Home | History | Annotate | Download | only in ubi
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * Copyright (c) International Business Machines Corp., 2006
      4  * Copyright (c) Nokia Corporation, 2007
      5  *
      6  * Author: Artem Bityutskiy ( ),
      7  *         Frank Haverkamp
      8  */
      9 
     10 /*
     11  * This file includes UBI initialization and building of UBI devices.
     12  *
     13  * When UBI is initialized, it attaches all the MTD devices specified as the
     14  * module load parameters or the kernel boot parameters. If MTD devices were
     15  * specified, UBI does not attach any MTD device, but it is possible to do
     16  * later using the "UBI control device".
     17  */
     18 
     19 #ifndef __UBOOT__
     20 #include <linux/module.h>
     21 #include <linux/moduleparam.h>
     22 #include <linux/stringify.h>
     23 #include <linux/namei.h>
     24 #include <linux/stat.h>
     25 #include <linux/miscdevice.h>
     26 #include <linux/log2.h>
     27 #include <linux/kthread.h>
     28 #include <linux/kernel.h>
     29 #include <linux/slab.h>
     30 #include <linux/major.h>
     31 #else
     32 #include <linux/bug.h>
     33 #include <linux/log2.h>
     34 #endif
     35 #include <linux/err.h>
     36 #include <ubi_uboot.h>
     37 #include <linux/mtd/partitions.h>
     38 
     39 #include "ubi.h"
     40 
     41 /* Maximum length of the 'mtd=' parameter */
     42 #define MTD_PARAM_LEN_MAX 64
     43 
     44 /* Maximum number of comma-separated items in the 'mtd=' parameter */
     45 #define MTD_PARAM_MAX_COUNT 4
     46 
     47 /* Maximum value for the number of bad PEBs per 1024 PEBs */
     48 #define MAX_MTD_UBI_BEB_LIMIT 768
     49 
     50 #ifdef CONFIG_MTD_UBI_MODULE
     51 #define ubi_is_module() 1
     52 #else
     53 #define ubi_is_module() 0
     54 #endif
     55 
     56 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
     57 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
     58 #endif
     59 
     60 /**
     61  * struct mtd_dev_param - MTD device parameter description data structure.
     62  * @name: MTD character device node path, MTD device name, or MTD device number
     63  *        string
     64  * @vid_hdr_offs: VID header offset
     65  * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
     66  */
     67 struct mtd_dev_param {
     68 	char name[MTD_PARAM_LEN_MAX];
     69 	int ubi_num;
     70 	int vid_hdr_offs;
     71 	int max_beb_per1024;
     72 };
     73 
     74 /* Numbers of elements set in the @mtd_dev_param array */
     75 static int __initdata mtd_devs;
     76 
     77 /* MTD devices specification parameters */
     78 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
     79 #ifndef __UBOOT__
     80 #ifdef CONFIG_MTD_UBI_FASTMAP
     81 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
     82 static bool fm_autoconvert;
     83 static bool fm_debug;
     84 #endif
     85 #else
     86 #ifdef CONFIG_MTD_UBI_FASTMAP
     87 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
     88 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
     89 #endif
     90 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
     91 #if !defined(CONFIG_MTD_UBI_FM_DEBUG)
     92 #define CONFIG_MTD_UBI_FM_DEBUG 0
     93 #endif
     94 static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG;
     95 #endif
     96 #endif
     97 
     98 /* Slab cache for wear-leveling entries */
     99 struct kmem_cache *ubi_wl_entry_slab;
    100 
    101 #ifndef __UBOOT__
    102 /* UBI control character device */
    103 static struct miscdevice ubi_ctrl_cdev = {
    104 	.minor = MISC_DYNAMIC_MINOR,
    105 	.name = "ubi_ctrl",
    106 	.fops = &ubi_ctrl_cdev_operations,
    107 };
    108 #endif
    109 
    110 /* All UBI devices in system */
    111 #ifndef __UBOOT__
    112 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
    113 #else
    114 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
    115 #endif
    116 
    117 #ifndef __UBOOT__
    118 /* Serializes UBI devices creations and removals */
    119 DEFINE_MUTEX(ubi_devices_mutex);
    120 
    121 /* Protects @ubi_devices and @ubi->ref_count */
    122 static DEFINE_SPINLOCK(ubi_devices_lock);
    123 
    124 /* "Show" method for files in '/<sysfs>/class/ubi/' */
    125 static ssize_t ubi_version_show(struct class *class,
    126 				struct class_attribute *attr, char *buf)
    127 {
    128 	return sprintf(buf, "%d\n", UBI_VERSION);
    129 }
    130 
    131 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
    132 static struct class_attribute ubi_class_attrs[] = {
    133 	__ATTR(version, S_IRUGO, ubi_version_show, NULL),
    134 	__ATTR_NULL
    135 };
    136 
    137 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
    138 struct class ubi_class = {
    139 	.name		= UBI_NAME_STR,
    140 	.owner		= THIS_MODULE,
    141 	.class_attrs	= ubi_class_attrs,
    142 };
    143 
    144 static ssize_t dev_attribute_show(struct device *dev,
    145 				  struct device_attribute *attr, char *buf);
    146 
    147 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
    148 static struct device_attribute dev_eraseblock_size =
    149 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
    150 static struct device_attribute dev_avail_eraseblocks =
    151 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
    152 static struct device_attribute dev_total_eraseblocks =
    153 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
    154 static struct device_attribute dev_volumes_count =
    155 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
    156 static struct device_attribute dev_max_ec =
    157 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
    158 static struct device_attribute dev_reserved_for_bad =
    159 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
    160 static struct device_attribute dev_bad_peb_count =
    161 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
    162 static struct device_attribute dev_max_vol_count =
    163 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
    164 static struct device_attribute dev_min_io_size =
    165 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
    166 static struct device_attribute dev_bgt_enabled =
    167 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
    168 static struct device_attribute dev_mtd_num =
    169 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
    170 #endif
    171 
    172 /**
    173  * ubi_volume_notify - send a volume change notification.
    174  * @ubi: UBI device description object
    175  * @vol: volume description object of the changed volume
    176  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
    177  *
    178  * This is a helper function which notifies all subscribers about a volume
    179  * change event (creation, removal, re-sizing, re-naming, updating). Returns
    180  * zero in case of success and a negative error code in case of failure.
    181  */
    182 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
    183 {
    184 	int ret;
    185 	struct ubi_notification nt;
    186 
    187 	ubi_do_get_device_info(ubi, &nt.di);
    188 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
    189 
    190 	switch (ntype) {
    191 	case UBI_VOLUME_ADDED:
    192 	case UBI_VOLUME_REMOVED:
    193 	case UBI_VOLUME_RESIZED:
    194 	case UBI_VOLUME_RENAMED:
    195 		ret = ubi_update_fastmap(ubi);
    196 		if (ret)
    197 			ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
    198 	}
    199 
    200 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
    201 }
    202 
    203 /**
    204  * ubi_notify_all - send a notification to all volumes.
    205  * @ubi: UBI device description object
    206  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
    207  * @nb: the notifier to call
    208  *
    209  * This function walks all volumes of UBI device @ubi and sends the @ntype
    210  * notification for each volume. If @nb is %NULL, then all registered notifiers
    211  * are called, otherwise only the @nb notifier is called. Returns the number of
    212  * sent notifications.
    213  */
    214 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
    215 {
    216 	struct ubi_notification nt;
    217 	int i, count = 0;
    218 #ifndef __UBOOT__
    219 	int ret;
    220 #endif
    221 
    222 	ubi_do_get_device_info(ubi, &nt.di);
    223 
    224 	mutex_lock(&ubi->device_mutex);
    225 	for (i = 0; i < ubi->vtbl_slots; i++) {
    226 		/*
    227 		 * Since the @ubi->device is locked, and we are not going to
    228 		 * change @ubi->volumes, we do not have to lock
    229 		 * @ubi->volumes_lock.
    230 		 */
    231 		if (!ubi->volumes[i])
    232 			continue;
    233 
    234 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
    235 #ifndef __UBOOT__
    236 		if (nb)
    237 			nb->notifier_call(nb, ntype, &nt);
    238 		else
    239 			ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
    240 						     &nt);
    241 #endif
    242 		count += 1;
    243 	}
    244 	mutex_unlock(&ubi->device_mutex);
    245 
    246 	return count;
    247 }
    248 
    249 /**
    250  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
    251  * @nb: the notifier to call
    252  *
    253  * This function walks all UBI devices and volumes and sends the
    254  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
    255  * registered notifiers are called, otherwise only the @nb notifier is called.
    256  * Returns the number of sent notifications.
    257  */
    258 int ubi_enumerate_volumes(struct notifier_block *nb)
    259 {
    260 	int i, count = 0;
    261 
    262 	/*
    263 	 * Since the @ubi_devices_mutex is locked, and we are not going to
    264 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
    265 	 */
    266 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
    267 		struct ubi_device *ubi = ubi_devices[i];
    268 
    269 		if (!ubi)
    270 			continue;
    271 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
    272 	}
    273 
    274 	return count;
    275 }
    276 
    277 /**
    278  * ubi_get_device - get UBI device.
    279  * @ubi_num: UBI device number
    280  *
    281  * This function returns UBI device description object for UBI device number
    282  * @ubi_num, or %NULL if the device does not exist. This function increases the
    283  * device reference count to prevent removal of the device. In other words, the
    284  * device cannot be removed if its reference count is not zero.
    285  */
    286 struct ubi_device *ubi_get_device(int ubi_num)
    287 {
    288 	struct ubi_device *ubi;
    289 
    290 	spin_lock(&ubi_devices_lock);
    291 	ubi = ubi_devices[ubi_num];
    292 	if (ubi) {
    293 		ubi_assert(ubi->ref_count >= 0);
    294 		ubi->ref_count += 1;
    295 		get_device(&ubi->dev);
    296 	}
    297 	spin_unlock(&ubi_devices_lock);
    298 
    299 	return ubi;
    300 }
    301 
    302 /**
    303  * ubi_put_device - drop an UBI device reference.
    304  * @ubi: UBI device description object
    305  */
    306 void ubi_put_device(struct ubi_device *ubi)
    307 {
    308 	spin_lock(&ubi_devices_lock);
    309 	ubi->ref_count -= 1;
    310 	put_device(&ubi->dev);
    311 	spin_unlock(&ubi_devices_lock);
    312 }
    313 
    314 /**
    315  * ubi_get_by_major - get UBI device by character device major number.
    316  * @major: major number
    317  *
    318  * This function is similar to 'ubi_get_device()', but it searches the device
    319  * by its major number.
    320  */
    321 struct ubi_device *ubi_get_by_major(int major)
    322 {
    323 	int i;
    324 	struct ubi_device *ubi;
    325 
    326 	spin_lock(&ubi_devices_lock);
    327 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
    328 		ubi = ubi_devices[i];
    329 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
    330 			ubi_assert(ubi->ref_count >= 0);
    331 			ubi->ref_count += 1;
    332 			get_device(&ubi->dev);
    333 			spin_unlock(&ubi_devices_lock);
    334 			return ubi;
    335 		}
    336 	}
    337 	spin_unlock(&ubi_devices_lock);
    338 
    339 	return NULL;
    340 }
    341 
    342 /**
    343  * ubi_major2num - get UBI device number by character device major number.
    344  * @major: major number
    345  *
    346  * This function searches UBI device number object by its major number. If UBI
    347  * device was not found, this function returns -ENODEV, otherwise the UBI device
    348  * number is returned.
    349  */
    350 int ubi_major2num(int major)
    351 {
    352 	int i, ubi_num = -ENODEV;
    353 
    354 	spin_lock(&ubi_devices_lock);
    355 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
    356 		struct ubi_device *ubi = ubi_devices[i];
    357 
    358 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
    359 			ubi_num = ubi->ubi_num;
    360 			break;
    361 		}
    362 	}
    363 	spin_unlock(&ubi_devices_lock);
    364 
    365 	return ubi_num;
    366 }
    367 
    368 #ifndef __UBOOT__
    369 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
    370 static ssize_t dev_attribute_show(struct device *dev,
    371 				  struct device_attribute *attr, char *buf)
    372 {
    373 	ssize_t ret;
    374 	struct ubi_device *ubi;
    375 
    376 	/*
    377 	 * The below code looks weird, but it actually makes sense. We get the
    378 	 * UBI device reference from the contained 'struct ubi_device'. But it
    379 	 * is unclear if the device was removed or not yet. Indeed, if the
    380 	 * device was removed before we increased its reference count,
    381 	 * 'ubi_get_device()' will return -ENODEV and we fail.
    382 	 *
    383 	 * Remember, 'struct ubi_device' is freed in the release function, so
    384 	 * we still can use 'ubi->ubi_num'.
    385 	 */
    386 	ubi = container_of(dev, struct ubi_device, dev);
    387 	ubi = ubi_get_device(ubi->ubi_num);
    388 	if (!ubi)
    389 		return -ENODEV;
    390 
    391 	if (attr == &dev_eraseblock_size)
    392 		ret = sprintf(buf, "%d\n", ubi->leb_size);
    393 	else if (attr == &dev_avail_eraseblocks)
    394 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
    395 	else if (attr == &dev_total_eraseblocks)
    396 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
    397 	else if (attr == &dev_volumes_count)
    398 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
    399 	else if (attr == &dev_max_ec)
    400 		ret = sprintf(buf, "%d\n", ubi->max_ec);
    401 	else if (attr == &dev_reserved_for_bad)
    402 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
    403 	else if (attr == &dev_bad_peb_count)
    404 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
    405 	else if (attr == &dev_max_vol_count)
    406 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
    407 	else if (attr == &dev_min_io_size)
    408 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
    409 	else if (attr == &dev_bgt_enabled)
    410 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
    411 	else if (attr == &dev_mtd_num)
    412 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
    413 	else
    414 		ret = -EINVAL;
    415 
    416 	ubi_put_device(ubi);
    417 	return ret;
    418 }
    419 
    420 static struct attribute *ubi_dev_attrs[] = {
    421 	&dev_eraseblock_size.attr,
    422 	&dev_avail_eraseblocks.attr,
    423 	&dev_total_eraseblocks.attr,
    424 	&dev_volumes_count.attr,
    425 	&dev_max_ec.attr,
    426 	&dev_reserved_for_bad.attr,
    427 	&dev_bad_peb_count.attr,
    428 	&dev_max_vol_count.attr,
    429 	&dev_min_io_size.attr,
    430 	&dev_bgt_enabled.attr,
    431 	&dev_mtd_num.attr,
    432 	NULL
    433 };
    434 ATTRIBUTE_GROUPS(ubi_dev);
    435 
    436 static void dev_release(struct device *dev)
    437 {
    438 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
    439 
    440 	kfree(ubi);
    441 }
    442 
    443 /**
    444  * ubi_sysfs_init - initialize sysfs for an UBI device.
    445  * @ubi: UBI device description object
    446  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
    447  *       taken
    448  *
    449  * This function returns zero in case of success and a negative error code in
    450  * case of failure.
    451  */
    452 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
    453 {
    454 	int err;
    455 
    456 	ubi->dev.release = dev_release;
    457 	ubi->dev.devt = ubi->cdev.dev;
    458 	ubi->dev.class = &ubi_class;
    459 	ubi->dev.groups = ubi_dev_groups;
    460 	dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
    461 	err = device_register(&ubi->dev);
    462 	if (err)
    463 		return err;
    464 
    465 	*ref = 1;
    466 	return 0;
    467 }
    468 
    469 /**
    470  * ubi_sysfs_close - close sysfs for an UBI device.
    471  * @ubi: UBI device description object
    472  */
    473 static void ubi_sysfs_close(struct ubi_device *ubi)
    474 {
    475 	device_unregister(&ubi->dev);
    476 }
    477 #endif
    478 
    479 /**
    480  * kill_volumes - destroy all user volumes.
    481  * @ubi: UBI device description object
    482  */
    483 static void kill_volumes(struct ubi_device *ubi)
    484 {
    485 	int i;
    486 
    487 	for (i = 0; i < ubi->vtbl_slots; i++)
    488 		if (ubi->volumes[i])
    489 			ubi_free_volume(ubi, ubi->volumes[i]);
    490 }
    491 
    492 /**
    493  * uif_init - initialize user interfaces for an UBI device.
    494  * @ubi: UBI device description object
    495  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
    496  *       taken, otherwise set to %0
    497  *
    498  * This function initializes various user interfaces for an UBI device. If the
    499  * initialization fails at an early stage, this function frees all the
    500  * resources it allocated, returns an error, and @ref is set to %0. However,
    501  * if the initialization fails after the UBI device was registered in the
    502  * driver core subsystem, this function takes a reference to @ubi->dev, because
    503  * otherwise the release function ('dev_release()') would free whole @ubi
    504  * object. The @ref argument is set to %1 in this case. The caller has to put
    505  * this reference.
    506  *
    507  * This function returns zero in case of success and a negative error code in
    508  * case of failure.
    509  */
    510 static int uif_init(struct ubi_device *ubi, int *ref)
    511 {
    512 	int i, err;
    513 #ifndef __UBOOT__
    514 	dev_t dev;
    515 #endif
    516 
    517 	*ref = 0;
    518 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
    519 
    520 	/*
    521 	 * Major numbers for the UBI character devices are allocated
    522 	 * dynamically. Major numbers of volume character devices are
    523 	 * equivalent to ones of the corresponding UBI character device. Minor
    524 	 * numbers of UBI character devices are 0, while minor numbers of
    525 	 * volume character devices start from 1. Thus, we allocate one major
    526 	 * number and ubi->vtbl_slots + 1 minor numbers.
    527 	 */
    528 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
    529 	if (err) {
    530 		ubi_err(ubi, "cannot register UBI character devices");
    531 		return err;
    532 	}
    533 
    534 	ubi_assert(MINOR(dev) == 0);
    535 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
    536 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
    537 	ubi->cdev.owner = THIS_MODULE;
    538 
    539 	err = cdev_add(&ubi->cdev, dev, 1);
    540 	if (err) {
    541 		ubi_err(ubi, "cannot add character device");
    542 		goto out_unreg;
    543 	}
    544 
    545 	err = ubi_sysfs_init(ubi, ref);
    546 	if (err)
    547 		goto out_sysfs;
    548 
    549 	for (i = 0; i < ubi->vtbl_slots; i++)
    550 		if (ubi->volumes[i]) {
    551 			err = ubi_add_volume(ubi, ubi->volumes[i]);
    552 			if (err) {
    553 				ubi_err(ubi, "cannot add volume %d", i);
    554 				goto out_volumes;
    555 			}
    556 		}
    557 
    558 	return 0;
    559 
    560 out_volumes:
    561 	kill_volumes(ubi);
    562 out_sysfs:
    563 	if (*ref)
    564 		get_device(&ubi->dev);
    565 	ubi_sysfs_close(ubi);
    566 	cdev_del(&ubi->cdev);
    567 out_unreg:
    568 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
    569 	ubi_err(ubi, "cannot initialize UBI %s, error %d",
    570 		ubi->ubi_name, err);
    571 	return err;
    572 }
    573 
    574 /**
    575  * uif_close - close user interfaces for an UBI device.
    576  * @ubi: UBI device description object
    577  *
    578  * Note, since this function un-registers UBI volume device objects (@vol->dev),
    579  * the memory allocated voe the volumes is freed as well (in the release
    580  * function).
    581  */
    582 static void uif_close(struct ubi_device *ubi)
    583 {
    584 	kill_volumes(ubi);
    585 	ubi_sysfs_close(ubi);
    586 	cdev_del(&ubi->cdev);
    587 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
    588 }
    589 
    590 /**
    591  * ubi_free_internal_volumes - free internal volumes.
    592  * @ubi: UBI device description object
    593  */
    594 void ubi_free_internal_volumes(struct ubi_device *ubi)
    595 {
    596 	int i;
    597 
    598 	for (i = ubi->vtbl_slots;
    599 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
    600 		kfree(ubi->volumes[i]->eba_tbl);
    601 		kfree(ubi->volumes[i]);
    602 	}
    603 }
    604 
    605 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
    606 {
    607 	int limit, device_pebs;
    608 	uint64_t device_size;
    609 
    610 	if (!max_beb_per1024)
    611 		return 0;
    612 
    613 	/*
    614 	 * Here we are using size of the entire flash chip and
    615 	 * not just the MTD partition size because the maximum
    616 	 * number of bad eraseblocks is a percentage of the
    617 	 * whole device and bad eraseblocks are not fairly
    618 	 * distributed over the flash chip. So the worst case
    619 	 * is that all the bad eraseblocks of the chip are in
    620 	 * the MTD partition we are attaching (ubi->mtd).
    621 	 */
    622 	device_size = mtd_get_device_size(ubi->mtd);
    623 	device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
    624 	limit = mult_frac(device_pebs, max_beb_per1024, 1024);
    625 
    626 	/* Round it up */
    627 	if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
    628 		limit += 1;
    629 
    630 	return limit;
    631 }
    632 
    633 /**
    634  * io_init - initialize I/O sub-system for a given UBI device.
    635  * @ubi: UBI device description object
    636  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
    637  *
    638  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
    639  * assumed:
    640  *   o EC header is always at offset zero - this cannot be changed;
    641  *   o VID header starts just after the EC header at the closest address
    642  *     aligned to @io->hdrs_min_io_size;
    643  *   o data starts just after the VID header at the closest address aligned to
    644  *     @io->min_io_size
    645  *
    646  * This function returns zero in case of success and a negative error code in
    647  * case of failure.
    648  */
    649 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
    650 {
    651 	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
    652 	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
    653 
    654 	if (ubi->mtd->numeraseregions != 0) {
    655 		/*
    656 		 * Some flashes have several erase regions. Different regions
    657 		 * may have different eraseblock size and other
    658 		 * characteristics. It looks like mostly multi-region flashes
    659 		 * have one "main" region and one or more small regions to
    660 		 * store boot loader code or boot parameters or whatever. I
    661 		 * guess we should just pick the largest region. But this is
    662 		 * not implemented.
    663 		 */
    664 		ubi_err(ubi, "multiple regions, not implemented");
    665 		return -EINVAL;
    666 	}
    667 
    668 	if (ubi->vid_hdr_offset < 0)
    669 		return -EINVAL;
    670 
    671 	/*
    672 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
    673 	 * physical eraseblocks maximum.
    674 	 */
    675 
    676 	ubi->peb_size   = ubi->mtd->erasesize;
    677 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
    678 	ubi->flash_size = ubi->mtd->size;
    679 
    680 	if (mtd_can_have_bb(ubi->mtd)) {
    681 		ubi->bad_allowed = 1;
    682 		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
    683 	}
    684 
    685 	if (ubi->mtd->type == MTD_NORFLASH) {
    686 		ubi_assert(ubi->mtd->writesize == 1);
    687 		ubi->nor_flash = 1;
    688 	}
    689 
    690 	ubi->min_io_size = ubi->mtd->writesize;
    691 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
    692 
    693 	/*
    694 	 * Make sure minimal I/O unit is power of 2. Note, there is no
    695 	 * fundamental reason for this assumption. It is just an optimization
    696 	 * which allows us to avoid costly division operations.
    697 	 */
    698 	if (!is_power_of_2(ubi->min_io_size)) {
    699 		ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
    700 			ubi->min_io_size);
    701 		return -EINVAL;
    702 	}
    703 
    704 	ubi_assert(ubi->hdrs_min_io_size > 0);
    705 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
    706 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
    707 
    708 	ubi->max_write_size = ubi->mtd->writebufsize;
    709 	/*
    710 	 * Maximum write size has to be greater or equivalent to min. I/O
    711 	 * size, and be multiple of min. I/O size.
    712 	 */
    713 	if (ubi->max_write_size < ubi->min_io_size ||
    714 	    ubi->max_write_size % ubi->min_io_size ||
    715 	    !is_power_of_2(ubi->max_write_size)) {
    716 		ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
    717 			ubi->max_write_size, ubi->min_io_size);
    718 		return -EINVAL;
    719 	}
    720 
    721 	/* Calculate default aligned sizes of EC and VID headers */
    722 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
    723 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
    724 
    725 	dbg_gen("min_io_size      %d", ubi->min_io_size);
    726 	dbg_gen("max_write_size   %d", ubi->max_write_size);
    727 	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
    728 	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
    729 	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
    730 
    731 	if (ubi->vid_hdr_offset == 0)
    732 		/* Default offset */
    733 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
    734 				      ubi->ec_hdr_alsize;
    735 	else {
    736 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
    737 						~(ubi->hdrs_min_io_size - 1);
    738 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
    739 						ubi->vid_hdr_aloffset;
    740 	}
    741 
    742 	/* Similar for the data offset */
    743 	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
    744 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
    745 
    746 	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
    747 	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
    748 	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
    749 	dbg_gen("leb_start        %d", ubi->leb_start);
    750 
    751 	/* The shift must be aligned to 32-bit boundary */
    752 	if (ubi->vid_hdr_shift % 4) {
    753 		ubi_err(ubi, "unaligned VID header shift %d",
    754 			ubi->vid_hdr_shift);
    755 		return -EINVAL;
    756 	}
    757 
    758 	/* Check sanity */
    759 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
    760 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
    761 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
    762 	    ubi->leb_start & (ubi->min_io_size - 1)) {
    763 		ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
    764 			ubi->vid_hdr_offset, ubi->leb_start);
    765 		return -EINVAL;
    766 	}
    767 
    768 	/*
    769 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
    770 	 * Erroneous PEB are those which have read errors.
    771 	 */
    772 	ubi->max_erroneous = ubi->peb_count / 10;
    773 	if (ubi->max_erroneous < 16)
    774 		ubi->max_erroneous = 16;
    775 	dbg_gen("max_erroneous    %d", ubi->max_erroneous);
    776 
    777 	/*
    778 	 * It may happen that EC and VID headers are situated in one minimal
    779 	 * I/O unit. In this case we can only accept this UBI image in
    780 	 * read-only mode.
    781 	 */
    782 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
    783 		ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
    784 		ubi->ro_mode = 1;
    785 	}
    786 
    787 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
    788 
    789 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
    790 		ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
    791 			ubi->mtd->index);
    792 		ubi->ro_mode = 1;
    793 	}
    794 
    795 	/*
    796 	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
    797 	 * unfortunately, MTD does not provide this information. We should loop
    798 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
    799 	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
    800 	 * uninitialized so far.
    801 	 */
    802 
    803 	return 0;
    804 }
    805 
    806 /**
    807  * autoresize - re-size the volume which has the "auto-resize" flag set.
    808  * @ubi: UBI device description object
    809  * @vol_id: ID of the volume to re-size
    810  *
    811  * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
    812  * the volume table to the largest possible size. See comments in ubi-header.h
    813  * for more description of the flag. Returns zero in case of success and a
    814  * negative error code in case of failure.
    815  */
    816 static int autoresize(struct ubi_device *ubi, int vol_id)
    817 {
    818 	struct ubi_volume_desc desc;
    819 	struct ubi_volume *vol = ubi->volumes[vol_id];
    820 	int err, old_reserved_pebs = vol->reserved_pebs;
    821 
    822 	if (ubi->ro_mode) {
    823 		ubi_warn(ubi, "skip auto-resize because of R/O mode");
    824 		return 0;
    825 	}
    826 
    827 	/*
    828 	 * Clear the auto-resize flag in the volume in-memory copy of the
    829 	 * volume table, and 'ubi_resize_volume()' will propagate this change
    830 	 * to the flash.
    831 	 */
    832 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
    833 
    834 	if (ubi->avail_pebs == 0) {
    835 		struct ubi_vtbl_record vtbl_rec;
    836 
    837 		/*
    838 		 * No available PEBs to re-size the volume, clear the flag on
    839 		 * flash and exit.
    840 		 */
    841 		vtbl_rec = ubi->vtbl[vol_id];
    842 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
    843 		if (err)
    844 			ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
    845 				vol_id);
    846 	} else {
    847 		desc.vol = vol;
    848 		err = ubi_resize_volume(&desc,
    849 					old_reserved_pebs + ubi->avail_pebs);
    850 		if (err)
    851 			ubi_err(ubi, "cannot auto-resize volume %d",
    852 				vol_id);
    853 	}
    854 
    855 	if (err)
    856 		return err;
    857 
    858 	ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
    859 		vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
    860 	return 0;
    861 }
    862 
    863 /**
    864  * ubi_attach_mtd_dev - attach an MTD device.
    865  * @mtd: MTD device description object
    866  * @ubi_num: number to assign to the new UBI device
    867  * @vid_hdr_offset: VID header offset
    868  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
    869  *
    870  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
    871  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
    872  * which case this function finds a vacant device number and assigns it
    873  * automatically. Returns the new UBI device number in case of success and a
    874  * negative error code in case of failure.
    875  *
    876  * Note, the invocations of this function has to be serialized by the
    877  * @ubi_devices_mutex.
    878  */
    879 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
    880 		       int vid_hdr_offset, int max_beb_per1024)
    881 {
    882 	struct ubi_device *ubi;
    883 	int i, err, ref = 0;
    884 
    885 	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
    886 		return -EINVAL;
    887 
    888 	if (!max_beb_per1024)
    889 		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
    890 
    891 	/*
    892 	 * Check if we already have the same MTD device attached.
    893 	 *
    894 	 * Note, this function assumes that UBI devices creations and deletions
    895 	 * are serialized, so it does not take the &ubi_devices_lock.
    896 	 */
    897 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
    898 		ubi = ubi_devices[i];
    899 		if (ubi && mtd->index == ubi->mtd->index) {
    900 			ubi_err(ubi, "mtd%d is already attached to ubi%d",
    901 				mtd->index, i);
    902 			return -EEXIST;
    903 		}
    904 	}
    905 
    906 	/*
    907 	 * Make sure this MTD device is not emulated on top of an UBI volume
    908 	 * already. Well, generally this recursion works fine, but there are
    909 	 * different problems like the UBI module takes a reference to itself
    910 	 * by attaching (and thus, opening) the emulated MTD device. This
    911 	 * results in inability to unload the module. And in general it makes
    912 	 * no sense to attach emulated MTD devices, so we prohibit this.
    913 	 */
    914 	if (mtd->type == MTD_UBIVOLUME) {
    915 		ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
    916 			mtd->index);
    917 		return -EINVAL;
    918 	}
    919 
    920 	if (ubi_num == UBI_DEV_NUM_AUTO) {
    921 		/* Search for an empty slot in the @ubi_devices array */
    922 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
    923 			if (!ubi_devices[ubi_num])
    924 				break;
    925 		if (ubi_num == UBI_MAX_DEVICES) {
    926 			ubi_err(ubi, "only %d UBI devices may be created",
    927 				UBI_MAX_DEVICES);
    928 			return -ENFILE;
    929 		}
    930 	} else {
    931 		if (ubi_num >= UBI_MAX_DEVICES)
    932 			return -EINVAL;
    933 
    934 		/* Make sure ubi_num is not busy */
    935 		if (ubi_devices[ubi_num]) {
    936 			ubi_err(ubi, "already exists");
    937 			return -EEXIST;
    938 		}
    939 	}
    940 
    941 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
    942 	if (!ubi)
    943 		return -ENOMEM;
    944 
    945 	ubi->mtd = mtd;
    946 	ubi->ubi_num = ubi_num;
    947 	ubi->vid_hdr_offset = vid_hdr_offset;
    948 	ubi->autoresize_vol_id = -1;
    949 
    950 #ifdef CONFIG_MTD_UBI_FASTMAP
    951 	ubi->fm_pool.used = ubi->fm_pool.size = 0;
    952 	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
    953 
    954 	/*
    955 	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
    956 	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
    957 	 */
    958 	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
    959 		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
    960 	ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
    961 		UBI_FM_MIN_POOL_SIZE);
    962 
    963 	ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
    964 	ubi->fm_disabled = !fm_autoconvert;
    965 	if (fm_debug)
    966 		ubi_enable_dbg_chk_fastmap(ubi);
    967 
    968 	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
    969 	    <= UBI_FM_MAX_START) {
    970 		ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
    971 			UBI_FM_MAX_START);
    972 		ubi->fm_disabled = 1;
    973 	}
    974 
    975 	ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
    976 	ubi_msg(ubi, "default fastmap WL pool size: %d",
    977 		ubi->fm_wl_pool.max_size);
    978 #else
    979 	ubi->fm_disabled = 1;
    980 #endif
    981 	mutex_init(&ubi->buf_mutex);
    982 	mutex_init(&ubi->ckvol_mutex);
    983 	mutex_init(&ubi->device_mutex);
    984 	spin_lock_init(&ubi->volumes_lock);
    985 	init_rwsem(&ubi->fm_protect);
    986 	init_rwsem(&ubi->fm_eba_sem);
    987 
    988 	ubi_msg(ubi, "attaching mtd%d", mtd->index);
    989 
    990 	err = io_init(ubi, max_beb_per1024);
    991 	if (err)
    992 		goto out_free;
    993 
    994 	err = -ENOMEM;
    995 	ubi->peb_buf = vmalloc(ubi->peb_size);
    996 	if (!ubi->peb_buf)
    997 		goto out_free;
    998 
    999 #ifdef CONFIG_MTD_UBI_FASTMAP
   1000 	ubi->fm_size = ubi_calc_fm_size(ubi);
   1001 	ubi->fm_buf = vzalloc(ubi->fm_size);
   1002 	if (!ubi->fm_buf)
   1003 		goto out_free;
   1004 #endif
   1005 	err = ubi_attach(ubi, 0);
   1006 	if (err) {
   1007 		ubi_err(ubi, "failed to attach mtd%d, error %d",
   1008 			mtd->index, err);
   1009 		goto out_free;
   1010 	}
   1011 
   1012 	if (ubi->autoresize_vol_id != -1) {
   1013 		err = autoresize(ubi, ubi->autoresize_vol_id);
   1014 		if (err)
   1015 			goto out_detach;
   1016 	}
   1017 
   1018 	err = uif_init(ubi, &ref);
   1019 	if (err)
   1020 		goto out_detach;
   1021 
   1022 	err = ubi_debugfs_init_dev(ubi);
   1023 	if (err)
   1024 		goto out_uif;
   1025 
   1026 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
   1027 	if (IS_ERR(ubi->bgt_thread)) {
   1028 		err = PTR_ERR(ubi->bgt_thread);
   1029 		ubi_err(ubi, "cannot spawn \"%s\", error %d",
   1030 			ubi->bgt_name, err);
   1031 		goto out_debugfs;
   1032 	}
   1033 
   1034 	ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
   1035 		mtd->index, mtd->name, ubi->flash_size >> 20);
   1036 	ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
   1037 		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
   1038 	ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
   1039 		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
   1040 	ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
   1041 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
   1042 	ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
   1043 		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
   1044 	ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
   1045 		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
   1046 		ubi->vtbl_slots);
   1047 	ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
   1048 		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
   1049 		ubi->image_seq);
   1050 	ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
   1051 		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
   1052 
   1053 	/*
   1054 	 * The below lock makes sure we do not race with 'ubi_thread()' which
   1055 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
   1056 	 */
   1057 	spin_lock(&ubi->wl_lock);
   1058 	ubi->thread_enabled = 1;
   1059 #ifndef __UBOOT__
   1060 	wake_up_process(ubi->bgt_thread);
   1061 #else
   1062 	ubi_do_worker(ubi);
   1063 #endif
   1064 
   1065 	spin_unlock(&ubi->wl_lock);
   1066 
   1067 	ubi_devices[ubi_num] = ubi;
   1068 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
   1069 	return ubi_num;
   1070 
   1071 out_debugfs:
   1072 	ubi_debugfs_exit_dev(ubi);
   1073 out_uif:
   1074 	get_device(&ubi->dev);
   1075 	ubi_assert(ref);
   1076 	uif_close(ubi);
   1077 out_detach:
   1078 	ubi_wl_close(ubi);
   1079 	ubi_free_internal_volumes(ubi);
   1080 	vfree(ubi->vtbl);
   1081 out_free:
   1082 	vfree(ubi->peb_buf);
   1083 	vfree(ubi->fm_buf);
   1084 	if (ref)
   1085 		put_device(&ubi->dev);
   1086 	else
   1087 		kfree(ubi);
   1088 	return err;
   1089 }
   1090 
   1091 /**
   1092  * ubi_detach_mtd_dev - detach an MTD device.
   1093  * @ubi_num: UBI device number to detach from
   1094  * @anyway: detach MTD even if device reference count is not zero
   1095  *
   1096  * This function destroys an UBI device number @ubi_num and detaches the
   1097  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
   1098  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
   1099  * exist.
   1100  *
   1101  * Note, the invocations of this function has to be serialized by the
   1102  * @ubi_devices_mutex.
   1103  */
   1104 int ubi_detach_mtd_dev(int ubi_num, int anyway)
   1105 {
   1106 	struct ubi_device *ubi;
   1107 
   1108 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
   1109 		return -EINVAL;
   1110 
   1111 	ubi = ubi_get_device(ubi_num);
   1112 	if (!ubi)
   1113 		return -EINVAL;
   1114 
   1115 	spin_lock(&ubi_devices_lock);
   1116 	put_device(&ubi->dev);
   1117 	ubi->ref_count -= 1;
   1118 	if (ubi->ref_count) {
   1119 		if (!anyway) {
   1120 			spin_unlock(&ubi_devices_lock);
   1121 			return -EBUSY;
   1122 		}
   1123 		/* This may only happen if there is a bug */
   1124 		ubi_err(ubi, "%s reference count %d, destroy anyway",
   1125 			ubi->ubi_name, ubi->ref_count);
   1126 	}
   1127 	ubi_devices[ubi_num] = NULL;
   1128 	spin_unlock(&ubi_devices_lock);
   1129 
   1130 	ubi_assert(ubi_num == ubi->ubi_num);
   1131 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
   1132 	ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
   1133 #ifdef CONFIG_MTD_UBI_FASTMAP
   1134 	/* If we don't write a new fastmap at detach time we lose all
   1135 	 * EC updates that have been made since the last written fastmap.
   1136 	 * In case of fastmap debugging we omit the update to simulate an
   1137 	 * unclean shutdown. */
   1138 	if (!ubi_dbg_chk_fastmap(ubi))
   1139 		ubi_update_fastmap(ubi);
   1140 #endif
   1141 	/*
   1142 	 * Before freeing anything, we have to stop the background thread to
   1143 	 * prevent it from doing anything on this device while we are freeing.
   1144 	 */
   1145 	if (ubi->bgt_thread)
   1146 		kthread_stop(ubi->bgt_thread);
   1147 
   1148 	/*
   1149 	 * Get a reference to the device in order to prevent 'dev_release()'
   1150 	 * from freeing the @ubi object.
   1151 	 */
   1152 	get_device(&ubi->dev);
   1153 
   1154 	ubi_debugfs_exit_dev(ubi);
   1155 	uif_close(ubi);
   1156 
   1157 	ubi_wl_close(ubi);
   1158 	ubi_free_internal_volumes(ubi);
   1159 	vfree(ubi->vtbl);
   1160 	put_mtd_device(ubi->mtd);
   1161 	vfree(ubi->peb_buf);
   1162 	vfree(ubi->fm_buf);
   1163 	ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
   1164 	put_device(&ubi->dev);
   1165 	return 0;
   1166 }
   1167 
   1168 #ifndef __UBOOT__
   1169 /**
   1170  * open_mtd_by_chdev - open an MTD device by its character device node path.
   1171  * @mtd_dev: MTD character device node path
   1172  *
   1173  * This helper function opens an MTD device by its character node device path.
   1174  * Returns MTD device description object in case of success and a negative
   1175  * error code in case of failure.
   1176  */
   1177 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
   1178 {
   1179 	int err, major, minor, mode;
   1180 	struct path path;
   1181 
   1182 	/* Probably this is an MTD character device node path */
   1183 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
   1184 	if (err)
   1185 		return ERR_PTR(err);
   1186 
   1187 	/* MTD device number is defined by the major / minor numbers */
   1188 	major = imajor(d_backing_inode(path.dentry));
   1189 	minor = iminor(d_backing_inode(path.dentry));
   1190 	mode = d_backing_inode(path.dentry)->i_mode;
   1191 	path_put(&path);
   1192 	if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
   1193 		return ERR_PTR(-EINVAL);
   1194 
   1195 	if (minor & 1)
   1196 		/*
   1197 		 * Just do not think the "/dev/mtdrX" devices support is need,
   1198 		 * so do not support them to avoid doing extra work.
   1199 		 */
   1200 		return ERR_PTR(-EINVAL);
   1201 
   1202 	return get_mtd_device(NULL, minor / 2);
   1203 }
   1204 #endif
   1205 
   1206 /**
   1207  * open_mtd_device - open MTD device by name, character device path, or number.
   1208  * @mtd_dev: name, character device node path, or MTD device device number
   1209  *
   1210  * This function tries to open and MTD device described by @mtd_dev string,
   1211  * which is first treated as ASCII MTD device number, and if it is not true, it
   1212  * is treated as MTD device name, and if that is also not true, it is treated
   1213  * as MTD character device node path. Returns MTD device description object in
   1214  * case of success and a negative error code in case of failure.
   1215  */
   1216 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
   1217 {
   1218 	struct mtd_info *mtd;
   1219 	int mtd_num;
   1220 	char *endp;
   1221 
   1222 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
   1223 	if (*endp != '\0' || mtd_dev == endp) {
   1224 		/*
   1225 		 * This does not look like an ASCII integer, probably this is
   1226 		 * MTD device name.
   1227 		 */
   1228 		mtd = get_mtd_device_nm(mtd_dev);
   1229 #ifndef __UBOOT__
   1230 		if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
   1231 			/* Probably this is an MTD character device node path */
   1232 			mtd = open_mtd_by_chdev(mtd_dev);
   1233 #endif
   1234 	} else
   1235 		mtd = get_mtd_device(NULL, mtd_num);
   1236 
   1237 	return mtd;
   1238 }
   1239 
   1240 #ifndef __UBOOT__
   1241 static int __init ubi_init(void)
   1242 #else
   1243 int ubi_init(void)
   1244 #endif
   1245 {
   1246 	int err, i, k;
   1247 
   1248 	/* Ensure that EC and VID headers have correct size */
   1249 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
   1250 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
   1251 
   1252 	if (mtd_devs > UBI_MAX_DEVICES) {
   1253 		pr_err("UBI error: too many MTD devices, maximum is %d\n",
   1254 		       UBI_MAX_DEVICES);
   1255 		return -EINVAL;
   1256 	}
   1257 
   1258 	/* Create base sysfs directory and sysfs files */
   1259 	err = class_register(&ubi_class);
   1260 	if (err < 0)
   1261 		return err;
   1262 
   1263 	err = misc_register(&ubi_ctrl_cdev);
   1264 	if (err) {
   1265 		pr_err("UBI error: cannot register device\n");
   1266 		goto out;
   1267 	}
   1268 
   1269 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
   1270 					      sizeof(struct ubi_wl_entry),
   1271 					      0, 0, NULL);
   1272 	if (!ubi_wl_entry_slab) {
   1273 		err = -ENOMEM;
   1274 		goto out_dev_unreg;
   1275 	}
   1276 
   1277 	err = ubi_debugfs_init();
   1278 	if (err)
   1279 		goto out_slab;
   1280 
   1281 
   1282 	/* Attach MTD devices */
   1283 	for (i = 0; i < mtd_devs; i++) {
   1284 		struct mtd_dev_param *p = &mtd_dev_param[i];
   1285 		struct mtd_info *mtd;
   1286 
   1287 		cond_resched();
   1288 
   1289 		mtd = open_mtd_device(p->name);
   1290 		if (IS_ERR(mtd)) {
   1291 			err = PTR_ERR(mtd);
   1292 			pr_err("UBI error: cannot open mtd %s, error %d\n",
   1293 			       p->name, err);
   1294 			/* See comment below re-ubi_is_module(). */
   1295 			if (ubi_is_module())
   1296 				goto out_detach;
   1297 			continue;
   1298 		}
   1299 
   1300 		mutex_lock(&ubi_devices_mutex);
   1301 		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
   1302 					 p->vid_hdr_offs, p->max_beb_per1024);
   1303 		mutex_unlock(&ubi_devices_mutex);
   1304 		if (err < 0) {
   1305 			pr_err("UBI error: cannot attach mtd%d\n",
   1306 			       mtd->index);
   1307 			put_mtd_device(mtd);
   1308 
   1309 			/*
   1310 			 * Originally UBI stopped initializing on any error.
   1311 			 * However, later on it was found out that this
   1312 			 * behavior is not very good when UBI is compiled into
   1313 			 * the kernel and the MTD devices to attach are passed
   1314 			 * through the command line. Indeed, UBI failure
   1315 			 * stopped whole boot sequence.
   1316 			 *
   1317 			 * To fix this, we changed the behavior for the
   1318 			 * non-module case, but preserved the old behavior for
   1319 			 * the module case, just for compatibility. This is a
   1320 			 * little inconsistent, though.
   1321 			 */
   1322 			if (ubi_is_module())
   1323 				goto out_detach;
   1324 		}
   1325 	}
   1326 
   1327 	err = ubiblock_init();
   1328 	if (err) {
   1329 		pr_err("UBI error: block: cannot initialize, error %d\n", err);
   1330 
   1331 		/* See comment above re-ubi_is_module(). */
   1332 		if (ubi_is_module())
   1333 			goto out_detach;
   1334 	}
   1335 
   1336 	return 0;
   1337 
   1338 out_detach:
   1339 	for (k = 0; k < i; k++)
   1340 		if (ubi_devices[k]) {
   1341 			mutex_lock(&ubi_devices_mutex);
   1342 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
   1343 			mutex_unlock(&ubi_devices_mutex);
   1344 		}
   1345 	ubi_debugfs_exit();
   1346 out_slab:
   1347 	kmem_cache_destroy(ubi_wl_entry_slab);
   1348 out_dev_unreg:
   1349 	misc_deregister(&ubi_ctrl_cdev);
   1350 out:
   1351 #ifdef __UBOOT__
   1352 	/* Reset any globals that the driver depends on being zeroed */
   1353 	mtd_devs = 0;
   1354 #endif
   1355 	class_unregister(&ubi_class);
   1356 	pr_err("UBI error: cannot initialize UBI, error %d\n", err);
   1357 	return err;
   1358 }
   1359 late_initcall(ubi_init);
   1360 
   1361 #ifndef __UBOOT__
   1362 static void __exit ubi_exit(void)
   1363 #else
   1364 void ubi_exit(void)
   1365 #endif
   1366 {
   1367 	int i;
   1368 
   1369 	ubiblock_exit();
   1370 
   1371 	for (i = 0; i < UBI_MAX_DEVICES; i++)
   1372 		if (ubi_devices[i]) {
   1373 			mutex_lock(&ubi_devices_mutex);
   1374 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
   1375 			mutex_unlock(&ubi_devices_mutex);
   1376 		}
   1377 	ubi_debugfs_exit();
   1378 	kmem_cache_destroy(ubi_wl_entry_slab);
   1379 	misc_deregister(&ubi_ctrl_cdev);
   1380 	class_unregister(&ubi_class);
   1381 #ifdef __UBOOT__
   1382 	/* Reset any globals that the driver depends on being zeroed */
   1383 	mtd_devs = 0;
   1384 #endif
   1385 }
   1386 module_exit(ubi_exit);
   1387 
   1388 /**
   1389  * bytes_str_to_int - convert a number of bytes string into an integer.
   1390  * @str: the string to convert
   1391  *
   1392  * This function returns positive resulting integer in case of success and a
   1393  * negative error code in case of failure.
   1394  */
   1395 static int __init bytes_str_to_int(const char *str)
   1396 {
   1397 	char *endp;
   1398 	unsigned long result;
   1399 
   1400 	result = simple_strtoul(str, &endp, 0);
   1401 	if (str == endp || result >= INT_MAX) {
   1402 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
   1403 		return -EINVAL;
   1404 	}
   1405 
   1406 	switch (*endp) {
   1407 	case 'G':
   1408 		result *= 1024;
   1409 	case 'M':
   1410 		result *= 1024;
   1411 	case 'K':
   1412 		result *= 1024;
   1413 		if (endp[1] == 'i' && endp[2] == 'B')
   1414 			endp += 2;
   1415 	case '\0':
   1416 		break;
   1417 	default:
   1418 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
   1419 		return -EINVAL;
   1420 	}
   1421 
   1422 	return result;
   1423 }
   1424 
   1425 int kstrtoint(const char *s, unsigned int base, int *res)
   1426 {
   1427 	unsigned long long tmp;
   1428 
   1429 	tmp = simple_strtoull(s, NULL, base);
   1430 	if (tmp != (unsigned long long)(int)tmp)
   1431 		return -ERANGE;
   1432 
   1433 	return (int)tmp;
   1434 }
   1435 
   1436 /**
   1437  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
   1438  * @val: the parameter value to parse
   1439  * @kp: not used
   1440  *
   1441  * This function returns zero in case of success and a negative error code in
   1442  * case of error.
   1443  */
   1444 #ifndef __UBOOT__
   1445 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
   1446 #else
   1447 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
   1448 #endif
   1449 {
   1450 	int i, len;
   1451 	struct mtd_dev_param *p;
   1452 	char buf[MTD_PARAM_LEN_MAX];
   1453 	char *pbuf = &buf[0];
   1454 	char *tokens[MTD_PARAM_MAX_COUNT], *token;
   1455 
   1456 	if (!val)
   1457 		return -EINVAL;
   1458 
   1459 	if (mtd_devs == UBI_MAX_DEVICES) {
   1460 		pr_err("UBI error: too many parameters, max. is %d\n",
   1461 		       UBI_MAX_DEVICES);
   1462 		return -EINVAL;
   1463 	}
   1464 
   1465 	len = strnlen(val, MTD_PARAM_LEN_MAX);
   1466 	if (len == MTD_PARAM_LEN_MAX) {
   1467 		pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
   1468 		       val, MTD_PARAM_LEN_MAX);
   1469 		return -EINVAL;
   1470 	}
   1471 
   1472 	if (len == 0) {
   1473 		pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
   1474 		return 0;
   1475 	}
   1476 
   1477 	strcpy(buf, val);
   1478 
   1479 	/* Get rid of the final newline */
   1480 	if (buf[len - 1] == '\n')
   1481 		buf[len - 1] = '\0';
   1482 
   1483 	for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
   1484 		tokens[i] = strsep(&pbuf, ",");
   1485 
   1486 	if (pbuf) {
   1487 		pr_err("UBI error: too many arguments at \"%s\"\n", val);
   1488 		return -EINVAL;
   1489 	}
   1490 
   1491 	p = &mtd_dev_param[mtd_devs];
   1492 	strcpy(&p->name[0], tokens[0]);
   1493 
   1494 	token = tokens[1];
   1495 	if (token) {
   1496 		p->vid_hdr_offs = bytes_str_to_int(token);
   1497 
   1498 		if (p->vid_hdr_offs < 0)
   1499 			return p->vid_hdr_offs;
   1500 	}
   1501 
   1502 	token = tokens[2];
   1503 	if (token) {
   1504 		int err = kstrtoint(token, 10, &p->max_beb_per1024);
   1505 
   1506 		if (err) {
   1507 			pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
   1508 			       token);
   1509 			return -EINVAL;
   1510 		}
   1511 	}
   1512 
   1513 	token = tokens[3];
   1514 	if (token) {
   1515 		int err = kstrtoint(token, 10, &p->ubi_num);
   1516 
   1517 		if (err) {
   1518 			pr_err("UBI error: bad value for ubi_num parameter: %s",
   1519 			       token);
   1520 			return -EINVAL;
   1521 		}
   1522 	} else
   1523 		p->ubi_num = UBI_DEV_NUM_AUTO;
   1524 
   1525 	mtd_devs += 1;
   1526 	return 0;
   1527 }
   1528 
   1529 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
   1530 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
   1531 		      "Multiple \"mtd\" parameters may be specified.\n"
   1532 		      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
   1533 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
   1534 		      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
   1535 		      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
   1536 		      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
   1537 		      "\n"
   1538 		      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
   1539 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
   1540 		      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
   1541 		      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
   1542 		      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
   1543 #ifdef CONFIG_MTD_UBI_FASTMAP
   1544 module_param(fm_autoconvert, bool, 0644);
   1545 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
   1546 module_param(fm_debug, bool, 0);
   1547 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
   1548 #endif
   1549 MODULE_VERSION(__stringify(UBI_VERSION));
   1550 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
   1551 MODULE_AUTHOR("Artem Bityutskiy");
   1552 MODULE_LICENSE("GPL");
   1553