Home | History | Annotate | Download | only in ubi
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * Copyright (c) International Business Machines Corp., 2006
      4  *
      5  * Authors: Artem Bityutskiy ( ), Thomas Gleixner
      6  */
      7 
      8 /*
      9  * UBI wear-leveling sub-system.
     10  *
     11  * This sub-system is responsible for wear-leveling. It works in terms of
     12  * physical eraseblocks and erase counters and knows nothing about logical
     13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
     14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
     15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
     16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
     17  *
     18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
     19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
     20  *
     21  * When physical eraseblocks are returned to the WL sub-system by means of the
     22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
     23  * done asynchronously in context of the per-UBI device background thread,
     24  * which is also managed by the WL sub-system.
     25  *
     26  * The wear-leveling is ensured by means of moving the contents of used
     27  * physical eraseblocks with low erase counter to free physical eraseblocks
     28  * with high erase counter.
     29  *
     30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
     31  * bad.
     32  *
     33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
     34  * in a physical eraseblock, it has to be moved. Technically this is the same
     35  * as moving it for wear-leveling reasons.
     36  *
     37  * As it was said, for the UBI sub-system all physical eraseblocks are either
     38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
     39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
     40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
     41  *
     42  * When the WL sub-system returns a physical eraseblock, the physical
     43  * eraseblock is protected from being moved for some "time". For this reason,
     44  * the physical eraseblock is not directly moved from the @wl->free tree to the
     45  * @wl->used tree. There is a protection queue in between where this
     46  * physical eraseblock is temporarily stored (@wl->pq).
     47  *
     48  * All this protection stuff is needed because:
     49  *  o we don't want to move physical eraseblocks just after we have given them
     50  *    to the user; instead, we first want to let users fill them up with data;
     51  *
     52  *  o there is a chance that the user will put the physical eraseblock very
     53  *    soon, so it makes sense not to move it for some time, but wait.
     54  *
     55  * Physical eraseblocks stay protected only for limited time. But the "time" is
     56  * measured in erase cycles in this case. This is implemented with help of the
     57  * protection queue. Eraseblocks are put to the tail of this queue when they
     58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
     59  * head of the queue on each erase operation (for any eraseblock). So the
     60  * length of the queue defines how may (global) erase cycles PEBs are protected.
     61  *
     62  * To put it differently, each physical eraseblock has 2 main states: free and
     63  * used. The former state corresponds to the @wl->free tree. The latter state
     64  * is split up on several sub-states:
     65  * o the WL movement is allowed (@wl->used tree);
     66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
     67  *   erroneous - e.g., there was a read error;
     68  * o the WL movement is temporarily prohibited (@wl->pq queue);
     69  * o scrubbing is needed (@wl->scrub tree).
     70  *
     71  * Depending on the sub-state, wear-leveling entries of the used physical
     72  * eraseblocks may be kept in one of those structures.
     73  *
     74  * Note, in this implementation, we keep a small in-RAM object for each physical
     75  * eraseblock. This is surely not a scalable solution. But it appears to be good
     76  * enough for moderately large flashes and it is simple. In future, one may
     77  * re-work this sub-system and make it more scalable.
     78  *
     79  * At the moment this sub-system does not utilize the sequence number, which
     80  * was introduced relatively recently. But it would be wise to do this because
     81  * the sequence number of a logical eraseblock characterizes how old is it. For
     82  * example, when we move a PEB with low erase counter, and we need to pick the
     83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
     84  * pick target PEB with an average EC if our PEB is not very "old". This is a
     85  * room for future re-works of the WL sub-system.
     86  */
     87 
     88 #ifndef __UBOOT__
     89 #include <linux/slab.h>
     90 #include <linux/crc32.h>
     91 #include <linux/freezer.h>
     92 #include <linux/kthread.h>
     93 #else
     94 #include <ubi_uboot.h>
     95 #endif
     96 
     97 #include "ubi.h"
     98 #include "wl.h"
     99 
    100 /* Number of physical eraseblocks reserved for wear-leveling purposes */
    101 #define WL_RESERVED_PEBS 1
    102 
    103 /*
    104  * Maximum difference between two erase counters. If this threshold is
    105  * exceeded, the WL sub-system starts moving data from used physical
    106  * eraseblocks with low erase counter to free physical eraseblocks with high
    107  * erase counter.
    108  */
    109 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
    110 
    111 /*
    112  * When a physical eraseblock is moved, the WL sub-system has to pick the target
    113  * physical eraseblock to move to. The simplest way would be just to pick the
    114  * one with the highest erase counter. But in certain workloads this could lead
    115  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
    116  * situation when the picked physical eraseblock is constantly erased after the
    117  * data is written to it. So, we have a constant which limits the highest erase
    118  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
    119  * does not pick eraseblocks with erase counter greater than the lowest erase
    120  * counter plus %WL_FREE_MAX_DIFF.
    121  */
    122 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
    123 
    124 /*
    125  * Maximum number of consecutive background thread failures which is enough to
    126  * switch to read-only mode.
    127  */
    128 #define WL_MAX_FAILURES 32
    129 
    130 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
    131 static int self_check_in_wl_tree(const struct ubi_device *ubi,
    132 				 struct ubi_wl_entry *e, struct rb_root *root);
    133 static int self_check_in_pq(const struct ubi_device *ubi,
    134 			    struct ubi_wl_entry *e);
    135 
    136 /**
    137  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
    138  * @e: the wear-leveling entry to add
    139  * @root: the root of the tree
    140  *
    141  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
    142  * the @ubi->used and @ubi->free RB-trees.
    143  */
    144 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
    145 {
    146 	struct rb_node **p, *parent = NULL;
    147 
    148 	p = &root->rb_node;
    149 	while (*p) {
    150 		struct ubi_wl_entry *e1;
    151 
    152 		parent = *p;
    153 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
    154 
    155 		if (e->ec < e1->ec)
    156 			p = &(*p)->rb_left;
    157 		else if (e->ec > e1->ec)
    158 			p = &(*p)->rb_right;
    159 		else {
    160 			ubi_assert(e->pnum != e1->pnum);
    161 			if (e->pnum < e1->pnum)
    162 				p = &(*p)->rb_left;
    163 			else
    164 				p = &(*p)->rb_right;
    165 		}
    166 	}
    167 
    168 	rb_link_node(&e->u.rb, parent, p);
    169 	rb_insert_color(&e->u.rb, root);
    170 }
    171 
    172 /**
    173  * wl_tree_destroy - destroy a wear-leveling entry.
    174  * @ubi: UBI device description object
    175  * @e: the wear-leveling entry to add
    176  *
    177  * This function destroys a wear leveling entry and removes
    178  * the reference from the lookup table.
    179  */
    180 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
    181 {
    182 	ubi->lookuptbl[e->pnum] = NULL;
    183 	kmem_cache_free(ubi_wl_entry_slab, e);
    184 }
    185 
    186 /**
    187  * do_work - do one pending work.
    188  * @ubi: UBI device description object
    189  *
    190  * This function returns zero in case of success and a negative error code in
    191  * case of failure.
    192  */
    193 static int do_work(struct ubi_device *ubi)
    194 {
    195 	int err;
    196 	struct ubi_work *wrk;
    197 
    198 	cond_resched();
    199 
    200 	/*
    201 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
    202 	 * it in read mode, so many of them may be doing works at a time. But
    203 	 * the queue flush code has to be sure the whole queue of works is
    204 	 * done, and it takes the mutex in write mode.
    205 	 */
    206 	down_read(&ubi->work_sem);
    207 	spin_lock(&ubi->wl_lock);
    208 	if (list_empty(&ubi->works)) {
    209 		spin_unlock(&ubi->wl_lock);
    210 		up_read(&ubi->work_sem);
    211 		return 0;
    212 	}
    213 
    214 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
    215 	list_del(&wrk->list);
    216 	ubi->works_count -= 1;
    217 	ubi_assert(ubi->works_count >= 0);
    218 	spin_unlock(&ubi->wl_lock);
    219 
    220 	/*
    221 	 * Call the worker function. Do not touch the work structure
    222 	 * after this call as it will have been freed or reused by that
    223 	 * time by the worker function.
    224 	 */
    225 	err = wrk->func(ubi, wrk, 0);
    226 	if (err)
    227 		ubi_err(ubi, "work failed with error code %d", err);
    228 	up_read(&ubi->work_sem);
    229 
    230 	return err;
    231 }
    232 
    233 /**
    234  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
    235  * @e: the wear-leveling entry to check
    236  * @root: the root of the tree
    237  *
    238  * This function returns non-zero if @e is in the @root RB-tree and zero if it
    239  * is not.
    240  */
    241 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
    242 {
    243 	struct rb_node *p;
    244 
    245 	p = root->rb_node;
    246 	while (p) {
    247 		struct ubi_wl_entry *e1;
    248 
    249 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
    250 
    251 		if (e->pnum == e1->pnum) {
    252 			ubi_assert(e == e1);
    253 			return 1;
    254 		}
    255 
    256 		if (e->ec < e1->ec)
    257 			p = p->rb_left;
    258 		else if (e->ec > e1->ec)
    259 			p = p->rb_right;
    260 		else {
    261 			ubi_assert(e->pnum != e1->pnum);
    262 			if (e->pnum < e1->pnum)
    263 				p = p->rb_left;
    264 			else
    265 				p = p->rb_right;
    266 		}
    267 	}
    268 
    269 	return 0;
    270 }
    271 
    272 /**
    273  * prot_queue_add - add physical eraseblock to the protection queue.
    274  * @ubi: UBI device description object
    275  * @e: the physical eraseblock to add
    276  *
    277  * This function adds @e to the tail of the protection queue @ubi->pq, where
    278  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
    279  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
    280  * be locked.
    281  */
    282 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
    283 {
    284 	int pq_tail = ubi->pq_head - 1;
    285 
    286 	if (pq_tail < 0)
    287 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
    288 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
    289 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
    290 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
    291 }
    292 
    293 /**
    294  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
    295  * @ubi: UBI device description object
    296  * @root: the RB-tree where to look for
    297  * @diff: maximum possible difference from the smallest erase counter
    298  *
    299  * This function looks for a wear leveling entry with erase counter closest to
    300  * min + @diff, where min is the smallest erase counter.
    301  */
    302 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
    303 					  struct rb_root *root, int diff)
    304 {
    305 	struct rb_node *p;
    306 	struct ubi_wl_entry *e, *prev_e = NULL;
    307 	int max;
    308 
    309 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
    310 	max = e->ec + diff;
    311 
    312 	p = root->rb_node;
    313 	while (p) {
    314 		struct ubi_wl_entry *e1;
    315 
    316 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
    317 		if (e1->ec >= max)
    318 			p = p->rb_left;
    319 		else {
    320 			p = p->rb_right;
    321 			prev_e = e;
    322 			e = e1;
    323 		}
    324 	}
    325 
    326 	/* If no fastmap has been written and this WL entry can be used
    327 	 * as anchor PEB, hold it back and return the second best WL entry
    328 	 * such that fastmap can use the anchor PEB later. */
    329 	if (prev_e && !ubi->fm_disabled &&
    330 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
    331 		return prev_e;
    332 
    333 	return e;
    334 }
    335 
    336 /**
    337  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
    338  * @ubi: UBI device description object
    339  * @root: the RB-tree where to look for
    340  *
    341  * This function looks for a wear leveling entry with medium erase counter,
    342  * but not greater or equivalent than the lowest erase counter plus
    343  * %WL_FREE_MAX_DIFF/2.
    344  */
    345 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
    346 					       struct rb_root *root)
    347 {
    348 	struct ubi_wl_entry *e, *first, *last;
    349 
    350 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
    351 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
    352 
    353 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
    354 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
    355 
    356 		/* If no fastmap has been written and this WL entry can be used
    357 		 * as anchor PEB, hold it back and return the second best
    358 		 * WL entry such that fastmap can use the anchor PEB later. */
    359 		e = may_reserve_for_fm(ubi, e, root);
    360 	} else
    361 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
    362 
    363 	return e;
    364 }
    365 
    366 /**
    367  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
    368  * refill_wl_user_pool().
    369  * @ubi: UBI device description object
    370  *
    371  * This function returns a a wear leveling entry in case of success and
    372  * NULL in case of failure.
    373  */
    374 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
    375 {
    376 	struct ubi_wl_entry *e;
    377 
    378 	e = find_mean_wl_entry(ubi, &ubi->free);
    379 	if (!e) {
    380 		ubi_err(ubi, "no free eraseblocks");
    381 		return NULL;
    382 	}
    383 
    384 	self_check_in_wl_tree(ubi, e, &ubi->free);
    385 
    386 	/*
    387 	 * Move the physical eraseblock to the protection queue where it will
    388 	 * be protected from being moved for some time.
    389 	 */
    390 	rb_erase(&e->u.rb, &ubi->free);
    391 	ubi->free_count--;
    392 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
    393 
    394 	return e;
    395 }
    396 
    397 /**
    398  * prot_queue_del - remove a physical eraseblock from the protection queue.
    399  * @ubi: UBI device description object
    400  * @pnum: the physical eraseblock to remove
    401  *
    402  * This function deletes PEB @pnum from the protection queue and returns zero
    403  * in case of success and %-ENODEV if the PEB was not found.
    404  */
    405 static int prot_queue_del(struct ubi_device *ubi, int pnum)
    406 {
    407 	struct ubi_wl_entry *e;
    408 
    409 	e = ubi->lookuptbl[pnum];
    410 	if (!e)
    411 		return -ENODEV;
    412 
    413 	if (self_check_in_pq(ubi, e))
    414 		return -ENODEV;
    415 
    416 	list_del(&e->u.list);
    417 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
    418 	return 0;
    419 }
    420 
    421 /**
    422  * sync_erase - synchronously erase a physical eraseblock.
    423  * @ubi: UBI device description object
    424  * @e: the the physical eraseblock to erase
    425  * @torture: if the physical eraseblock has to be tortured
    426  *
    427  * This function returns zero in case of success and a negative error code in
    428  * case of failure.
    429  */
    430 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
    431 		      int torture)
    432 {
    433 	int err;
    434 	struct ubi_ec_hdr *ec_hdr;
    435 	unsigned long long ec = e->ec;
    436 
    437 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
    438 
    439 	err = self_check_ec(ubi, e->pnum, e->ec);
    440 	if (err)
    441 		return -EINVAL;
    442 
    443 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
    444 	if (!ec_hdr)
    445 		return -ENOMEM;
    446 
    447 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
    448 	if (err < 0)
    449 		goto out_free;
    450 
    451 	ec += err;
    452 	if (ec > UBI_MAX_ERASECOUNTER) {
    453 		/*
    454 		 * Erase counter overflow. Upgrade UBI and use 64-bit
    455 		 * erase counters internally.
    456 		 */
    457 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
    458 			e->pnum, ec);
    459 		err = -EINVAL;
    460 		goto out_free;
    461 	}
    462 
    463 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
    464 
    465 	ec_hdr->ec = cpu_to_be64(ec);
    466 
    467 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
    468 	if (err)
    469 		goto out_free;
    470 
    471 	e->ec = ec;
    472 	spin_lock(&ubi->wl_lock);
    473 	if (e->ec > ubi->max_ec)
    474 		ubi->max_ec = e->ec;
    475 	spin_unlock(&ubi->wl_lock);
    476 
    477 out_free:
    478 	kfree(ec_hdr);
    479 	return err;
    480 }
    481 
    482 /**
    483  * serve_prot_queue - check if it is time to stop protecting PEBs.
    484  * @ubi: UBI device description object
    485  *
    486  * This function is called after each erase operation and removes PEBs from the
    487  * tail of the protection queue. These PEBs have been protected for long enough
    488  * and should be moved to the used tree.
    489  */
    490 static void serve_prot_queue(struct ubi_device *ubi)
    491 {
    492 	struct ubi_wl_entry *e, *tmp;
    493 	int count;
    494 
    495 	/*
    496 	 * There may be several protected physical eraseblock to remove,
    497 	 * process them all.
    498 	 */
    499 repeat:
    500 	count = 0;
    501 	spin_lock(&ubi->wl_lock);
    502 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
    503 		dbg_wl("PEB %d EC %d protection over, move to used tree",
    504 			e->pnum, e->ec);
    505 
    506 		list_del(&e->u.list);
    507 		wl_tree_add(e, &ubi->used);
    508 		if (count++ > 32) {
    509 			/*
    510 			 * Let's be nice and avoid holding the spinlock for
    511 			 * too long.
    512 			 */
    513 			spin_unlock(&ubi->wl_lock);
    514 			cond_resched();
    515 			goto repeat;
    516 		}
    517 	}
    518 
    519 	ubi->pq_head += 1;
    520 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
    521 		ubi->pq_head = 0;
    522 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
    523 	spin_unlock(&ubi->wl_lock);
    524 }
    525 
    526 #ifdef __UBOOT__
    527 void ubi_do_worker(struct ubi_device *ubi)
    528 {
    529 	int err;
    530 
    531 	if (list_empty(&ubi->works) || ubi->ro_mode ||
    532 	    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi))
    533 		return;
    534 
    535 	spin_lock(&ubi->wl_lock);
    536 	while (!list_empty(&ubi->works)) {
    537 		/*
    538 		 * call do_work, which executes exactly one work form the queue,
    539 		 * including removeing it from the work queue.
    540 		 */
    541 		spin_unlock(&ubi->wl_lock);
    542 		err = do_work(ubi);
    543 		spin_lock(&ubi->wl_lock);
    544 		if (err) {
    545 			ubi_err(ubi, "%s: work failed with error code %d",
    546 				ubi->bgt_name, err);
    547 		}
    548 	}
    549 	spin_unlock(&ubi->wl_lock);
    550 }
    551 #endif
    552 
    553 /**
    554  * __schedule_ubi_work - schedule a work.
    555  * @ubi: UBI device description object
    556  * @wrk: the work to schedule
    557  *
    558  * This function adds a work defined by @wrk to the tail of the pending works
    559  * list. Can only be used if ubi->work_sem is already held in read mode!
    560  */
    561 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
    562 {
    563 	spin_lock(&ubi->wl_lock);
    564 	list_add_tail(&wrk->list, &ubi->works);
    565 	ubi_assert(ubi->works_count >= 0);
    566 	ubi->works_count += 1;
    567 #ifndef __UBOOT__
    568 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
    569 		wake_up_process(ubi->bgt_thread);
    570 #endif
    571 	spin_unlock(&ubi->wl_lock);
    572 }
    573 
    574 /**
    575  * schedule_ubi_work - schedule a work.
    576  * @ubi: UBI device description object
    577  * @wrk: the work to schedule
    578  *
    579  * This function adds a work defined by @wrk to the tail of the pending works
    580  * list.
    581  */
    582 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
    583 {
    584 	down_read(&ubi->work_sem);
    585 	__schedule_ubi_work(ubi, wrk);
    586 	up_read(&ubi->work_sem);
    587 }
    588 
    589 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
    590 			int shutdown);
    591 
    592 /**
    593  * schedule_erase - schedule an erase work.
    594  * @ubi: UBI device description object
    595  * @e: the WL entry of the physical eraseblock to erase
    596  * @vol_id: the volume ID that last used this PEB
    597  * @lnum: the last used logical eraseblock number for the PEB
    598  * @torture: if the physical eraseblock has to be tortured
    599  *
    600  * This function returns zero in case of success and a %-ENOMEM in case of
    601  * failure.
    602  */
    603 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
    604 			  int vol_id, int lnum, int torture)
    605 {
    606 	struct ubi_work *wl_wrk;
    607 
    608 	ubi_assert(e);
    609 
    610 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
    611 	       e->pnum, e->ec, torture);
    612 
    613 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
    614 	if (!wl_wrk)
    615 		return -ENOMEM;
    616 
    617 	wl_wrk->func = &erase_worker;
    618 	wl_wrk->e = e;
    619 	wl_wrk->vol_id = vol_id;
    620 	wl_wrk->lnum = lnum;
    621 	wl_wrk->torture = torture;
    622 
    623 	schedule_ubi_work(ubi, wl_wrk);
    624 
    625 #ifdef __UBOOT__
    626 	ubi_do_worker(ubi);
    627 #endif
    628 	return 0;
    629 }
    630 
    631 /**
    632  * do_sync_erase - run the erase worker synchronously.
    633  * @ubi: UBI device description object
    634  * @e: the WL entry of the physical eraseblock to erase
    635  * @vol_id: the volume ID that last used this PEB
    636  * @lnum: the last used logical eraseblock number for the PEB
    637  * @torture: if the physical eraseblock has to be tortured
    638  *
    639  */
    640 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
    641 			 int vol_id, int lnum, int torture)
    642 {
    643 	struct ubi_work *wl_wrk;
    644 
    645 	dbg_wl("sync erase of PEB %i", e->pnum);
    646 
    647 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
    648 	if (!wl_wrk)
    649 		return -ENOMEM;
    650 
    651 	wl_wrk->e = e;
    652 	wl_wrk->vol_id = vol_id;
    653 	wl_wrk->lnum = lnum;
    654 	wl_wrk->torture = torture;
    655 
    656 	return erase_worker(ubi, wl_wrk, 0);
    657 }
    658 
    659 /**
    660  * wear_leveling_worker - wear-leveling worker function.
    661  * @ubi: UBI device description object
    662  * @wrk: the work object
    663  * @shutdown: non-zero if the worker has to free memory and exit
    664  * because the WL-subsystem is shutting down
    665  *
    666  * This function copies a more worn out physical eraseblock to a less worn out
    667  * one. Returns zero in case of success and a negative error code in case of
    668  * failure.
    669  */
    670 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
    671 				int shutdown)
    672 {
    673 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
    674 	int vol_id = -1, lnum = -1;
    675 #ifdef CONFIG_MTD_UBI_FASTMAP
    676 	int anchor = wrk->anchor;
    677 #endif
    678 	struct ubi_wl_entry *e1, *e2;
    679 	struct ubi_vid_hdr *vid_hdr;
    680 
    681 	kfree(wrk);
    682 	if (shutdown)
    683 		return 0;
    684 
    685 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
    686 	if (!vid_hdr)
    687 		return -ENOMEM;
    688 
    689 	mutex_lock(&ubi->move_mutex);
    690 	spin_lock(&ubi->wl_lock);
    691 	ubi_assert(!ubi->move_from && !ubi->move_to);
    692 	ubi_assert(!ubi->move_to_put);
    693 
    694 	if (!ubi->free.rb_node ||
    695 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
    696 		/*
    697 		 * No free physical eraseblocks? Well, they must be waiting in
    698 		 * the queue to be erased. Cancel movement - it will be
    699 		 * triggered again when a free physical eraseblock appears.
    700 		 *
    701 		 * No used physical eraseblocks? They must be temporarily
    702 		 * protected from being moved. They will be moved to the
    703 		 * @ubi->used tree later and the wear-leveling will be
    704 		 * triggered again.
    705 		 */
    706 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
    707 		       !ubi->free.rb_node, !ubi->used.rb_node);
    708 		goto out_cancel;
    709 	}
    710 
    711 #ifdef CONFIG_MTD_UBI_FASTMAP
    712 	/* Check whether we need to produce an anchor PEB */
    713 	if (!anchor)
    714 		anchor = !anchor_pebs_avalible(&ubi->free);
    715 
    716 	if (anchor) {
    717 		e1 = find_anchor_wl_entry(&ubi->used);
    718 		if (!e1)
    719 			goto out_cancel;
    720 		e2 = get_peb_for_wl(ubi);
    721 		if (!e2)
    722 			goto out_cancel;
    723 
    724 		self_check_in_wl_tree(ubi, e1, &ubi->used);
    725 		rb_erase(&e1->u.rb, &ubi->used);
    726 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
    727 	} else if (!ubi->scrub.rb_node) {
    728 #else
    729 	if (!ubi->scrub.rb_node) {
    730 #endif
    731 		/*
    732 		 * Now pick the least worn-out used physical eraseblock and a
    733 		 * highly worn-out free physical eraseblock. If the erase
    734 		 * counters differ much enough, start wear-leveling.
    735 		 */
    736 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
    737 		e2 = get_peb_for_wl(ubi);
    738 		if (!e2)
    739 			goto out_cancel;
    740 
    741 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
    742 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
    743 			       e1->ec, e2->ec);
    744 
    745 			/* Give the unused PEB back */
    746 			wl_tree_add(e2, &ubi->free);
    747 			ubi->free_count++;
    748 			goto out_cancel;
    749 		}
    750 		self_check_in_wl_tree(ubi, e1, &ubi->used);
    751 		rb_erase(&e1->u.rb, &ubi->used);
    752 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
    753 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
    754 	} else {
    755 		/* Perform scrubbing */
    756 		scrubbing = 1;
    757 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
    758 		e2 = get_peb_for_wl(ubi);
    759 		if (!e2)
    760 			goto out_cancel;
    761 
    762 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
    763 		rb_erase(&e1->u.rb, &ubi->scrub);
    764 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
    765 	}
    766 
    767 	ubi->move_from = e1;
    768 	ubi->move_to = e2;
    769 	spin_unlock(&ubi->wl_lock);
    770 
    771 	/*
    772 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
    773 	 * We so far do not know which logical eraseblock our physical
    774 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
    775 	 * header first.
    776 	 *
    777 	 * Note, we are protected from this PEB being unmapped and erased. The
    778 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
    779 	 * which is being moved was unmapped.
    780 	 */
    781 
    782 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
    783 	if (err && err != UBI_IO_BITFLIPS) {
    784 		if (err == UBI_IO_FF) {
    785 			/*
    786 			 * We are trying to move PEB without a VID header. UBI
    787 			 * always write VID headers shortly after the PEB was
    788 			 * given, so we have a situation when it has not yet
    789 			 * had a chance to write it, because it was preempted.
    790 			 * So add this PEB to the protection queue so far,
    791 			 * because presumably more data will be written there
    792 			 * (including the missing VID header), and then we'll
    793 			 * move it.
    794 			 */
    795 			dbg_wl("PEB %d has no VID header", e1->pnum);
    796 			protect = 1;
    797 			goto out_not_moved;
    798 		} else if (err == UBI_IO_FF_BITFLIPS) {
    799 			/*
    800 			 * The same situation as %UBI_IO_FF, but bit-flips were
    801 			 * detected. It is better to schedule this PEB for
    802 			 * scrubbing.
    803 			 */
    804 			dbg_wl("PEB %d has no VID header but has bit-flips",
    805 			       e1->pnum);
    806 			scrubbing = 1;
    807 			goto out_not_moved;
    808 		}
    809 
    810 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
    811 			err, e1->pnum);
    812 		goto out_error;
    813 	}
    814 
    815 	vol_id = be32_to_cpu(vid_hdr->vol_id);
    816 	lnum = be32_to_cpu(vid_hdr->lnum);
    817 
    818 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
    819 	if (err) {
    820 		if (err == MOVE_CANCEL_RACE) {
    821 			/*
    822 			 * The LEB has not been moved because the volume is
    823 			 * being deleted or the PEB has been put meanwhile. We
    824 			 * should prevent this PEB from being selected for
    825 			 * wear-leveling movement again, so put it to the
    826 			 * protection queue.
    827 			 */
    828 			protect = 1;
    829 			goto out_not_moved;
    830 		}
    831 		if (err == MOVE_RETRY) {
    832 			scrubbing = 1;
    833 			goto out_not_moved;
    834 		}
    835 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
    836 		    err == MOVE_TARGET_RD_ERR) {
    837 			/*
    838 			 * Target PEB had bit-flips or write error - torture it.
    839 			 */
    840 			torture = 1;
    841 			goto out_not_moved;
    842 		}
    843 
    844 		if (err == MOVE_SOURCE_RD_ERR) {
    845 			/*
    846 			 * An error happened while reading the source PEB. Do
    847 			 * not switch to R/O mode in this case, and give the
    848 			 * upper layers a possibility to recover from this,
    849 			 * e.g. by unmapping corresponding LEB. Instead, just
    850 			 * put this PEB to the @ubi->erroneous list to prevent
    851 			 * UBI from trying to move it over and over again.
    852 			 */
    853 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
    854 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
    855 					ubi->erroneous_peb_count);
    856 				goto out_error;
    857 			}
    858 			erroneous = 1;
    859 			goto out_not_moved;
    860 		}
    861 
    862 		if (err < 0)
    863 			goto out_error;
    864 
    865 		ubi_assert(0);
    866 	}
    867 
    868 	/* The PEB has been successfully moved */
    869 	if (scrubbing)
    870 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
    871 			e1->pnum, vol_id, lnum, e2->pnum);
    872 	ubi_free_vid_hdr(ubi, vid_hdr);
    873 
    874 	spin_lock(&ubi->wl_lock);
    875 	if (!ubi->move_to_put) {
    876 		wl_tree_add(e2, &ubi->used);
    877 		e2 = NULL;
    878 	}
    879 	ubi->move_from = ubi->move_to = NULL;
    880 	ubi->move_to_put = ubi->wl_scheduled = 0;
    881 	spin_unlock(&ubi->wl_lock);
    882 
    883 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
    884 	if (err) {
    885 		if (e2)
    886 			wl_entry_destroy(ubi, e2);
    887 		goto out_ro;
    888 	}
    889 
    890 	if (e2) {
    891 		/*
    892 		 * Well, the target PEB was put meanwhile, schedule it for
    893 		 * erasure.
    894 		 */
    895 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
    896 		       e2->pnum, vol_id, lnum);
    897 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
    898 		if (err)
    899 			goto out_ro;
    900 	}
    901 
    902 	dbg_wl("done");
    903 	mutex_unlock(&ubi->move_mutex);
    904 	return 0;
    905 
    906 	/*
    907 	 * For some reasons the LEB was not moved, might be an error, might be
    908 	 * something else. @e1 was not changed, so return it back. @e2 might
    909 	 * have been changed, schedule it for erasure.
    910 	 */
    911 out_not_moved:
    912 	if (vol_id != -1)
    913 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
    914 		       e1->pnum, vol_id, lnum, e2->pnum, err);
    915 	else
    916 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
    917 		       e1->pnum, e2->pnum, err);
    918 	spin_lock(&ubi->wl_lock);
    919 	if (protect)
    920 		prot_queue_add(ubi, e1);
    921 	else if (erroneous) {
    922 		wl_tree_add(e1, &ubi->erroneous);
    923 		ubi->erroneous_peb_count += 1;
    924 	} else if (scrubbing)
    925 		wl_tree_add(e1, &ubi->scrub);
    926 	else
    927 		wl_tree_add(e1, &ubi->used);
    928 	ubi_assert(!ubi->move_to_put);
    929 	ubi->move_from = ubi->move_to = NULL;
    930 	ubi->wl_scheduled = 0;
    931 	spin_unlock(&ubi->wl_lock);
    932 
    933 	ubi_free_vid_hdr(ubi, vid_hdr);
    934 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
    935 	if (err)
    936 		goto out_ro;
    937 
    938 	mutex_unlock(&ubi->move_mutex);
    939 	return 0;
    940 
    941 out_error:
    942 	if (vol_id != -1)
    943 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
    944 			err, e1->pnum, e2->pnum);
    945 	else
    946 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
    947 			err, e1->pnum, vol_id, lnum, e2->pnum);
    948 	spin_lock(&ubi->wl_lock);
    949 	ubi->move_from = ubi->move_to = NULL;
    950 	ubi->move_to_put = ubi->wl_scheduled = 0;
    951 	spin_unlock(&ubi->wl_lock);
    952 
    953 	ubi_free_vid_hdr(ubi, vid_hdr);
    954 	wl_entry_destroy(ubi, e1);
    955 	wl_entry_destroy(ubi, e2);
    956 
    957 out_ro:
    958 	ubi_ro_mode(ubi);
    959 	mutex_unlock(&ubi->move_mutex);
    960 	ubi_assert(err != 0);
    961 	return err < 0 ? err : -EIO;
    962 
    963 out_cancel:
    964 	ubi->wl_scheduled = 0;
    965 	spin_unlock(&ubi->wl_lock);
    966 	mutex_unlock(&ubi->move_mutex);
    967 	ubi_free_vid_hdr(ubi, vid_hdr);
    968 	return 0;
    969 }
    970 
    971 /**
    972  * ensure_wear_leveling - schedule wear-leveling if it is needed.
    973  * @ubi: UBI device description object
    974  * @nested: set to non-zero if this function is called from UBI worker
    975  *
    976  * This function checks if it is time to start wear-leveling and schedules it
    977  * if yes. This function returns zero in case of success and a negative error
    978  * code in case of failure.
    979  */
    980 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
    981 {
    982 	int err = 0;
    983 	struct ubi_wl_entry *e1;
    984 	struct ubi_wl_entry *e2;
    985 	struct ubi_work *wrk;
    986 
    987 	spin_lock(&ubi->wl_lock);
    988 	if (ubi->wl_scheduled)
    989 		/* Wear-leveling is already in the work queue */
    990 		goto out_unlock;
    991 
    992 	/*
    993 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
    994 	 * the WL worker has to be scheduled anyway.
    995 	 */
    996 	if (!ubi->scrub.rb_node) {
    997 		if (!ubi->used.rb_node || !ubi->free.rb_node)
    998 			/* No physical eraseblocks - no deal */
    999 			goto out_unlock;
   1000 
   1001 		/*
   1002 		 * We schedule wear-leveling only if the difference between the
   1003 		 * lowest erase counter of used physical eraseblocks and a high
   1004 		 * erase counter of free physical eraseblocks is greater than
   1005 		 * %UBI_WL_THRESHOLD.
   1006 		 */
   1007 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
   1008 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
   1009 
   1010 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
   1011 			goto out_unlock;
   1012 		dbg_wl("schedule wear-leveling");
   1013 	} else
   1014 		dbg_wl("schedule scrubbing");
   1015 
   1016 	ubi->wl_scheduled = 1;
   1017 	spin_unlock(&ubi->wl_lock);
   1018 
   1019 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
   1020 	if (!wrk) {
   1021 		err = -ENOMEM;
   1022 		goto out_cancel;
   1023 	}
   1024 
   1025 	wrk->anchor = 0;
   1026 	wrk->func = &wear_leveling_worker;
   1027 	if (nested)
   1028 		__schedule_ubi_work(ubi, wrk);
   1029 #ifndef __UBOOT__
   1030 	else
   1031 		schedule_ubi_work(ubi, wrk);
   1032 #else
   1033 	else {
   1034 		schedule_ubi_work(ubi, wrk);
   1035 		ubi_do_worker(ubi);
   1036 	}
   1037 #endif
   1038 	return err;
   1039 
   1040 out_cancel:
   1041 	spin_lock(&ubi->wl_lock);
   1042 	ubi->wl_scheduled = 0;
   1043 out_unlock:
   1044 	spin_unlock(&ubi->wl_lock);
   1045 	return err;
   1046 }
   1047 
   1048 /**
   1049  * erase_worker - physical eraseblock erase worker function.
   1050  * @ubi: UBI device description object
   1051  * @wl_wrk: the work object
   1052  * @shutdown: non-zero if the worker has to free memory and exit
   1053  * because the WL sub-system is shutting down
   1054  *
   1055  * This function erases a physical eraseblock and perform torture testing if
   1056  * needed. It also takes care about marking the physical eraseblock bad if
   1057  * needed. Returns zero in case of success and a negative error code in case of
   1058  * failure.
   1059  */
   1060 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
   1061 			int shutdown)
   1062 {
   1063 	struct ubi_wl_entry *e = wl_wrk->e;
   1064 	int pnum = e->pnum;
   1065 	int vol_id = wl_wrk->vol_id;
   1066 	int lnum = wl_wrk->lnum;
   1067 	int err, available_consumed = 0;
   1068 
   1069 	if (shutdown) {
   1070 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
   1071 		kfree(wl_wrk);
   1072 		wl_entry_destroy(ubi, e);
   1073 		return 0;
   1074 	}
   1075 
   1076 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
   1077 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
   1078 
   1079 	err = sync_erase(ubi, e, wl_wrk->torture);
   1080 	if (!err) {
   1081 		/* Fine, we've erased it successfully */
   1082 		kfree(wl_wrk);
   1083 
   1084 		spin_lock(&ubi->wl_lock);
   1085 		wl_tree_add(e, &ubi->free);
   1086 		ubi->free_count++;
   1087 		spin_unlock(&ubi->wl_lock);
   1088 
   1089 		/*
   1090 		 * One more erase operation has happened, take care about
   1091 		 * protected physical eraseblocks.
   1092 		 */
   1093 		serve_prot_queue(ubi);
   1094 
   1095 		/* And take care about wear-leveling */
   1096 		err = ensure_wear_leveling(ubi, 1);
   1097 		return err;
   1098 	}
   1099 
   1100 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
   1101 	kfree(wl_wrk);
   1102 
   1103 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
   1104 	    err == -EBUSY) {
   1105 		int err1;
   1106 
   1107 		/* Re-schedule the LEB for erasure */
   1108 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
   1109 		if (err1) {
   1110 			err = err1;
   1111 			goto out_ro;
   1112 		}
   1113 		return err;
   1114 	}
   1115 
   1116 	wl_entry_destroy(ubi, e);
   1117 	if (err != -EIO)
   1118 		/*
   1119 		 * If this is not %-EIO, we have no idea what to do. Scheduling
   1120 		 * this physical eraseblock for erasure again would cause
   1121 		 * errors again and again. Well, lets switch to R/O mode.
   1122 		 */
   1123 		goto out_ro;
   1124 
   1125 	/* It is %-EIO, the PEB went bad */
   1126 
   1127 	if (!ubi->bad_allowed) {
   1128 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
   1129 		goto out_ro;
   1130 	}
   1131 
   1132 	spin_lock(&ubi->volumes_lock);
   1133 	if (ubi->beb_rsvd_pebs == 0) {
   1134 		if (ubi->avail_pebs == 0) {
   1135 			spin_unlock(&ubi->volumes_lock);
   1136 			ubi_err(ubi, "no reserved/available physical eraseblocks");
   1137 			goto out_ro;
   1138 		}
   1139 		ubi->avail_pebs -= 1;
   1140 		available_consumed = 1;
   1141 	}
   1142 	spin_unlock(&ubi->volumes_lock);
   1143 
   1144 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
   1145 	err = ubi_io_mark_bad(ubi, pnum);
   1146 	if (err)
   1147 		goto out_ro;
   1148 
   1149 	spin_lock(&ubi->volumes_lock);
   1150 	if (ubi->beb_rsvd_pebs > 0) {
   1151 		if (available_consumed) {
   1152 			/*
   1153 			 * The amount of reserved PEBs increased since we last
   1154 			 * checked.
   1155 			 */
   1156 			ubi->avail_pebs += 1;
   1157 			available_consumed = 0;
   1158 		}
   1159 		ubi->beb_rsvd_pebs -= 1;
   1160 	}
   1161 	ubi->bad_peb_count += 1;
   1162 	ubi->good_peb_count -= 1;
   1163 	ubi_calculate_reserved(ubi);
   1164 	if (available_consumed)
   1165 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
   1166 	else if (ubi->beb_rsvd_pebs)
   1167 		ubi_msg(ubi, "%d PEBs left in the reserve",
   1168 			ubi->beb_rsvd_pebs);
   1169 	else
   1170 		ubi_warn(ubi, "last PEB from the reserve was used");
   1171 	spin_unlock(&ubi->volumes_lock);
   1172 
   1173 	return err;
   1174 
   1175 out_ro:
   1176 	if (available_consumed) {
   1177 		spin_lock(&ubi->volumes_lock);
   1178 		ubi->avail_pebs += 1;
   1179 		spin_unlock(&ubi->volumes_lock);
   1180 	}
   1181 	ubi_ro_mode(ubi);
   1182 	return err;
   1183 }
   1184 
   1185 /**
   1186  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
   1187  * @ubi: UBI device description object
   1188  * @vol_id: the volume ID that last used this PEB
   1189  * @lnum: the last used logical eraseblock number for the PEB
   1190  * @pnum: physical eraseblock to return
   1191  * @torture: if this physical eraseblock has to be tortured
   1192  *
   1193  * This function is called to return physical eraseblock @pnum to the pool of
   1194  * free physical eraseblocks. The @torture flag has to be set if an I/O error
   1195  * occurred to this @pnum and it has to be tested. This function returns zero
   1196  * in case of success, and a negative error code in case of failure.
   1197  */
   1198 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
   1199 		   int pnum, int torture)
   1200 {
   1201 	int err;
   1202 	struct ubi_wl_entry *e;
   1203 
   1204 	dbg_wl("PEB %d", pnum);
   1205 	ubi_assert(pnum >= 0);
   1206 	ubi_assert(pnum < ubi->peb_count);
   1207 
   1208 	down_read(&ubi->fm_protect);
   1209 
   1210 retry:
   1211 	spin_lock(&ubi->wl_lock);
   1212 	e = ubi->lookuptbl[pnum];
   1213 	if (e == ubi->move_from) {
   1214 		/*
   1215 		 * User is putting the physical eraseblock which was selected to
   1216 		 * be moved. It will be scheduled for erasure in the
   1217 		 * wear-leveling worker.
   1218 		 */
   1219 		dbg_wl("PEB %d is being moved, wait", pnum);
   1220 		spin_unlock(&ubi->wl_lock);
   1221 
   1222 		/* Wait for the WL worker by taking the @ubi->move_mutex */
   1223 		mutex_lock(&ubi->move_mutex);
   1224 		mutex_unlock(&ubi->move_mutex);
   1225 		goto retry;
   1226 	} else if (e == ubi->move_to) {
   1227 		/*
   1228 		 * User is putting the physical eraseblock which was selected
   1229 		 * as the target the data is moved to. It may happen if the EBA
   1230 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
   1231 		 * but the WL sub-system has not put the PEB to the "used" tree
   1232 		 * yet, but it is about to do this. So we just set a flag which
   1233 		 * will tell the WL worker that the PEB is not needed anymore
   1234 		 * and should be scheduled for erasure.
   1235 		 */
   1236 		dbg_wl("PEB %d is the target of data moving", pnum);
   1237 		ubi_assert(!ubi->move_to_put);
   1238 		ubi->move_to_put = 1;
   1239 		spin_unlock(&ubi->wl_lock);
   1240 		up_read(&ubi->fm_protect);
   1241 		return 0;
   1242 	} else {
   1243 		if (in_wl_tree(e, &ubi->used)) {
   1244 			self_check_in_wl_tree(ubi, e, &ubi->used);
   1245 			rb_erase(&e->u.rb, &ubi->used);
   1246 		} else if (in_wl_tree(e, &ubi->scrub)) {
   1247 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
   1248 			rb_erase(&e->u.rb, &ubi->scrub);
   1249 		} else if (in_wl_tree(e, &ubi->erroneous)) {
   1250 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
   1251 			rb_erase(&e->u.rb, &ubi->erroneous);
   1252 			ubi->erroneous_peb_count -= 1;
   1253 			ubi_assert(ubi->erroneous_peb_count >= 0);
   1254 			/* Erroneous PEBs should be tortured */
   1255 			torture = 1;
   1256 		} else {
   1257 			err = prot_queue_del(ubi, e->pnum);
   1258 			if (err) {
   1259 				ubi_err(ubi, "PEB %d not found", pnum);
   1260 				ubi_ro_mode(ubi);
   1261 				spin_unlock(&ubi->wl_lock);
   1262 				up_read(&ubi->fm_protect);
   1263 				return err;
   1264 			}
   1265 		}
   1266 	}
   1267 	spin_unlock(&ubi->wl_lock);
   1268 
   1269 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
   1270 	if (err) {
   1271 		spin_lock(&ubi->wl_lock);
   1272 		wl_tree_add(e, &ubi->used);
   1273 		spin_unlock(&ubi->wl_lock);
   1274 	}
   1275 
   1276 	up_read(&ubi->fm_protect);
   1277 	return err;
   1278 }
   1279 
   1280 /**
   1281  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
   1282  * @ubi: UBI device description object
   1283  * @pnum: the physical eraseblock to schedule
   1284  *
   1285  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
   1286  * needs scrubbing. This function schedules a physical eraseblock for
   1287  * scrubbing which is done in background. This function returns zero in case of
   1288  * success and a negative error code in case of failure.
   1289  */
   1290 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
   1291 {
   1292 	struct ubi_wl_entry *e;
   1293 
   1294 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
   1295 
   1296 retry:
   1297 	spin_lock(&ubi->wl_lock);
   1298 	e = ubi->lookuptbl[pnum];
   1299 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
   1300 				   in_wl_tree(e, &ubi->erroneous)) {
   1301 		spin_unlock(&ubi->wl_lock);
   1302 		return 0;
   1303 	}
   1304 
   1305 	if (e == ubi->move_to) {
   1306 		/*
   1307 		 * This physical eraseblock was used to move data to. The data
   1308 		 * was moved but the PEB was not yet inserted to the proper
   1309 		 * tree. We should just wait a little and let the WL worker
   1310 		 * proceed.
   1311 		 */
   1312 		spin_unlock(&ubi->wl_lock);
   1313 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
   1314 		yield();
   1315 		goto retry;
   1316 	}
   1317 
   1318 	if (in_wl_tree(e, &ubi->used)) {
   1319 		self_check_in_wl_tree(ubi, e, &ubi->used);
   1320 		rb_erase(&e->u.rb, &ubi->used);
   1321 	} else {
   1322 		int err;
   1323 
   1324 		err = prot_queue_del(ubi, e->pnum);
   1325 		if (err) {
   1326 			ubi_err(ubi, "PEB %d not found", pnum);
   1327 			ubi_ro_mode(ubi);
   1328 			spin_unlock(&ubi->wl_lock);
   1329 			return err;
   1330 		}
   1331 	}
   1332 
   1333 	wl_tree_add(e, &ubi->scrub);
   1334 	spin_unlock(&ubi->wl_lock);
   1335 
   1336 	/*
   1337 	 * Technically scrubbing is the same as wear-leveling, so it is done
   1338 	 * by the WL worker.
   1339 	 */
   1340 	return ensure_wear_leveling(ubi, 0);
   1341 }
   1342 
   1343 /**
   1344  * ubi_wl_flush - flush all pending works.
   1345  * @ubi: UBI device description object
   1346  * @vol_id: the volume id to flush for
   1347  * @lnum: the logical eraseblock number to flush for
   1348  *
   1349  * This function executes all pending works for a particular volume id /
   1350  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
   1351  * acts as a wildcard for all of the corresponding volume numbers or logical
   1352  * eraseblock numbers. It returns zero in case of success and a negative error
   1353  * code in case of failure.
   1354  */
   1355 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
   1356 {
   1357 	int err = 0;
   1358 	int found = 1;
   1359 
   1360 	/*
   1361 	 * Erase while the pending works queue is not empty, but not more than
   1362 	 * the number of currently pending works.
   1363 	 */
   1364 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
   1365 	       vol_id, lnum, ubi->works_count);
   1366 
   1367 	while (found) {
   1368 		struct ubi_work *wrk, *tmp;
   1369 		found = 0;
   1370 
   1371 		down_read(&ubi->work_sem);
   1372 		spin_lock(&ubi->wl_lock);
   1373 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
   1374 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
   1375 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
   1376 				list_del(&wrk->list);
   1377 				ubi->works_count -= 1;
   1378 				ubi_assert(ubi->works_count >= 0);
   1379 				spin_unlock(&ubi->wl_lock);
   1380 
   1381 				err = wrk->func(ubi, wrk, 0);
   1382 				if (err) {
   1383 					up_read(&ubi->work_sem);
   1384 					return err;
   1385 				}
   1386 
   1387 				spin_lock(&ubi->wl_lock);
   1388 				found = 1;
   1389 				break;
   1390 			}
   1391 		}
   1392 		spin_unlock(&ubi->wl_lock);
   1393 		up_read(&ubi->work_sem);
   1394 	}
   1395 
   1396 	/*
   1397 	 * Make sure all the works which have been done in parallel are
   1398 	 * finished.
   1399 	 */
   1400 	down_write(&ubi->work_sem);
   1401 	up_write(&ubi->work_sem);
   1402 
   1403 	return err;
   1404 }
   1405 
   1406 /**
   1407  * tree_destroy - destroy an RB-tree.
   1408  * @ubi: UBI device description object
   1409  * @root: the root of the tree to destroy
   1410  */
   1411 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
   1412 {
   1413 	struct rb_node *rb;
   1414 	struct ubi_wl_entry *e;
   1415 
   1416 	rb = root->rb_node;
   1417 	while (rb) {
   1418 		if (rb->rb_left)
   1419 			rb = rb->rb_left;
   1420 		else if (rb->rb_right)
   1421 			rb = rb->rb_right;
   1422 		else {
   1423 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
   1424 
   1425 			rb = rb_parent(rb);
   1426 			if (rb) {
   1427 				if (rb->rb_left == &e->u.rb)
   1428 					rb->rb_left = NULL;
   1429 				else
   1430 					rb->rb_right = NULL;
   1431 			}
   1432 
   1433 			wl_entry_destroy(ubi, e);
   1434 		}
   1435 	}
   1436 }
   1437 
   1438 /**
   1439  * ubi_thread - UBI background thread.
   1440  * @u: the UBI device description object pointer
   1441  */
   1442 int ubi_thread(void *u)
   1443 {
   1444 	int failures = 0;
   1445 	struct ubi_device *ubi = u;
   1446 
   1447 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
   1448 		ubi->bgt_name, task_pid_nr(current));
   1449 
   1450 	set_freezable();
   1451 	for (;;) {
   1452 		int err;
   1453 
   1454 		if (kthread_should_stop())
   1455 			break;
   1456 
   1457 		if (try_to_freeze())
   1458 			continue;
   1459 
   1460 		spin_lock(&ubi->wl_lock);
   1461 		if (list_empty(&ubi->works) || ubi->ro_mode ||
   1462 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
   1463 			set_current_state(TASK_INTERRUPTIBLE);
   1464 			spin_unlock(&ubi->wl_lock);
   1465 			schedule();
   1466 			continue;
   1467 		}
   1468 		spin_unlock(&ubi->wl_lock);
   1469 
   1470 		err = do_work(ubi);
   1471 		if (err) {
   1472 			ubi_err(ubi, "%s: work failed with error code %d",
   1473 				ubi->bgt_name, err);
   1474 			if (failures++ > WL_MAX_FAILURES) {
   1475 				/*
   1476 				 * Too many failures, disable the thread and
   1477 				 * switch to read-only mode.
   1478 				 */
   1479 				ubi_msg(ubi, "%s: %d consecutive failures",
   1480 					ubi->bgt_name, WL_MAX_FAILURES);
   1481 				ubi_ro_mode(ubi);
   1482 				ubi->thread_enabled = 0;
   1483 				continue;
   1484 			}
   1485 		} else
   1486 			failures = 0;
   1487 
   1488 		cond_resched();
   1489 	}
   1490 
   1491 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
   1492 	return 0;
   1493 }
   1494 
   1495 /**
   1496  * shutdown_work - shutdown all pending works.
   1497  * @ubi: UBI device description object
   1498  */
   1499 static void shutdown_work(struct ubi_device *ubi)
   1500 {
   1501 #ifdef CONFIG_MTD_UBI_FASTMAP
   1502 #ifndef __UBOOT__
   1503 	flush_work(&ubi->fm_work);
   1504 #else
   1505 	/* in U-Boot, we have all work done */
   1506 #endif
   1507 #endif
   1508 	while (!list_empty(&ubi->works)) {
   1509 		struct ubi_work *wrk;
   1510 
   1511 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
   1512 		list_del(&wrk->list);
   1513 		wrk->func(ubi, wrk, 1);
   1514 		ubi->works_count -= 1;
   1515 		ubi_assert(ubi->works_count >= 0);
   1516 	}
   1517 }
   1518 
   1519 /**
   1520  * ubi_wl_init - initialize the WL sub-system using attaching information.
   1521  * @ubi: UBI device description object
   1522  * @ai: attaching information
   1523  *
   1524  * This function returns zero in case of success, and a negative error code in
   1525  * case of failure.
   1526  */
   1527 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
   1528 {
   1529 	int err, i, reserved_pebs, found_pebs = 0;
   1530 	struct rb_node *rb1, *rb2;
   1531 	struct ubi_ainf_volume *av;
   1532 	struct ubi_ainf_peb *aeb, *tmp;
   1533 	struct ubi_wl_entry *e;
   1534 
   1535 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
   1536 	spin_lock_init(&ubi->wl_lock);
   1537 	mutex_init(&ubi->move_mutex);
   1538 	init_rwsem(&ubi->work_sem);
   1539 	ubi->max_ec = ai->max_ec;
   1540 	INIT_LIST_HEAD(&ubi->works);
   1541 
   1542 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
   1543 
   1544 	err = -ENOMEM;
   1545 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
   1546 	if (!ubi->lookuptbl)
   1547 		return err;
   1548 
   1549 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
   1550 		INIT_LIST_HEAD(&ubi->pq[i]);
   1551 	ubi->pq_head = 0;
   1552 
   1553 	ubi->free_count = 0;
   1554 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
   1555 		cond_resched();
   1556 
   1557 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
   1558 		if (!e)
   1559 			goto out_free;
   1560 
   1561 		e->pnum = aeb->pnum;
   1562 		e->ec = aeb->ec;
   1563 		ubi->lookuptbl[e->pnum] = e;
   1564 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
   1565 			wl_entry_destroy(ubi, e);
   1566 			goto out_free;
   1567 		}
   1568 
   1569 		found_pebs++;
   1570 	}
   1571 
   1572 	list_for_each_entry(aeb, &ai->free, u.list) {
   1573 		cond_resched();
   1574 
   1575 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
   1576 		if (!e)
   1577 			goto out_free;
   1578 
   1579 		e->pnum = aeb->pnum;
   1580 		e->ec = aeb->ec;
   1581 		ubi_assert(e->ec >= 0);
   1582 
   1583 		wl_tree_add(e, &ubi->free);
   1584 		ubi->free_count++;
   1585 
   1586 		ubi->lookuptbl[e->pnum] = e;
   1587 
   1588 		found_pebs++;
   1589 	}
   1590 
   1591 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
   1592 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
   1593 			cond_resched();
   1594 
   1595 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
   1596 			if (!e)
   1597 				goto out_free;
   1598 
   1599 			e->pnum = aeb->pnum;
   1600 			e->ec = aeb->ec;
   1601 			ubi->lookuptbl[e->pnum] = e;
   1602 
   1603 			if (!aeb->scrub) {
   1604 				dbg_wl("add PEB %d EC %d to the used tree",
   1605 				       e->pnum, e->ec);
   1606 				wl_tree_add(e, &ubi->used);
   1607 			} else {
   1608 				dbg_wl("add PEB %d EC %d to the scrub tree",
   1609 				       e->pnum, e->ec);
   1610 				wl_tree_add(e, &ubi->scrub);
   1611 			}
   1612 
   1613 			found_pebs++;
   1614 		}
   1615 	}
   1616 
   1617 	dbg_wl("found %i PEBs", found_pebs);
   1618 
   1619 	if (ubi->fm) {
   1620 		ubi_assert(ubi->good_peb_count ==
   1621 			   found_pebs + ubi->fm->used_blocks);
   1622 
   1623 		for (i = 0; i < ubi->fm->used_blocks; i++) {
   1624 			e = ubi->fm->e[i];
   1625 			ubi->lookuptbl[e->pnum] = e;
   1626 		}
   1627 	}
   1628 	else
   1629 		ubi_assert(ubi->good_peb_count == found_pebs);
   1630 
   1631 	reserved_pebs = WL_RESERVED_PEBS;
   1632 	ubi_fastmap_init(ubi, &reserved_pebs);
   1633 
   1634 	if (ubi->avail_pebs < reserved_pebs) {
   1635 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
   1636 			ubi->avail_pebs, reserved_pebs);
   1637 		if (ubi->corr_peb_count)
   1638 			ubi_err(ubi, "%d PEBs are corrupted and not used",
   1639 				ubi->corr_peb_count);
   1640 		goto out_free;
   1641 	}
   1642 	ubi->avail_pebs -= reserved_pebs;
   1643 	ubi->rsvd_pebs += reserved_pebs;
   1644 
   1645 	/* Schedule wear-leveling if needed */
   1646 	err = ensure_wear_leveling(ubi, 0);
   1647 	if (err)
   1648 		goto out_free;
   1649 
   1650 	return 0;
   1651 
   1652 out_free:
   1653 	shutdown_work(ubi);
   1654 	tree_destroy(ubi, &ubi->used);
   1655 	tree_destroy(ubi, &ubi->free);
   1656 	tree_destroy(ubi, &ubi->scrub);
   1657 	kfree(ubi->lookuptbl);
   1658 	return err;
   1659 }
   1660 
   1661 /**
   1662  * protection_queue_destroy - destroy the protection queue.
   1663  * @ubi: UBI device description object
   1664  */
   1665 static void protection_queue_destroy(struct ubi_device *ubi)
   1666 {
   1667 	int i;
   1668 	struct ubi_wl_entry *e, *tmp;
   1669 
   1670 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
   1671 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
   1672 			list_del(&e->u.list);
   1673 			wl_entry_destroy(ubi, e);
   1674 		}
   1675 	}
   1676 }
   1677 
   1678 /**
   1679  * ubi_wl_close - close the wear-leveling sub-system.
   1680  * @ubi: UBI device description object
   1681  */
   1682 void ubi_wl_close(struct ubi_device *ubi)
   1683 {
   1684 	dbg_wl("close the WL sub-system");
   1685 	ubi_fastmap_close(ubi);
   1686 	shutdown_work(ubi);
   1687 	protection_queue_destroy(ubi);
   1688 	tree_destroy(ubi, &ubi->used);
   1689 	tree_destroy(ubi, &ubi->erroneous);
   1690 	tree_destroy(ubi, &ubi->free);
   1691 	tree_destroy(ubi, &ubi->scrub);
   1692 	kfree(ubi->lookuptbl);
   1693 }
   1694 
   1695 /**
   1696  * self_check_ec - make sure that the erase counter of a PEB is correct.
   1697  * @ubi: UBI device description object
   1698  * @pnum: the physical eraseblock number to check
   1699  * @ec: the erase counter to check
   1700  *
   1701  * This function returns zero if the erase counter of physical eraseblock @pnum
   1702  * is equivalent to @ec, and a negative error code if not or if an error
   1703  * occurred.
   1704  */
   1705 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
   1706 {
   1707 	int err;
   1708 	long long read_ec;
   1709 	struct ubi_ec_hdr *ec_hdr;
   1710 
   1711 	if (!ubi_dbg_chk_gen(ubi))
   1712 		return 0;
   1713 
   1714 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
   1715 	if (!ec_hdr)
   1716 		return -ENOMEM;
   1717 
   1718 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
   1719 	if (err && err != UBI_IO_BITFLIPS) {
   1720 		/* The header does not have to exist */
   1721 		err = 0;
   1722 		goto out_free;
   1723 	}
   1724 
   1725 	read_ec = be64_to_cpu(ec_hdr->ec);
   1726 	if (ec != read_ec && read_ec - ec > 1) {
   1727 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
   1728 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
   1729 		dump_stack();
   1730 		err = 1;
   1731 	} else
   1732 		err = 0;
   1733 
   1734 out_free:
   1735 	kfree(ec_hdr);
   1736 	return err;
   1737 }
   1738 
   1739 /**
   1740  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
   1741  * @ubi: UBI device description object
   1742  * @e: the wear-leveling entry to check
   1743  * @root: the root of the tree
   1744  *
   1745  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
   1746  * is not.
   1747  */
   1748 static int self_check_in_wl_tree(const struct ubi_device *ubi,
   1749 				 struct ubi_wl_entry *e, struct rb_root *root)
   1750 {
   1751 	if (!ubi_dbg_chk_gen(ubi))
   1752 		return 0;
   1753 
   1754 	if (in_wl_tree(e, root))
   1755 		return 0;
   1756 
   1757 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
   1758 		e->pnum, e->ec, root);
   1759 	dump_stack();
   1760 	return -EINVAL;
   1761 }
   1762 
   1763 /**
   1764  * self_check_in_pq - check if wear-leveling entry is in the protection
   1765  *                        queue.
   1766  * @ubi: UBI device description object
   1767  * @e: the wear-leveling entry to check
   1768  *
   1769  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
   1770  */
   1771 static int self_check_in_pq(const struct ubi_device *ubi,
   1772 			    struct ubi_wl_entry *e)
   1773 {
   1774 	struct ubi_wl_entry *p;
   1775 	int i;
   1776 
   1777 	if (!ubi_dbg_chk_gen(ubi))
   1778 		return 0;
   1779 
   1780 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
   1781 		list_for_each_entry(p, &ubi->pq[i], u.list)
   1782 			if (p == e)
   1783 				return 0;
   1784 
   1785 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
   1786 		e->pnum, e->ec);
   1787 	dump_stack();
   1788 	return -EINVAL;
   1789 }
   1790 #ifndef CONFIG_MTD_UBI_FASTMAP
   1791 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
   1792 {
   1793 	struct ubi_wl_entry *e;
   1794 
   1795 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
   1796 	self_check_in_wl_tree(ubi, e, &ubi->free);
   1797 	ubi->free_count--;
   1798 	ubi_assert(ubi->free_count >= 0);
   1799 	rb_erase(&e->u.rb, &ubi->free);
   1800 
   1801 	return e;
   1802 }
   1803 
   1804 /**
   1805  * produce_free_peb - produce a free physical eraseblock.
   1806  * @ubi: UBI device description object
   1807  *
   1808  * This function tries to make a free PEB by means of synchronous execution of
   1809  * pending works. This may be needed if, for example the background thread is
   1810  * disabled. Returns zero in case of success and a negative error code in case
   1811  * of failure.
   1812  */
   1813 static int produce_free_peb(struct ubi_device *ubi)
   1814 {
   1815 	int err;
   1816 
   1817 	while (!ubi->free.rb_node && ubi->works_count) {
   1818 		spin_unlock(&ubi->wl_lock);
   1819 
   1820 		dbg_wl("do one work synchronously");
   1821 		err = do_work(ubi);
   1822 
   1823 		spin_lock(&ubi->wl_lock);
   1824 		if (err)
   1825 			return err;
   1826 	}
   1827 
   1828 	return 0;
   1829 }
   1830 
   1831 /**
   1832  * ubi_wl_get_peb - get a physical eraseblock.
   1833  * @ubi: UBI device description object
   1834  *
   1835  * This function returns a physical eraseblock in case of success and a
   1836  * negative error code in case of failure.
   1837  * Returns with ubi->fm_eba_sem held in read mode!
   1838  */
   1839 int ubi_wl_get_peb(struct ubi_device *ubi)
   1840 {
   1841 	int err;
   1842 	struct ubi_wl_entry *e;
   1843 
   1844 retry:
   1845 	down_read(&ubi->fm_eba_sem);
   1846 	spin_lock(&ubi->wl_lock);
   1847 	if (!ubi->free.rb_node) {
   1848 		if (ubi->works_count == 0) {
   1849 			ubi_err(ubi, "no free eraseblocks");
   1850 			ubi_assert(list_empty(&ubi->works));
   1851 			spin_unlock(&ubi->wl_lock);
   1852 			return -ENOSPC;
   1853 		}
   1854 
   1855 		err = produce_free_peb(ubi);
   1856 		if (err < 0) {
   1857 			spin_unlock(&ubi->wl_lock);
   1858 			return err;
   1859 		}
   1860 		spin_unlock(&ubi->wl_lock);
   1861 		up_read(&ubi->fm_eba_sem);
   1862 		goto retry;
   1863 
   1864 	}
   1865 	e = wl_get_wle(ubi);
   1866 	prot_queue_add(ubi, e);
   1867 	spin_unlock(&ubi->wl_lock);
   1868 
   1869 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
   1870 				    ubi->peb_size - ubi->vid_hdr_aloffset);
   1871 	if (err) {
   1872 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
   1873 		return err;
   1874 	}
   1875 
   1876 	return e->pnum;
   1877 }
   1878 #else
   1879 #include "fastmap-wl.c"
   1880 #endif
   1881