
   1044 		return -1;
   1045 
   1046 	iot = find_track(pdi, t->pid, t->sector);
   1047 	iot->queue_time = t->time;
   1048 
   1049 	if (!iot->allocation_time)
   1050 		return -1;
   1051 
   1052 	elapsed = iot->queue_time - iot->allocation_time;
   1053 
   1054 	if (per_process_stats) {
   1055 		struct per_process_info *ppi = find_ppi(iot->ppm->pid);
   1056 		int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1057 
   1058 		if (ppi && elapsed > ppi->longest_allocation_wait[w])
   1059 			ppi->longest_allocation_wait[w] = elapsed;
   1060 	}
   1061 
   1062 	return elapsed;
   1063 }
   1064 
   1065 /*
   1066  * return time between queue and issue
   1067  */
   1068 static unsigned long long log_track_issue(struct per_dev_info *pdi,
   1069 					  struct blk_io_trace *t)
   1070 {
   1071 	unsigned long long elapsed;
   1072 	struct io_track *iot;
   1073 
   1074 	if (!track_ios)
   1075 		return -1;
   1076 	if ((t->action & BLK_TC_ACT(BLK_TC_FS)) == 0)
   1077 		return -1;
   1078 
   1079 	iot = __find_track(pdi, t->sector);
   1080 	if (!iot) {
   1081 		if (verbose)
   1082 			fprintf(stderr, "issue not found for (%d,%d): %llu\n",
   1083 				MAJOR(pdi->dev), MINOR(pdi->dev),
   1084 				(unsigned long long) t->sector);
   1085 		return -1;
   1086 	}
   1087 
   1088 	iot->dispatch_time = t->time;
   1089 	elapsed = iot->dispatch_time - iot->queue_time;
   1090 
   1091 	if (per_process_stats) {
   1092 		struct per_process_info *ppi = find_ppi(iot->ppm->pid);
   1093 		int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1094 
   1095 		if (ppi && elapsed > ppi->longest_dispatch_wait[w])
   1096 			ppi->longest_dispatch_wait[w] = elapsed;
   1097 	}
   1098 
   1099 	return elapsed;
   1100 }
   1101 
   1102 /*
   1103  * return time between dispatch and complete
   1104  */
   1105 static unsigned long long log_track_complete(struct per_dev_info *pdi,
   1106 					     struct blk_io_trace *t)
   1107 {
   1108 	unsigned long long elapsed;
   1109 	struct io_track *iot;
   1110 
   1111 	if (!track_ios)
   1112 		return -1;
   1113 
   1114 	iot = __find_track(pdi, t->sector);
   1115 	if (!iot) {
   1116 		if (verbose)
   1117 			fprintf(stderr,"complete not found for (%d,%d): %llu\n",
   1118 				MAJOR(pdi->dev), MINOR(pdi->dev),
   1119 				(unsigned long long) t->sector);
   1120 		return -1;
   1121 	}
   1122 
   1123 	iot->completion_time = t->time;
   1124 	elapsed = iot->completion_time - iot->dispatch_time;
   1125 
   1126 	if (per_process_stats) {
   1127 		struct per_process_info *ppi = find_ppi(iot->ppm->pid);
   1128 		int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1129 
   1130 		if (ppi && elapsed > ppi->longest_completion_wait[w])
   1131 			ppi->longest_completion_wait[w] = elapsed;
   1132 	}
   1133 
   1134 	/*
   1135 	 * kill the trace, we don't need it after completion
   1136 	 */
   1137 	rb_erase(&iot->rb_node, &pdi->rb_track);
   1138 	free(iot);
   1139 
   1140 	return elapsed;
   1141 }
   1142 
   1143 
   1144 static struct io_stats *find_process_io_stats(pid_t pid)
   1145 {
   1146 	struct per_process_info *ppi = find_ppi(pid);
   1147 
   1148 	if (!ppi) {
   1149 		ppi = malloc(sizeof(*ppi));
   1150 		memset(ppi, 0, sizeof(*ppi));
   1151 		ppi->ppm = find_ppm(pid);
   1152 		if (!ppi->ppm)
   1153 			ppi->ppm = add_ppm_hash(pid, "unknown");
   1154 		add_ppi_to_hash(ppi);
   1155 		add_ppi_to_list(ppi);
   1156 	}
   1157 
   1158 	return &ppi->io_stats;
   1159 }
   1160 
   1161 static char *get_dev_name(struct per_dev_info *pdi, char *buffer, int size)
   1162 {
   1163 	if (pdi->name)
   1164 		snprintf(buffer, size, "%s", pdi->name);
   1165 	else
   1166 		snprintf(buffer, size, "%d,%d",MAJOR(pdi->dev),MINOR(pdi->dev));
   1167 	return buffer;
   1168 }
   1169 
   1170 static void check_time(struct per_dev_info *pdi, struct blk_io_trace *bit)
   1171 {
   1172 	unsigned long long this = bit->time;
   1173 	unsigned long long last = pdi->last_reported_time;
   1174 
   1175 	pdi->backwards = (this < last) ? 'B' : ' ';
   1176 	pdi->last_reported_time = this;
   1177 }
   1178 
   1179 static inline void __account_m(struct io_stats *ios, struct blk_io_trace *t,
   1180 			       int rw)
   1181 {
   1182 	if (rw) {
   1183 		ios->mwrites++;
   1184 		ios->mwrite_kb += t_kb(t);
   1185 		ios->mwrite_b += t_b(t);
   1186 	} else {
   1187 		ios->mreads++;
   1188 		ios->mread_kb += t_kb(t);
   1189 		ios->mread_b += t_b(t);
   1190 	}
   1191 }
   1192 
   1193 static inline void account_m(struct blk_io_trace *t, struct per_cpu_info *pci,
   1194 			     int rw)
   1195 {
   1196 	__account_m(&pci->io_stats, t, rw);
   1197 
   1198 	if (per_process_stats) {
   1199 		struct io_stats *ios = find_process_io_stats(t->pid);
   1200 
   1201 		__account_m(ios, t, rw);
   1202 	}
   1203 }
   1204 
   1205 static inline void __account_pc_queue(struct io_stats *ios,
   1206 				      struct blk_io_trace *t, int rw)
   1207 {
   1208 	if (rw) {
   1209 		ios->qwrites_pc++;
   1210 		ios->qwrite_kb_pc += t_kb(t);
   1211 		ios->qwrite_b_pc += t_b(t);
   1212 	} else {
   1213 		ios->qreads_pc++;
   1214 		ios->qread_kb += t_kb(t);
   1215 		ios->qread_b_pc += t_b(t);
   1216 	}
   1217 }
   1218 
   1219 static inline void account_pc_queue(struct blk_io_trace *t,
   1220 				    struct per_cpu_info *pci, int rw)
   1221 {
   1222 	__account_pc_queue(&pci->io_stats, t, rw);
   1223 
   1224 	if (per_process_stats) {
   1225 		struct io_stats *ios = find_process_io_stats(t->pid);
   1226 
   1227 		__account_pc_queue(ios, t, rw);
   1228 	}
   1229 }
   1230 
   1231 static inline void __account_pc_issue(struct io_stats *ios, int rw,
   1232 				      unsigned int bytes)
   1233 {
   1234 	if (rw) {
   1235 		ios->iwrites_pc++;
   1236 		ios->iwrite_kb_pc += bytes >> 10;
   1237 		ios->iwrite_b_pc += bytes & 1023;
   1238 	} else {
   1239 		ios->ireads_pc++;
   1240 		ios->iread_kb_pc += bytes >> 10;
   1241 		ios->iread_b_pc += bytes & 1023;
   1242 	}
   1243 }
   1244 
   1245 static inline void account_pc_issue(struct blk_io_trace *t,
   1246 				    struct per_cpu_info *pci, int rw)
   1247 {
   1248 	__account_pc_issue(&pci->io_stats, rw, t->bytes);
   1249 
   1250 	if (per_process_stats) {
   1251 		struct io_stats *ios = find_process_io_stats(t->pid);
   1252 
   1253 		__account_pc_issue(ios, rw, t->bytes);
   1254 	}
   1255 }
   1256 
   1257 static inline void __account_pc_requeue(struct io_stats *ios,
   1258 					struct blk_io_trace *t, int rw)
   1259 {
   1260 	if (rw) {
   1261 		ios->wrqueue_pc++;
   1262 		ios->iwrite_kb_pc -= t_kb(t);
   1263 		ios->iwrite_b_pc -= t_b(t);
   1264 	} else {
   1265 		ios->rrqueue_pc++;
   1266 		ios->iread_kb_pc -= t_kb(t);
   1267 		ios->iread_b_pc -= t_b(t);
   1268 	}
   1269 }
   1270 
   1271 static inline void account_pc_requeue(struct blk_io_trace *t,
   1272 				      struct per_cpu_info *pci, int rw)
   1273 {
   1274 	__account_pc_requeue(&pci->io_stats, t, rw);
   1275 
   1276 	if (per_process_stats) {
   1277 		struct io_stats *ios = find_process_io_stats(t->pid);
   1278 
   1279 		__account_pc_requeue(ios, t, rw);
   1280 	}
   1281 }
   1282 
   1283 static inline void __account_pc_c(struct io_stats *ios, int rw)
   1284 {
   1285 	if (rw)
   1286 		ios->cwrites_pc++;
   1287 	else
   1288 		ios->creads_pc++;
   1289 }
   1290 
   1291 static inline void account_pc_c(struct blk_io_trace *t,
   1292 				struct per_cpu_info *pci, int rw)
   1293 {
   1294 	__account_pc_c(&pci->io_stats, rw);
   1295 
   1296 	if (per_process_stats) {
   1297 		struct io_stats *ios = find_process_io_stats(t->pid);
   1298 
   1299 		__account_pc_c(ios, rw);
   1300 	}
   1301 }
   1302 
   1303 static inline void __account_queue(struct io_stats *ios, struct blk_io_trace *t,
   1304 				   int rw)
   1305 {
   1306 	if (rw) {
   1307 		ios->qwrites++;
   1308 		ios->qwrite_kb += t_kb(t);
   1309 		ios->qwrite_b += t_b(t);
   1310 	} else {
   1311 		ios->qreads++;
   1312 		ios->qread_kb += t_kb(t);
   1313 		ios->qread_b += t_b(t);
   1314 	}
   1315 }
   1316 
   1317 static inline void account_queue(struct blk_io_trace *t,
   1318 				 struct per_cpu_info *pci, int rw)
   1319 {
   1320 	__account_queue(&pci->io_stats, t, rw);
   1321 
   1322 	if (per_process_stats) {
   1323 		struct io_stats *ios = find_process_io_stats(t->pid);
   1324 
   1325 		__account_queue(ios, t, rw);
   1326 	}
   1327 }
   1328 
   1329 static inline void __account_c(struct io_stats *ios, int rw, int bytes)
   1330 {
   1331 	if (rw) {
   1332 		ios->cwrites++;
   1333 		ios->cwrite_kb += bytes >> 10;
   1334 		ios->cwrite_b += bytes & 1023;
   1335 	} else {
   1336 		ios->creads++;
   1337 		ios->cread_kb += bytes >> 10;
   1338 		ios->cread_b += bytes & 1023;
   1339 	}
   1340 }
   1341 
   1342 static inline void account_c(struct blk_io_trace *t, struct per_cpu_info *pci,
   1343 			     int rw, int bytes)
   1344 {
   1345 	__account_c(&pci->io_stats, rw, bytes);
   1346 
   1347 	if (per_process_stats) {
   1348 		struct io_stats *ios = find_process_io_stats(t->pid);
   1349 
   1350 		__account_c(ios, rw, bytes);
   1351 	}
   1352 }
   1353 
   1354 static inline void __account_issue(struct io_stats *ios, int rw,
   1355 				   unsigned int bytes)
   1356 {
   1357 	if (rw) {
   1358 		ios->iwrites++;
   1359 		ios->iwrite_kb += bytes >> 10;
   1360 		ios->iwrite_b  += bytes & 1023;
   1361 	} else {
   1362 		ios->ireads++;
   1363 		ios->iread_kb += bytes >> 10;
   1364 		ios->iread_b  += bytes & 1023;
   1365 	}
   1366 }
   1367 
   1368 static inline void account_issue(struct blk_io_trace *t,
   1369 				 struct per_cpu_info *pci, int rw)
   1370 {
   1371 	__account_issue(&pci->io_stats, rw, t->bytes);
   1372 
   1373 	if (per_process_stats) {
   1374 		struct io_stats *ios = find_process_io_stats(t->pid);
   1375 
   1376 		__account_issue(ios, rw, t->bytes);
   1377 	}
   1378 }
   1379 
   1380 static inline void __account_unplug(struct io_stats *ios, int timer)
   1381 {
   1382 	if (timer)
   1383 		ios->timer_unplugs++;
   1384 	else
   1385 		ios->io_unplugs++;
   1386 }
   1387 
   1388 static inline void account_unplug(struct blk_io_trace *t,
   1389 				  struct per_cpu_info *pci, int timer)
   1390 {
   1391 	__account_unplug(&pci->io_stats, timer);
   1392 
   1393 	if (per_process_stats) {
   1394 		struct io_stats *ios = find_process_io_stats(t->pid);
   1395 
   1396 		__account_unplug(ios, timer);
   1397 	}
   1398 }
   1399 
   1400 static inline void __account_requeue(struct io_stats *ios,
   1401 				     struct blk_io_trace *t, int rw)
   1402 {
   1403 	if (rw) {
   1404 		ios->wrqueue++;
   1405 		ios->iwrite_kb -= t_kb(t);
   1406 		ios->iwrite_b -= t_b(t);
   1407 	} else {
   1408 		ios->rrqueue++;
   1409 		ios->iread_kb -= t_kb(t);
   1410 		ios->iread_b -= t_b(t);
   1411 	}
   1412 }
   1413 
   1414 static inline void account_requeue(struct blk_io_trace *t,
   1415 				   struct per_cpu_info *pci, int rw)
   1416 {
   1417 	__account_requeue(&pci->io_stats, t, rw);
   1418 
   1419 	if (per_process_stats) {
   1420 		struct io_stats *ios = find_process_io_stats(t->pid);
   1421 
   1422 		__account_requeue(ios, t, rw);
   1423 	}
   1424 }
   1425 
   1426 static void log_complete(struct per_dev_info *pdi, struct per_cpu_info *pci,
   1427 			 struct blk_io_trace *t, char *act)
   1428 {
   1429 	process_fmt(act, pci, t, log_track_complete(pdi, t), 0, NULL);
   1430 }
   1431 
   1432 static void log_insert(struct per_dev_info *pdi, struct per_cpu_info *pci,
   1433 		       struct blk_io_trace *t, char *act)
   1434 {
   1435 	process_fmt(act, pci, t, log_track_insert(pdi, t), 0, NULL);
   1436 }
   1437 
   1438 static void log_queue(struct per_cpu_info *pci, struct blk_io_trace *t,
   1439 		      char *act)
   1440 {
   1441 	process_fmt(act, pci, t, -1, 0, NULL);
   1442 }
   1443 
   1444 static void log_issue(struct per_dev_info *pdi, struct per_cpu_info *pci,
   1445 		      struct blk_io_trace *t, char *act)
   1446 {
   1447 	process_fmt(act, pci, t, log_track_issue(pdi, t), 0, NULL);
   1448 }
   1449 
   1450 static void log_merge(struct per_dev_info *pdi, struct per_cpu_info *pci,
   1451 		      struct blk_io_trace *t, char *act)
   1452 {
   1453 	if (act[0] == 'F')
   1454 		log_track_frontmerge(pdi, t);
   1455 
   1456 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1457 }
   1458 
   1459 static void log_action(struct per_cpu_info *pci, struct blk_io_trace *t,
   1460 			char *act)
   1461 {
   1462 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1463 }
   1464 
   1465 static void log_generic(struct per_cpu_info *pci, struct blk_io_trace *t,
   1466 			char *act)
   1467 {
   1468 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1469 }
   1470 
   1471 static void log_unplug(struct per_cpu_info *pci, struct blk_io_trace *t,
   1472 		      char *act)
   1473 {
   1474 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1475 }
   1476 
   1477 static void log_split(struct per_cpu_info *pci, struct blk_io_trace *t,
   1478 		      char *act)
   1479 {
   1480 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1481 }
   1482 
   1483 static void log_pc(struct per_cpu_info *pci, struct blk_io_trace *t, char *act)
   1484 {
   1485 	unsigned char *buf = (unsigned char *) t + sizeof(*t);
   1486 
   1487 	process_fmt(act, pci, t, -1ULL, t->pdu_len, buf);
   1488 }
   1489 
   1490 static void dump_trace_pc(struct blk_io_trace *t, struct per_dev_info *pdi,
   1491 			  struct per_cpu_info *pci)
   1492 {
   1493 	int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1494 	int act = t->action & 0xffff;
   1495 
   1496 	switch (act) {
   1497 		case __BLK_TA_QUEUE:
   1498 			log_generic(pci, t, "Q");
   1499 			account_pc_queue(t, pci, w);
   1500 			break;
   1501 		case __BLK_TA_GETRQ:
   1502 			log_generic(pci, t, "G");
   1503 			break;
   1504 		case __BLK_TA_SLEEPRQ:
   1505 			log_generic(pci, t, "S");
   1506 			break;
   1507 		case __BLK_TA_REQUEUE:
   1508 			/*
   1509 			 * can happen if we miss traces, don't let it go
   1510 			 * below zero
   1511 			 */
   1512 			if (pdi->cur_depth[w])
   1513 				pdi->cur_depth[w]--;
   1514 			account_pc_requeue(t, pci, w);
   1515 			log_generic(pci, t, "R");
   1516 			break;
   1517 		case __BLK_TA_ISSUE:
   1518 			account_pc_issue(t, pci, w);
   1519 			pdi->cur_depth[w]++;
   1520 			if (pdi->cur_depth[w] > pdi->max_depth[w])
   1521 				pdi->max_depth[w] = pdi->cur_depth[w];
   1522 			log_pc(pci, t, "D");
   1523 			break;
   1524 		case __BLK_TA_COMPLETE:
   1525 			if (pdi->cur_depth[w])
   1526 				pdi->cur_depth[w]--;
   1527 			log_pc(pci, t, "C");
   1528 			account_pc_c(t, pci, w);
   1529 			break;
   1530 		case __BLK_TA_INSERT:
   1531 			log_pc(pci, t, "I");
   1532 			break;
   1533 		default:
   1534 			fprintf(stderr, "Bad pc action %x\n", act);
   1535 			break;
   1536 	}
   1537 }
   1538 
   1539 static void dump_trace_fs(struct blk_io_trace *t, struct per_dev_info *pdi,
   1540 			  struct per_cpu_info *pci)
   1541 {
   1542 	int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1543 	int act = t->action & 0xffff;
   1544 
   1545 	switch (act) {
   1546 		case __BLK_TA_QUEUE:
   1547 			log_track_queue(pdi, t);
   1548 			account_queue(t, pci, w);
   1549 			log_queue(pci, t, "Q");
   1550 			break;
   1551 		case __BLK_TA_INSERT:
   1552 			log_insert(pdi, pci, t, "I");
   1553 			break;
   1554 		case __BLK_TA_BACKMERGE:
   1555 			account_m(t, pci, w);
   1556 			log_merge(pdi, pci, t, "M");
   1557 			break;
   1558 		case __BLK_TA_FRONTMERGE:
   1559 			account_m(t, pci, w);
   1560 			log_merge(pdi, pci, t, "F");
   1561 			break;
   1562 		case __BLK_TA_GETRQ:
   1563 			log_track_getrq(pdi, t);
   1564 			log_generic(pci, t, "G");
   1565 			break;
   1566 		case __BLK_TA_SLEEPRQ:
   1567 			log_generic(pci, t, "S");
   1568 			break;
   1569 		case __BLK_TA_REQUEUE:
   1570 			/*
   1571 			 * can happen if we miss traces, don't let it go
   1572 			 * below zero
   1573 			 */
   1574 			if (pdi->cur_depth[w])
   1575 				pdi->cur_depth[w]--;
   1576 			account_requeue(t, pci, w);
   1577 			log_queue(pci, t, "R");
   1578 			break;
   1579 		case __BLK_TA_ISSUE:
   1580 			account_issue(t, pci, w);
   1581 			pdi->cur_depth[w]++;
   1582 			if (pdi->cur_depth[w] > pdi->max_depth[w])
   1583 				pdi->max_depth[w] = pdi->cur_depth[w];
   1584 			log_issue(pdi, pci, t, "D");
   1585 			break;
   1586 		case __BLK_TA_COMPLETE:
   1587 			if (pdi->cur_depth[w])
   1588 				pdi->cur_depth[w]--;
   1589 			account_c(t, pci, w, t->bytes);
   1590 			log_complete(pdi, pci, t, "C");
   1591 			break;
   1592 		case __BLK_TA_PLUG:
   1593 			log_action(pci, t, "P");
   1594 			break;
   1595 		case __BLK_TA_UNPLUG_IO:
   1596 			account_unplug(t, pci, 0);
   1597 			log_unplug(pci, t, "U");
   1598 			break;
   1599 		case __BLK_TA_UNPLUG_TIMER:
   1600 			account_unplug(t, pci, 1);
   1601 			log_unplug(pci, t, "UT");
   1602 			break;
   1603 		case __BLK_TA_SPLIT:
   1604 			log_split(pci, t, "X");
   1605 			break;
   1606 		case __BLK_TA_BOUNCE:
   1607 			log_generic(pci, t, "B");
   1608 			break;
   1609 		case __BLK_TA_REMAP:
   1610 			log_generic(pci, t, "A");
   1611 			break;
   1612 		case __BLK_TA_DRV_DATA:
   1613 			have_drv_data = 1;
   1614 			/* dump to binary file only */
   1615 			break;
   1616 		default:
   1617 			fprintf(stderr, "Bad fs action %x\n", t->action);
   1618 			break;
   1619 	}
   1620 }
   1621 
   1622 static void dump_trace(struct blk_io_trace *t, struct per_cpu_info *pci,
   1623 		       struct per_dev_info *pdi)
   1624 {
   1625 	if (text_output) {
   1626 		if (t->action == BLK_TN_MESSAGE)
   1627 			handle_notify(t);
   1628 		else if (t->action & BLK_TC_ACT(BLK_TC_PC))
   1629 			dump_trace_pc(t, pdi, pci);
   1630 		else
   1631 			dump_trace_fs(t, pdi, pci);
   1632 	}
   1633 
   1634 	if (!pdi->events)
   1635 		pdi->first_reported_time = t->time;
   1636 
   1637 	pdi->events++;
   1638 
   1639 	if (bin_output_msgs ||
   1640 			    !(t->action & BLK_TC_ACT(BLK_TC_NOTIFY) &&
   1641 			      t->action == BLK_TN_MESSAGE))
   1642 		output_binary(t, sizeof(*t) + t->pdu_len);
   1643 }
   1644 
   1645 /*
   1646  * print in a proper way, not too small and not too big. if more than
   1647  * 1000,000K, turn into M and so on
   1648  */
   1649 static char *size_cnv(char *dst, unsigned long long num, int in_kb)
   1650 {
   1651 	char suff[] = { '\0', 'K', 'M', 'G', 'P' };
   1652 	unsigned int i = 0;
   1653 
   1654 	if (in_kb)
   1655 		i++;
   1656 
   1657 	while (num > 1000 * 1000ULL && (i < sizeof(suff) - 1)) {
   1658 		i++;
   1659 		num /= 1000;
   1660 	}
   1661 
   1662 	sprintf(dst, "%'8Lu%c", num, suff[i]);
   1663 	return dst;
   1664 }
   1665 
   1666 static void dump_io_stats(struct per_dev_info *pdi, struct io_stats *ios,
   1667 			  char *msg)
   1668 {
   1669 	static char x[256], y[256];
   1670 
   1671 	fprintf(ofp, "%s\n", msg);
   1672 
   1673 	fprintf(ofp, " Reads Queued:    %s, %siB\t",
   1674 			size_cnv(x, ios->qreads, 0),
   1675 			size_cnv(y, ios->qread_kb + (ios->qread_b>>10), 1));
   1676 	fprintf(ofp, " Writes Queued:    %s, %siB\n",
   1677 			size_cnv(x, ios->qwrites, 0),
   1678 			size_cnv(y, ios->qwrite_kb + (ios->qwrite_b>>10), 1));
   1679 	fprintf(ofp, " Read Dispatches: %s, %siB\t",
   1680 			size_cnv(x, ios->ireads, 0),
   1681 			size_cnv(y, ios->iread_kb + (ios->iread_b>>10), 1));
   1682 	fprintf(ofp, " Write Dispatches: %s, %siB\n",
   1683 			size_cnv(x, ios->iwrites, 0),
   1684 			size_cnv(y, ios->iwrite_kb + (ios->iwrite_b>>10), 1));
   1685 	fprintf(ofp, " Reads Requeued:  %s\t\t", size_cnv(x, ios->rrqueue, 0));
   1686 	fprintf(ofp, " Writes Requeued:  %s\n", size_cnv(x, ios->wrqueue, 0));
   1687 	fprintf(ofp, " Reads Completed: %s, %siB\t",
   1688 			size_cnv(x, ios->creads, 0),
   1689 			size_cnv(y, ios->cread_kb + (ios->cread_b>>10), 1));
   1690 	fprintf(ofp, " Writes Completed: %s, %siB\n",
   1691 			size_cnv(x, ios->cwrites, 0),
   1692 			size_cnv(y, ios->cwrite_kb + (ios->cwrite_b>>10), 1));
   1693 	fprintf(ofp, " Read Merges:     %s, %siB\t",
   1694 			size_cnv(x, ios->mreads, 0),
   1695 			size_cnv(y, ios->mread_kb + (ios->mread_b>>10), 1));
   1696 	fprintf(ofp, " Write Merges:     %s, %siB\n",
   1697 			size_cnv(x, ios->mwrites, 0),
   1698 			size_cnv(y, ios->mwrite_kb + (ios->mwrite_b>>10), 1));
   1699 	if (pdi) {
   1700 		fprintf(ofp, " Read depth:      %'8u%8c\t", pdi->max_depth[0], ' ');
   1701 		fprintf(ofp, " Write depth:      %'8u\n", pdi->max_depth[1]);
   1702 	}
   1703 	if (ios->qreads_pc || ios->qwrites_pc || ios->ireads_pc || ios->iwrites_pc ||
   1704 	    ios->rrqueue_pc || ios->wrqueue_pc || ios->creads_pc || ios->cwrites_pc) {
   1705 		fprintf(ofp, " PC Reads Queued: %s, %siB\t",
   1706 			size_cnv(x, ios->qreads_pc, 0),
   1707 			size_cnv(y,
   1708 				ios->qread_kb_pc + (ios->qread_b_pc>>10), 1));
   1709 		fprintf(ofp, " PC Writes Queued: %s, %siB\n",
   1710 			size_cnv(x, ios->qwrites_pc, 0),
   1711 			size_cnv(y,
   1712 				ios->qwrite_kb_pc + (ios->qwrite_b_pc>>10), 1));
   1713 		fprintf(ofp, " PC Read Disp.:   %s, %siB\t",
   1714 			size_cnv(x, ios->ireads_pc, 0),
   1715 			size_cnv(y,
   1716 				ios->iread_kb_pc + (ios->iread_b_pc>>10), 1));
   1717 		fprintf(ofp, " PC Write Disp.:   %s, %siB\n",
   1718 			size_cnv(x, ios->iwrites_pc, 0),
   1719 			size_cnv(y,
   1720 				ios->iwrite_kb_pc + (ios->iwrite_b_pc>>10),
   1721 				1));
   1722 		fprintf(ofp, " PC Reads Req.:   %s\t\t", size_cnv(x, ios->rrqueue_pc, 0));
   1723 		fprintf(ofp, " PC Writes Req.:   %s\n", size_cnv(x, ios->wrqueue_pc, 0));
   1724 		fprintf(ofp, " PC Reads Compl.: %s\t\t", size_cnv(x, ios->creads_pc, 0));
   1725 		fprintf(ofp, " PC Writes Compl.: %s\n", size_cnv(x, ios->cwrites_pc, 0));
   1726 	}
   1727 	fprintf(ofp, " IO unplugs:      %'8lu%8c\t", ios->io_unplugs, ' ');
   1728 	fprintf(ofp, " Timer unplugs:    %'8lu\n", ios->timer_unplugs);
   1729 }
   1730 
   1731 static void dump_wait_stats(struct per_process_info *ppi)
   1732 {
   1733 	unsigned long rawait = ppi->longest_allocation_wait[0] / 1000;
   1734 	unsigned long rdwait = ppi->longest_dispatch_wait[0] / 1000;
   1735 	unsigned long rcwait = ppi->longest_completion_wait[0] / 1000;
   1736 	unsigned long wawait = ppi->longest_allocation_wait[1] / 1000;
   1737 	unsigned long wdwait = ppi->longest_dispatch_wait[1] / 1000;
   1738 	unsigned long wcwait = ppi->longest_completion_wait[1] / 1000;
   1739 
   1740 	fprintf(ofp, " Allocation wait: %'8lu%8c\t", rawait, ' ');
   1741 	fprintf(ofp, " Allocation wait:  %'8lu\n", wawait);
   1742 	fprintf(ofp, " Dispatch wait:   %'8lu%8c\t", rdwait, ' ');
   1743 	fprintf(ofp, " Dispatch wait:    %'8lu\n", wdwait);
   1744 	fprintf(ofp, " Completion wait: %'8lu%8c\t", rcwait, ' ');
   1745 	fprintf(ofp, " Completion wait:  %'8lu\n", wcwait);
   1746 }
   1747 
   1748 static int ppi_name_compare(const void *p1, const void *p2)
   1749 {
   1750 	struct per_process_info *ppi1 = *((struct per_process_info **) p1);
   1751 	struct per_process_info *ppi2 = *((struct per_process_info **) p2);
   1752 	int res;
   1753 
   1754 	res = strverscmp(ppi1->ppm->comm, ppi2->ppm->comm);
   1755 	if (!res)
   1756 		res = ppi1->ppm->pid > ppi2->ppm->pid;
   1757 
   1758 	return res;
   1759 }
   1760 
   1761 static void sort_process_list(void)
   1762 {
   1763 	struct per_process_info **ppis;
   1764 	struct per_process_info *ppi;
   1765 	int i = 0;
   1766 
   1767 	ppis = malloc(ppi_list_entries * sizeof(struct per_process_info *));
   1768 
   1769 	ppi = ppi_list;
   1770 	while (ppi) {
   1771 		ppis[i++] = ppi;
   1772 		ppi = ppi->list_next;
   1773 	}
   1774 
   1775 	qsort(ppis, ppi_list_entries, sizeof(ppi), ppi_name_compare);
   1776 
   1777 	i = ppi_list_entries - 1;
   1778 	ppi_list = NULL;
   1779 	while (i >= 0) {
   1780 		ppi = ppis[i];
   1781 
   1782 		ppi->list_next = ppi_list;
   1783 		ppi_list = ppi;
   1784 		i--;
   1785 	}
   1786 
   1787 	free(ppis);
   1788 }
   1789 
   1790 static void show_process_stats(void)
   1791 {
   1792 	struct per_process_info *ppi;
   1793 
   1794 	sort_process_list();
   1795 
   1796 	ppi = ppi_list;
   1797 	while (ppi) {
   1798 		struct process_pid_map *ppm = ppi->ppm;
   1799 		char name[64];
   1800 
   1801 		if (ppi->more_than_one)
   1802 			sprintf(name, "%s (%u, ...)", ppm->comm, ppm->pid);
   1803 		else
   1804 			sprintf(name, "%s (%u)", ppm->comm, ppm->pid);
   1805 
   1806 		dump_io_stats(NULL, &ppi->io_stats, name);
   1807 		dump_wait_stats(ppi);
   1808 		ppi = ppi->list_next;
   1809 	}
   1810 
   1811 	fprintf(ofp, "\n");
   1812 }
   1813 
   1814 static void show_device_and_cpu_stats(void)
   1815 {
   1816 	struct per_dev_info *pdi;
   1817 	struct per_cpu_info *pci;
   1818 	struct io_stats total, *ios;
   1819 	unsigned long long rrate, wrate, msec;
   1820 	int i, j, pci_events;
   1821 	char line[3 + 8/*cpu*/ + 2 + 32/*dev*/ + 3];
   1822 	char name[32];
   1823 	double ratio;
   1824 
   1825 	for (pdi = devices, i = 0; i < ndevices; i++, pdi++) {
   1826 
   1827 		memset(&total, 0, sizeof(total));
   1828 		pci_events = 0;
   1829 
   1830 		if (i > 0)
   1831 			fprintf(ofp, "\n");
   1832 
   1833 		for (pci = pdi->cpus, j = 0; j < pdi->ncpus; j++, pci++) {
   1834 			if (!pci->nelems)
   1835 				continue;
   1836 
   1837 			ios = &pci->io_stats;
   1838 			total.qreads += ios->qreads;
   1839 			total.qwrites += ios->qwrites;
   1840 			total.creads += ios->creads;
   1841 			total.cwrites += ios->cwrites;
   1842 			total.mreads += ios->mreads;
   1843 			total.mwrites += ios->mwrites;
   1844 			total.ireads += ios->ireads;
   1845 			total.iwrites += ios->iwrites;
   1846 			total.rrqueue += ios->rrqueue;
   1847 			total.wrqueue += ios->wrqueue;
   1848 			total.qread_kb += ios->qread_kb;
   1849 			total.qwrite_kb += ios->qwrite_kb;
   1850 			total.cread_kb += ios->cread_kb;
   1851 			total.cwrite_kb += ios->cwrite_kb;
   1852 			total.iread_kb += ios->iread_kb;
   1853 			total.iwrite_kb += ios->iwrite_kb;
   1854 			total.mread_kb += ios->mread_kb;
   1855 			total.mwrite_kb += ios->mwrite_kb;
   1856 			total.qread_b += ios->qread_b;
   1857 			total.qwrite_b += ios->qwrite_b;
   1858 			total.cread_b += ios->cread_b;
   1859 			total.cwrite_b += ios->cwrite_b;
   1860 			total.iread_b += ios->iread_b;
   1861 			total.iwrite_b += ios->iwrite_b;
   1862 			total.mread_b += ios->mread_b;
   1863 			total.mwrite_b += ios->mwrite_b;
   1864 
   1865 			total.qreads_pc += ios->qreads_pc;
   1866 			total.qwrites_pc += ios->qwrites_pc;
   1867 			total.creads_pc += ios->creads_pc;
   1868 			total.cwrites_pc += ios->cwrites_pc;
   1869 			total.ireads_pc += ios->ireads_pc;
   1870 			total.iwrites_pc += ios->iwrites_pc;
   1871 			total.rrqueue_pc += ios->rrqueue_pc;
   1872 			total.wrqueue_pc += ios->wrqueue_pc;
   1873 			total.qread_kb_pc += ios->qread_kb_pc;
   1874 			total.qwrite_kb_pc += ios->qwrite_kb_pc;
   1875 			total.iread_kb_pc += ios->iread_kb_pc;
   1876 			total.iwrite_kb_pc += ios->iwrite_kb_pc;
   1877 			total.qread_b_pc += ios->qread_b_pc;
   1878 			total.qwrite_b_pc += ios->qwrite_b_pc;
   1879 			total.iread_b_pc += ios->iread_b_pc;
   1880 			total.iwrite_b_pc += ios->iwrite_b_pc;
   1881 
   1882 			total.timer_unplugs += ios->timer_unplugs;
   1883 			total.io_unplugs += ios->io_unplugs;
   1884 
   1885 			snprintf(line, sizeof(line) - 1, "CPU%d (%s):",
   1886 				 j, get_dev_name(pdi, name, sizeof(name)));
   1887 			dump_io_stats(pdi, ios, line);
   1888 			pci_events++;
   1889 		}
   1890 
   1891 		if (pci_events > 1) {
   1892 			fprintf(ofp, "\n");
   1893 			snprintf(line, sizeof(line) - 1, "Total (%s):",
   1894 				 get_dev_name(pdi, name, sizeof(name)));
   1895 			dump_io_stats(NULL, &total, line);
   1896 		}
   1897 
   1898 		wrate = rrate = 0;
   1899 		msec = (pdi->last_reported_time - pdi->first_reported_time) / 1000000;
   1900 		if (msec) {
   1901 			rrate = ((1000 * total.cread_kb) + total.cread_b) /
   1902 									msec;
   1903 			wrate = ((1000 * total.cwrite_kb) + total.cwrite_b) /
   1904 									msec;
   1905 		}
   1906 
   1907 		fprintf(ofp, "\nThroughput (R/W): %'LuKiB/s / %'LuKiB/s\n",
   1908 			rrate, wrate);
   1909 		fprintf(ofp, "Events (%s): %'Lu entries\n",
   1910 			get_dev_name(pdi, line, sizeof(line)), pdi->events);
   1911 
   1912 		collect_pdi_skips(pdi);
   1913 		if (!pdi->skips && !pdi->events)
   1914 			ratio = 0.0;
   1915 		else
   1916 			ratio = 100.0 * ((double)pdi->seq_skips /
   1917 					(double)(pdi->events + pdi->seq_skips));
   1918 		fprintf(ofp, "Skips: %'lu forward (%'llu - %5.1lf%%)\n",
   1919 			pdi->skips, pdi->seq_skips, ratio);
   1920 	}
   1921 }
   1922 
   1923 static void find_genesis(void)
   1924 {
   1925 	struct trace *t = trace_list;
   1926 
   1927 	genesis_time = -1ULL;
   1928 	while (t != NULL) {
   1929 		if (t->bit->time < genesis_time)
   1930 			genesis_time = t->bit->time;
   1931 
   1932 		t = t->next;
   1933 	}
   1934 
   1935 	/* The time stamp record will usually be the first
   1936 	 * record in the trace, but not always.
   1937 	 */
   1938 	if (start_timestamp
   1939 	 && start_timestamp != genesis_time) {
   1940 		long delta = genesis_time - start_timestamp;
   1941 
   1942 		abs_start_time.tv_sec  += SECONDS(delta);
   1943 		abs_start_time.tv_nsec += NANO_SECONDS(delta);
   1944 		if (abs_start_time.tv_nsec < 0) {
   1945 			abs_start_time.tv_nsec += 1000000000;
   1946 			abs_start_time.tv_sec -= 1;
   1947 		} else
   1948 		if (abs_start_time.tv_nsec > 1000000000) {
   1949 			abs_start_time.tv_nsec -= 1000000000;
   1950 			abs_start_time.tv_sec += 1;
   1951 		}
   1952 	}
   1953 }
   1954 
   1955 static inline int check_stopwatch(struct blk_io_trace *bit)
   1956 {
   1957 	if (bit->time < stopwatch_end &&
   1958 	    bit->time >= stopwatch_start)
   1959 		return 0;
   1960 
   1961 	return 1;
   1962 }
   1963 
   1964 /*
   1965  * return youngest entry read
   1966  */
   1967 static int sort_entries(unsigned long long *youngest)
   1968 {
   1969 	struct per_dev_info *pdi = NULL;
   1970 	struct per_cpu_info *pci = NULL;
   1971 	struct trace *t;
   1972 
   1973 	if (!genesis_time)
   1974 		find_genesis();
   1975 
   1976 	*youngest = 0;
   1977 	while ((t = trace_list) != NULL) {
   1978 		struct blk_io_trace *bit = t->bit;
   1979 
   1980 		trace_list = t->next;
   1981 
   1982 		bit->time -= genesis_time;
   1983 
   1984 		if (bit->time < *youngest || !*youngest)
   1985 			*youngest = bit->time;
   1986 
   1987 		if (!pdi || pdi->dev != bit->device) {
   1988 			pdi = get_dev_info(bit->device);
   1989 			pci = NULL;
   1990 		}
   1991 
   1992 		if (!pci || pci->cpu != bit->cpu)
   1993 			pci = get_cpu_info(pdi, bit->cpu);
   1994 
   1995 		if (bit->sequence < pci->smallest_seq_read)
   1996 			pci->smallest_seq_read = bit->sequence;
   1997 
   1998 		if (check_stopwatch(bit)) {
   1999 			bit_free(bit);
   2000 			t_free(t);
   2001 			continue;
   2002 		}
   2003 
   2004 		if (trace_rb_insert_sort(t))
   2005 			return -1;
   2006 	}
   2007 
   2008 	return 0;
   2009 }
   2010 
   2011 /*
   2012  * to continue, we must have traces from all online cpus in the tree
   2013  */
   2014 static int check_cpu_map(struct per_dev_info *pdi)
   2015 {
   2016 	unsigned long *cpu_map;
   2017 	struct rb_node *n;
   2018 	struct trace *__t;
   2019 	unsigned int i;
   2020 	int ret, cpu;
   2021 
   2022 	/*
   2023 	 * create a map of the cpus we have traces for
   2024 	 */
   2025 	cpu_map = malloc(pdi->cpu_map_max / sizeof(long));
   2026 	memset(cpu_map, 0, sizeof(*cpu_map));
   2027 	n = rb_first(&rb_sort_root);
   2028 	while (n) {
   2029 		__t = rb_entry(n, struct trace, rb_node);
   2030 		cpu = __t->bit->cpu;
   2031 
   2032 		cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
   2033 		n = rb_next(n);
   2034 	}
   2035 
   2036 	/*
   2037 	 * we can't continue if pdi->cpu_map has entries set that we don't
   2038 	 * have in the sort rbtree. the opposite is not a problem, though
   2039 	 */
   2040 	ret = 0;
   2041 	for (i = 0; i < pdi->cpu_map_max / CPUS_PER_LONG; i++) {
   2042 		if (pdi->cpu_map[i] & ~(cpu_map[i])) {
   2043 			ret = 1;
   2044 			break;
   2045 		}
   2046 	}
   2047 
   2048 	free(cpu_map);
   2049 	return ret;
   2050 }
   2051 
   2052 static int check_sequence(struct per_dev_info *pdi, struct trace *t, int force)
   2053 {
   2054 	struct blk_io_trace *bit = t->bit;
   2055 	unsigned long expected_sequence;
   2056 	struct per_cpu_info *pci;
   2057 	struct trace *__t;
   2058 
   2059 	pci = get_cpu_info(pdi, bit->cpu);
   2060 	expected_sequence = pci->last_sequence + 1;
   2061 
   2062 	if (!expected_sequence) {
   2063 		/*
   2064 		 * 1 should be the first entry, just allow it
   2065 		 */
   2066 		if (bit->sequence == 1)
   2067 			return 0;
   2068 		if (bit->sequence == pci->smallest_seq_read)
   2069 			return 0;
   2070 
   2071 		return check_cpu_map(pdi);
   2072 	}
   2073 
   2074 	if (bit->sequence == expected_sequence)
   2075 		return 0;
   2076 
   2077 	/*
   2078 	 * we may not have seen that sequence yet. if we are not doing
   2079 	 * the final run, break and wait for more entries.
   2080 	 */
   2081 	if (expected_sequence < pci->smallest_seq_read) {
   2082 		__t = trace_rb_find_last(pdi, pci, expected_sequence);
   2083 		if (!__t)
   2084 			goto skip;
   2085 
   2086 		__put_trace_last(pdi, __t);
   2087 		return 0;
   2088 	} else if (!force) {
   2089 		return 1;
   2090 	} else {
   2091 skip:
   2092 		if (check_current_skips(pci, bit->sequence))
   2093 			return 0;
   2094 
   2095 		if (expected_sequence < bit->sequence)
   2096 			insert_skip(pci, expected_sequence, bit->sequence - 1);
   2097 		return 0;
   2098 	}
   2099 }
   2100 
   2101 static void show_entries_rb(int force)
   2102 {
   2103 	struct per_dev_info *pdi = NULL;
   2104 	struct per_cpu_info *pci = NULL;
   2105 	struct blk_io_trace *bit;
   2106 	struct rb_node *n;
   2107 	struct trace *t;
   2108 
   2109 	while ((n = rb_first(&rb_sort_root)) != NULL) {
   2110 		if (is_done() && !force && !pipeline)
   2111 			break;
   2112 
   2113 		t = rb_entry(n, struct trace, rb_node);
   2114 		bit = t->bit;
   2115 
   2116 		if (read_sequence - t->read_sequence < 1 && !force)
   2117 			break;
   2118 
   2119 		if (!pdi || pdi->dev != bit->device) {
   2120 			pdi = get_dev_info(bit->device);
   2121 			pci = NULL;
   2122 		}
   2123 
   2124 		if (!pdi) {
   2125 			fprintf(stderr, "Unknown device ID? (%d,%d)\n",
   2126 				MAJOR(bit->device), MINOR(bit->device));
   2127 			break;
   2128 		}
   2129 
   2130 		if (!(bit->action == BLK_TN_MESSAGE) &&
   2131 		    check_sequence(pdi, t, force))
   2132 			break;
   2133 
   2134 		if (!force && bit->time > last_allowed_time)
   2135 			break;
   2136 
   2137 		check_time(pdi, bit);
   2138 
   2139 		if (!pci || pci->cpu != bit->cpu)
   2140 			pci = get_cpu_info(pdi, bit->cpu);
   2141 
   2142 		if (!(bit->action == BLK_TN_MESSAGE))
   2143 			pci->last_sequence = bit->sequence;
   2144 
   2145 		pci->nelems++;
   2146 
   2147 		if (bit->action & (act_mask << BLK_TC_SHIFT))
   2148 			dump_trace(bit, pci, pdi);
   2149 
   2150 		put_trace(pdi, t);
   2151 	}
   2152 }
   2153 
   2154 static int read_data(int fd, void *buffer, int bytes, int block, int *fdblock)
   2155 {
   2156 	int ret, bytes_left, fl;
   2157 	void *p;
   2158 
   2159 	if (block != *fdblock) {
   2160 		fl = fcntl(fd, F_GETFL);
   2161 
   2162 		if (!block) {
   2163 			*fdblock = 0;
   2164 			fcntl(fd, F_SETFL, fl | O_NONBLOCK);
   2165 		} else {
   2166 			*fdblock = 1;
   2167 			fcntl(fd, F_SETFL, fl & ~O_NONBLOCK);
   2168 		}
   2169 	}
   2170 
   2171 	bytes_left = bytes;
   2172 	p = buffer;
   2173 	while (bytes_left > 0) {
   2174 		ret = read(fd, p, bytes_left);
   2175 		if (!ret)
   2176 			return 1;
   2177 		else if (ret < 0) {
   2178 			if (errno != EAGAIN) {
   2179 				perror("read");
   2180 				return -1;
   2181 			}
   2182 
   2183 			/*
   2184 			 * never do partial reads. we can return if we
   2185 			 * didn't read anything and we should not block,
   2186 			 * otherwise wait for data
   2187 			 */
   2188 			if ((bytes_left == bytes) && !block)
   2189 				return 1;
   2190 
   2191 			usleep(10);
   2192 			continue;
   2193 		} else {
   2194 			p += ret;
   2195 			bytes_left -= ret;
   2196 		}
   2197 	}
   2198 
   2199 	return 0;
   2200 }
   2201 
   2202 static inline __u16 get_pdulen(struct blk_io_trace *bit)
   2203 {
   2204 	if (data_is_native)
   2205 		return bit->pdu_len;
   2206 
   2207 	return __bswap_16(bit->pdu_len);
   2208 }
   2209 
   2210 static inline __u32 get_magic(struct blk_io_trace *bit)
   2211 {
   2212 	if (data_is_native)
   2213 		return bit->magic;
   2214 
   2215 	return __bswap_32(bit->magic);
   2216 }
   2217 
   2218 static int read_events(int fd, int always_block, int *fdblock)
   2219 {
   2220 	struct per_dev_info *pdi = NULL;
   2221 	unsigned int events = 0;
   2222 
   2223 	while (!is_done() && events < rb_batch) {
   2224 		struct blk_io_trace *bit;
   2225 		struct trace *t;
   2226 		int pdu_len, should_block, ret;
   2227 		__u32 magic;
   2228 
   2229 		bit = bit_alloc();
   2230 
   2231 		should_block = !events || always_block;
   2232 
   2233 		ret = read_data(fd, bit, sizeof(*bit), should_block, fdblock);
   2234 		if (ret) {
   2235 			bit_free(bit);
   2236 			if (!events && ret < 0)
   2237 				events = ret;
   2238 			break;
   2239 		}
   2240 
   2241 		/*
   2242 		 * look at first trace to check whether we need to convert
   2243 		 * data in the future
   2244 		 */
   2245 		if (data_is_native == -1 && check_data_endianness(bit->magic))
   2246 			break;
   2247 
   2248 		magic = get_magic(bit);
   2249 		if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
   2250 			fprintf(stderr, "Bad magic %x\n", magic);
   2251 			break;
   2252 		}
   2253 
   2254 		pdu_len = get_pdulen(bit);
   2255 		if (pdu_len) {
   2256 			void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
   2257 
   2258 			if (read_data(fd, ptr + sizeof(*bit), pdu_len, 1, fdblock)) {
   2259 				bit_free(ptr);
   2260 				break;
   2261 			}
   2262 
   2263 			bit = ptr;
   2264 		}
   2265 
   2266 		trace_to_cpu(bit);
   2267 
   2268 		if (verify_trace(bit)) {
   2269 			bit_free(bit);
   2270 			continue;
   2271 		}
   2272 
   2273 		/*
   2274 		 * not a real trace, so grab and handle it here
   2275 		 */
   2276 		if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY) && bit->action != BLK_TN_MESSAGE) {
   2277 			handle_notify(bit);
   2278 			output_binary(bit, sizeof(*bit) + bit->pdu_len);
   2279 			continue;
   2280 		}
   2281 
   2282 		t = t_alloc();
   2283 		memset(t, 0, sizeof(*t));
   2284 		t->bit = bit;
   2285 		t->read_sequence = read_sequence;
   2286 
   2287 		t->next = trace_list;
   2288 		trace_list = t;
   2289 
   2290 		if (!pdi || pdi->dev != bit->device)
   2291 			pdi = get_dev_info(bit->device);
   2292 
   2293 		if (bit->time > pdi->last_read_time)
   2294 			pdi->last_read_time = bit->time;
   2295 
   2296 		events++;
   2297 	}
   2298 
   2299 	return events;
   2300 }
   2301 
   2302 /*
   2303  * Managing input streams
   2304  */
   2305 
   2306 struct ms_stream {
   2307 	struct ms_stream *next;
   2308 	struct trace *first, *last;
   2309 	struct per_dev_info *pdi;
   2310 	unsigned int cpu;
   2311 };
   2312 
   2313 #define MS_HASH(d, c) ((MAJOR(d) & 0xff) ^ (MINOR(d) & 0xff) ^ (cpu & 0xff))
   2314 
   2315 struct ms_stream *ms_head;
   2316 struct ms_stream *ms_hash[256];
   2317 
   2318 static void ms_sort(struct ms_stream *msp);
   2319 static int ms_prime(struct ms_stream *msp);
   2320 
   2321 static inline struct trace *ms_peek(struct ms_stream *msp)
   2322 {
   2323 	return (msp == NULL) ? NULL : msp->first;
   2324 }
   2325 
   2326 static inline __u64 ms_peek_time(struct ms_stream *msp)
   2327 {
   2328 	return ms_peek(msp)->bit->time;
   2329 }
   2330 
   2331 static inline void ms_resort(struct ms_stream *msp)
   2332 {
   2333 	if (msp->next && ms_peek_time(msp) > ms_peek_time(msp->next)) {
   2334 		ms_head = msp->next;
   2335 		msp->next = NULL;
   2336 		ms_sort(msp);
   2337 	}
   2338 }
   2339 
   2340 static inline void ms_deq(struct ms_stream *msp)
   2341 {
   2342 	msp->first = msp->first->next;
   2343 	if (!msp->first) {
   2344 		msp->last = NULL;
   2345 		if (!ms_prime(msp)) {
   2346 			ms_head = msp->next;
   2347 			msp->next = NULL;
   2348 			return;
   2349 		}
   2350 	}
   2351 
   2352 	ms_resort(msp);
   2353 }
   2354 
   2355 static void ms_sort(struct ms_stream *msp)
   2356 {
   2357 	__u64 msp_t = ms_peek_time(msp);
   2358 	struct ms_stream *this_msp = ms_head;
   2359 
   2360 	if (this_msp == NULL)
   2361 		ms_head = msp;
   2362 	else if (msp_t < ms_peek_time(this_msp)) {
   2363 		msp->next = this_msp;
   2364 		ms_head = msp;
   2365 	}
   2366 	else {
   2367 		while (this_msp->next && ms_peek_time(this_msp->next) < msp_t)
   2368 			this_msp = this_msp->next;
   2369 
   2370 		msp->next = this_msp->next;
   2371 		this_msp->next = msp;
   2372 	}
   2373 }
   2374 
   2375 static int ms_prime(struct ms_stream *msp)
   2376 {
   2377 	__u32 magic;
   2378 	unsigned int i;
   2379 	struct trace *t;
   2380 	struct per_dev_info *pdi = msp->pdi;
   2381 	struct per_cpu_info *pci = get_cpu_info(pdi, msp->cpu);
   2382 	struct blk_io_trace *bit = NULL;
   2383 	int ret, pdu_len, ndone = 0;
   2384 
   2385 	for (i = 0; !is_done() && pci->fd >= 0 && i < rb_batch; i++) {
   2386 		bit = bit_alloc();
   2387 		ret = read_data(pci->fd, bit, sizeof(*bit), 1, &pci->fdblock);
   2388 		if (ret)
   2389 			goto err;
   2390 
   2391 		if (data_is_native == -1 && check_data_endianness(bit->magic))
   2392 			goto err;
   2393 
   2394 		magic = get_magic(bit);
   2395 		if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
   2396 			fprintf(stderr, "Bad magic %x\n", magic);
   2397 			goto err;
   2398 
   2399 		}
   2400 
   2401 		pdu_len = get_pdulen(bit);
   2402 		if (pdu_len) {
   2403 			void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
   2404 			ret = read_data(pci->fd, ptr + sizeof(*bit), pdu_len,
   2405 							     1, &pci->fdblock);
   2406 			if (ret) {
   2407 				free(ptr);
   2408 				bit = NULL;
   2409 				goto err;
   2410 			}
   2411 
   2412 			bit = ptr;
   2413 		}
   2414 
   2415 		trace_to_cpu(bit);
   2416 		if (verify_trace(bit))
   2417 			goto err;
   2418 
   2419 		if (bit->cpu != pci->cpu) {
   2420 			fprintf(stderr, "cpu %d trace info has error cpu %d\n",
   2421 				pci->cpu, bit->cpu);
   2422 			continue;
   2423 		}
   2424 
   2425 		if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY) && bit->action != BLK_TN_MESSAGE) {
   2426 			handle_notify(bit);
   2427 			output_binary(bit, sizeof(*bit) + bit->pdu_len);
   2428 			bit_free(bit);
   2429 
   2430 			i -= 1;
   2431 			continue;
   2432 		}
   2433 
   2434 		if (bit->time > pdi->last_read_time)
   2435 			pdi->last_read_time = bit->time;
   2436 
   2437 		t = t_alloc();
   2438 		memset(t, 0, sizeof(*t));
   2439 		t->bit = bit;
   2440 
   2441 		if (msp->first == NULL)
   2442 			msp->first = msp->last = t;
   2443 		else {
   2444 			msp->last->next = t;
   2445 			msp->last = t;
   2446 		}
   2447 
   2448 		ndone++;
   2449 	}
   2450 
   2451 	return ndone;
   2452 
   2453 err:
   2454 	if (bit) bit_free(bit);
   2455 
   2456 	cpu_mark_offline(pdi, pci->cpu);
   2457 	close(pci->fd);
   2458 	pci->fd = -1;
   2459 
   2460 	return ndone;
   2461 }
   2462 
   2463 static struct ms_stream *ms_alloc(struct per_dev_info *pdi, int cpu)
   2464 {
   2465 	struct ms_stream *msp = malloc(sizeof(*msp));
   2466 
   2467 	msp->next = NULL;
   2468 	msp->first = msp->last = NULL;
   2469 	msp->pdi = pdi;
   2470 	msp->cpu = cpu;
   2471 
   2472 	if (ms_prime(msp))
   2473 		ms_sort(msp);
   2474 
   2475 	return msp;
   2476 }
   2477 
   2478 static int setup_file(struct per_dev_info *pdi, int cpu)
   2479 {
   2480 	int len = 0;
   2481 	struct stat st;
   2482 	char *p, *dname;
   2483 	struct per_cpu_info *pci = get_cpu_info(pdi, cpu);
   2484 
   2485 	pci->cpu = cpu;
   2486 	pci->fdblock = -1;
   2487 
   2488 	p = strdup(pdi->name);
   2489 	dname = dirname(p);
   2490 	if (strcmp(dname, ".")) {
   2491 		input_dir = dname;
   2492 		p = strdup(pdi->name);
   2493 		strcpy(pdi->name, basename(p));
   2494 	}
   2495 	free(p);
   2496 
   2497 	if (input_dir)
   2498 		len = sprintf(pci->fname, "%s/", input_dir);
   2499 
   2500 	snprintf(pci->fname + len, sizeof(pci->fname)-1-len,
   2501 		 "%s.blktrace.%d", pdi->name, pci->cpu);
   2502 	if (stat(pci->fname, &st) < 0)
   2503 		return 0;
   2504 	if (!st.st_size)
   2505 		return 1;
   2506 
   2507 	pci->fd = open(pci->fname, O_RDONLY);
   2508 	if (pci->fd < 0) {
   2509 		perror(pci->fname);
   2510 		return 0;
   2511 	}
   2512 
   2513 	printf("Input file %s added\n", pci->fname);
   2514 	cpu_mark_online(pdi, pci->cpu);
   2515 
   2516 	pdi->nfiles++;
   2517 	ms_alloc(pdi, pci->cpu);
   2518 
   2519 	return 1;
   2520 }
   2521 
   2522 static int handle(struct ms_stream *msp)
   2523 {
   2524 	struct trace *t;
   2525 	struct per_dev_info *pdi;
   2526 	struct per_cpu_info *pci;
   2527 	struct blk_io_trace *bit;
   2528 
   2529 	t = ms_peek(msp);
   2530 
   2531 	bit = t->bit;
   2532 	pdi = msp->pdi;
   2533 	pci = get_cpu_info(pdi, msp->cpu);
   2534 	pci->nelems++;
   2535 	bit->time -= genesis_time;
   2536 
   2537 	if (t->bit->time > stopwatch_end)
   2538 		return 0;
   2539 
   2540 	pdi->last_reported_time = bit->time;
   2541 	if ((bit->action & (act_mask << BLK_TC_SHIFT))&&
   2542 	    t->bit->time >= stopwatch_start)
   2543 		dump_trace(bit, pci, pdi);
   2544 
   2545 	ms_deq(msp);
   2546 
   2547 	if (text_output)
   2548 		trace_rb_insert_last(pdi, t);
   2549 	else {
   2550 		bit_free(t->bit);
   2551 		t_free(t);
   2552 	}
   2553 
   2554 	return 1;
   2555 }
   2556 
   2557 /*
   2558  * Check if we need to sanitize the name. We allow 'foo', or if foo.blktrace.X
   2559  * is given, then strip back down to 'foo' to avoid missing files.
   2560  */
   2561 static int name_fixup(char *name)
   2562 {
   2563 	char *b;
   2564 
   2565 	if (!name)
   2566 		return 1;
   2567 
   2568 	b = strstr(name, ".blktrace.");
   2569 	if (b)
   2570 		*b = '\0';
   2571 
   2572 	return 0;
   2573 }
   2574 
   2575 static int do_file(void)
   2576 {
   2577 	int i, cpu, ret;
   2578 	struct per_dev_info *pdi;
   2579 
   2580 	/*
   2581 	 * first prepare all files for reading
   2582 	 */
   2583 	for (i = 0; i < ndevices; i++) {
   2584 		pdi = &devices[i];
   2585 		ret = name_fixup(pdi->name);
   2586 		if (ret)
   2587 			return ret;
   2588 
   2589 		for (cpu = 0; setup_file(pdi, cpu); cpu++)
   2590 			;
   2591 
   2592 		if (!cpu) {
   2593 			fprintf(stderr,"No input files found for %s\n",
   2594 				pdi->name);
   2595 			return 1;
   2596 		}
   2597 	}
   2598 
   2599 	/*
   2600 	 * Get the initial time stamp
   2601 	 */
   2602 	if (ms_head)
   2603 		genesis_time = ms_peek_time(ms_head);
   2604 
   2605 	/*
   2606 	 * Keep processing traces while any are left
   2607 	 */
   2608 	while (!is_done() && ms_head && handle(ms_head))
   2609 		;
   2610 
   2611 	return 0;
   2612 }
   2613 
   2614 static void do_pipe(int fd)
   2615 {
   2616 	unsigned long long youngest;
   2617 	int events, fdblock;
   2618 
   2619 	last_allowed_time = -1ULL;
   2620 	fdblock = -1;
   2621 	while ((events = read_events(fd, 0, &fdblock)) > 0) {
   2622 		read_sequence++;
   2623 
   2624 #if 0
   2625 		smallest_seq_read = -1U;
   2626 #endif
   2627 
   2628 		if (sort_entries(&youngest))
   2629 			break;
   2630 
   2631 		if (youngest > stopwatch_end)
   2632 			break;
   2633 
   2634 		show_entries_rb(0);
   2635 	}
   2636 
   2637 	if (rb_sort_entries)
   2638 		show_entries_rb(1);
   2639 }
   2640 
   2641 static int do_fifo(void)
   2642 {
   2643 	int fd;
   2644 
   2645 	if (!strcmp(pipename, "-"))
   2646 		fd = dup(STDIN_FILENO);
   2647 	else
   2648 		fd = open(pipename, O_RDONLY);
   2649 
   2650 	if (fd == -1) {
   2651 		perror("dup stdin");
   2652 		return -1;
   2653 	}
   2654 
   2655 	do_pipe(fd);
   2656 	close(fd);
   2657 	return 0;
   2658 }
   2659 
   2660 static void show_stats(void)
   2661 {
   2662 	if (!ofp)
   2663 		return;
   2664 	if (stats_printed)
   2665 		return;
   2666 
   2667 	stats_printed = 1;
   2668 
   2669 	if (per_process_stats)
   2670 		show_process_stats();
   2671 
   2672 	if (per_device_and_cpu_stats)
   2673 		show_device_and_cpu_stats();
   2674 
   2675 	fflush(ofp);
   2676 }
   2677 
   2678 static void handle_sigint(__attribute__((__unused__)) int sig)
   2679 {
   2680 	done = 1;
   2681 }
   2682 
   2683 /*
   2684  * Extract start and duration times from a string, allowing
   2685  * us to specify a time interval of interest within a trace.
   2686  * Format: "duration" (start is zero) or "start:duration".
   2687  */
   2688 static int find_stopwatch_interval(char *string)
   2689 {
   2690 	double value;
   2691 	char *sp;
   2692 
   2693 	value = strtod(string, &sp);
   2694 	if (sp == string) {
   2695 		fprintf(stderr,"Invalid stopwatch timer: %s\n", string);
   2696 		return 1;
   2697 	}
   2698 	if (*sp == ':') {
   2699 		stopwatch_start = DOUBLE_TO_NANO_ULL(value);
   2700 		string = sp + 1;
   2701 		value = strtod(string, &sp);
   2702 		if (sp == string || *sp != '\0') {
   2703 			fprintf(stderr,"Invalid stopwatch duration time: %s\n",
   2704 				string);
   2705 			return 1;
   2706 		}
   2707 	} else if (*sp != '\0') {
   2708 		fprintf(stderr,"Invalid stopwatch start timer: %s\n", string);
   2709 		return 1;
   2710 	}
   2711 	stopwatch_end = DOUBLE_TO_NANO_ULL(value);
   2712 	if (stopwatch_end <= stopwatch_start) {
   2713 		fprintf(stderr, "Invalid stopwatch interval: %Lu -> %Lu\n",
   2714 			stopwatch_start, stopwatch_end);
   2715 		return 1;
   2716 	}
   2717 
   2718 	return 0;
   2719 }
   2720 
   2721 static int is_pipe(const char *str)
   2722 {
   2723 	struct stat st;
   2724 
   2725 	if (!strcmp(str, "-"))
   2726 		return 1;
   2727 	if (!stat(str, &st) && S_ISFIFO(st.st_mode))
   2728 		return 1;
   2729 
   2730 	return 0;
   2731 }
   2732 
   2733 #define S_OPTS  "a:A:b:D:d:f:F:hi:o:Oqstw:vVM"
   2734 static char usage_str[] =    "\n\n" \
   2735 	"-i <file>           | --input=<file>\n" \
   2736 	"[ -a <action field> | --act-mask=<action field> ]\n" \
   2737 	"[ -A <action mask>  | --set-mask=<action mask> ]\n" \
   2738 	"[ -b <traces>       | --batch=<traces> ]\n" \
   2739 	"[ -d <file>         | --dump-binary=<file> ]\n" \
   2740 	"[ -D <dir>          | --input-directory=<dir> ]\n" \
   2741 	"[ -f <format>       | --format=<format> ]\n" \
   2742 	"[ -F <spec>         | --format-spec=<spec> ]\n" \
   2743 	"[ -h                | --hash-by-name ]\n" \
   2744 	"[ -o <file>         | --output=<file> ]\n" \
   2745 	"[ -O                | --no-text-output ]\n" \
   2746 	"[ -q                | --quiet ]\n" \
   2747 	"[ -s                | --per-program-stats ]\n" \
   2748 	"[ -t                | --track-ios ]\n" \
   2749 	"[ -w <time>         | --stopwatch=<time> ]\n" \
   2750 	"[ -M                | --no-msgs\n" \
   2751 	"[ -v                | --verbose ]\n" \
   2752 	"[ -V                | --version ]\n\n" \
   2753 	"\t-a Only trace specified actions. See documentation\n" \
   2754 	"\t-A Give trace mask as a single value. See documentation\n" \
   2755 	"\t-b stdin read batching\n" \
   2756 	"\t-d Output file. If specified, binary data is written to file\n" \
   2757 	"\t-D Directory to prepend to input file names\n" \
   2758 	"\t-f Output format. Customize the output format. The format field\n" \
   2759 	"\t   identifies can be found in the documentation\n" \
   2760 	"\t-F Format specification. Can be found in the documentation\n" \
   2761 	"\t-h Hash processes by name, not pid\n" \
   2762 	"\t-i Input file containing trace data, or '-' for stdin\n" \
   2763 	"\t-o Output file. If not given, output is stdout\n" \
   2764 	"\t-O Do NOT output text data\n" \
   2765 	"\t-q Quiet. Don't display any stats at the end of the trace\n" \
   2766 	"\t-s Show per-program io statistics\n" \
   2767 	"\t-t Track individual ios. Will tell you the time a request took\n" \
   2768 	"\t   to get queued, to get dispatched, and to get completed\n" \
   2769 	"\t-w Only parse data between the given time interval in seconds.\n" \
   2770 	"\t   If 'start' isn't given, blkparse defaults the start time to 0\n" \
   2771 	"\t-M Do not output messages to binary file\n" \
   2772 	"\t-v More verbose for marginal errors\n" \
   2773 	"\t-V Print program version info\n\n";
   2774 
   2775 static void usage(char *prog)
   2776 {
   2777 	fprintf(stderr, "Usage: %s %s", prog, usage_str);
   2778 }
   2779 
   2780 int main(int argc, char *argv[])
   2781 {
   2782 	int i, c, ret, mode;
   2783 	int act_mask_tmp = 0;
   2784 	char *ofp_buffer = NULL;
   2785 	char *bin_ofp_buffer = NULL;
   2786 
   2787 	while ((c = getopt_long(argc, argv, S_OPTS, l_opts, NULL)) != -1) {
   2788 		switch (c) {
   2789 		case 'a':
   2790 			i = find_mask_map(optarg);
   2791 			if (i < 0) {
   2792 				fprintf(stderr,"Invalid action mask %s\n",
   2793 					optarg);
   2794 				return 1;
   2795 			}
   2796 			act_mask_tmp |= i;
   2797 			break;
   2798 
   2799 		case 'A':
   2800 			if ((sscanf(optarg, "%x", &i) != 1) ||
   2801 							!valid_act_opt(i)) {
   2802 				fprintf(stderr,
   2803 					"Invalid set action mask %s/0x%x\n",
   2804 					optarg, i);
   2805 				return 1;
   2806 			}
   2807 			act_mask_tmp = i;
   2808 			break;
   2809 		case 'i':
   2810 			if (is_pipe(optarg) && !pipeline) {
   2811 				pipeline = 1;
   2812 				pipename = strdup(optarg);
   2813 			} else if (resize_devices(optarg) != 0)
   2814 				return 1;
   2815 			break;
   2816 		case 'D':
   2817 			input_dir = optarg;
   2818 			break;
   2819 		case 'o':
   2820 			output_name = optarg;
   2821 			break;
   2822 		case 'O':
   2823 			text_output = 0;
   2824 			break;
   2825 		case 'b':
   2826 			rb_batch = atoi(optarg);
   2827 			if (rb_batch <= 0)
   2828 				rb_batch = RB_BATCH_DEFAULT;
   2829 			break;
   2830 		case 's':
   2831 			per_process_stats = 1;
   2832 			break;
   2833 		case 't':
   2834 			track_ios = 1;
   2835 			break;
   2836 		case 'q':
   2837 			per_device_and_cpu_stats = 0;
   2838 			break;
   2839 		case 'w':
   2840 			if (find_stopwatch_interval(optarg) != 0)
   2841 				return 1;
   2842 			break;
   2843 		case 'f':
   2844 			set_all_format_specs(optarg);
   2845 			break;
   2846 		case 'F':
   2847 			if (add_format_spec(optarg) != 0)
   2848 				return 1;
   2849 			break;
   2850 		case 'h':
   2851 			ppi_hash_by_pid = 0;
   2852 			break;
   2853 		case 'v':
   2854 			verbose++;
   2855 			break;
   2856 		case 'V':
   2857 			printf("%s version %s\n", argv[0], blkparse_version);
   2858 			return 0;
   2859 		case 'd':
   2860 			dump_binary = optarg;
   2861 			break;
   2862 		case 'M':
   2863 			bin_output_msgs = 0;
   2864 			break;
   2865 		default:
   2866 			usage(argv[0]);
   2867 			return 1;
   2868 		}
   2869 	}
   2870 
   2871 	while (optind < argc) {
   2872 		if (is_pipe(argv[optind]) && !pipeline) {
   2873 			pipeline = 1;
   2874 			pipename = strdup(argv[optind]);
   2875 		} else if (resize_devices(argv[optind]) != 0)
   2876 			return 1;
   2877 		optind++;
   2878 	}
   2879 
   2880 	if (!pipeline && !ndevices) {
   2881 		usage(argv[0]);
   2882 		return 1;
   2883 	}
   2884 
   2885 	if (act_mask_tmp != 0)
   2886 		act_mask = act_mask_tmp;
   2887 
   2888 	memset(&rb_sort_root, 0, sizeof(rb_sort_root));
   2889 
   2890 	signal(SIGINT, handle_sigint);
   2891 	signal(SIGHUP, handle_sigint);
   2892 	signal(SIGTERM, handle_sigint);
   2893 
   2894 	setlocale(LC_NUMERIC, "en_US");
   2895 
   2896 	if (text_output) {
   2897 		if (!output_name) {
   2898 			ofp = fdopen(STDOUT_FILENO, "w");
   2899 			mode = _IOLBF;
   2900 		} else {
   2901 			char ofname[PATH_MAX];
   2902 
   2903 			snprintf(ofname, sizeof(ofname) - 1, "%s", output_name);
   2904 			ofp = fopen(ofname, "w");
   2905 			mode = _IOFBF;
   2906 		}
   2907 
   2908 		if (!ofp) {
   2909 			perror("fopen");
   2910 			return 1;
   2911 		}
   2912 
   2913 		ofp_buffer = malloc(4096);
   2914 		if (setvbuf(ofp, ofp_buffer, mode, 4096)) {
   2915 			perror("setvbuf");
   2916 			return 1;
   2917 		}
   2918 	}
   2919 
   2920 	if (dump_binary) {
   2921 		if (!strcmp(dump_binary, "-"))
   2922 			dump_fp = stdout;
   2923 		else {
   2924 			dump_fp = fopen(dump_binary, "w");
   2925 			if (!dump_fp) {
   2926 				perror(dump_binary);
   2927 				dump_binary = NULL;
   2928 				return 1;
   2929 			}
   2930 		}
   2931 		bin_ofp_buffer = malloc(128 * 1024);
   2932 		if (setvbuf(dump_fp, bin_ofp_buffer, _IOFBF, 128 * 1024)) {
   2933 			perror("setvbuf binary");
   2934 			return 1;
   2935 		}
   2936 	}
   2937 
   2938 	if (pipeline)
   2939 		ret = do_fifo();
   2940 	else
   2941 		ret = do_file();
   2942 
   2943 	if (!ret)
   2944 		show_stats();
   2945 
   2946 	if (have_drv_data && !dump_binary)
   2947 		printf("\ndiscarded traces containing low-level device driver "
   2948 		       "specific data (only available in binary output)\n");
   2949 
   2950 	if (ofp_buffer) {
   2951 		fflush(ofp);
   2952 		free(ofp_buffer);
   2953 	}
   2954 	if (bin_ofp_buffer) {
   2955 		fflush(dump_fp);
   2956 		free(bin_ofp_buffer);
   2957 	}
   2958 	return ret;
   2959 }
   2960