Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <limits.h>
     12 
     13 #include "denoising.h"
     14 
     15 #include "vp8/common/reconinter.h"
     16 #include "vpx/vpx_integer.h"
     17 #include "vpx_mem/vpx_mem.h"
     18 #include "vp8_rtcd.h"
     19 
     20 static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25;
     21 /* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming
     22  * var(noise) ~= 100.
     23  */
     24 static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
     25 static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;
     26 static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 80;
     27 
     28 /*
     29  * The filter function was modified to reduce the computational complexity.
     30  * Step 1:
     31  * Instead of applying tap coefficients for each pixel, we calculated the
     32  * pixel adjustments vs. pixel diff value ahead of time.
     33  *     adjustment = filtered_value - current_raw
     34  *                = (filter_coefficient * diff + 128) >> 8
     35  * where
     36  *     filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
     37  *     filter_coefficient += filter_coefficient /
     38  *                           (3 + motion_magnitude_adjustment);
     39  *     filter_coefficient is clamped to 0 ~ 255.
     40  *
     41  * Step 2:
     42  * The adjustment vs. diff curve becomes flat very quick when diff increases.
     43  * This allowed us to use only several levels to approximate the curve without
     44  * changing the filtering algorithm too much.
     45  * The adjustments were further corrected by checking the motion magnitude.
     46  * The levels used are:
     47  * diff       adjustment w/o motion correction   adjustment w/ motion correction
     48  * [-255, -16]           -6                                   -7
     49  * [-15, -8]             -4                                   -5
     50  * [-7, -4]              -3                                   -4
     51  * [-3, 3]               diff                                 diff
     52  * [4, 7]                 3                                    4
     53  * [8, 15]                4                                    5
     54  * [16, 255]              6                                    7
     55  */
     56 
     57 int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride,
     58                           unsigned char *running_avg_y, int avg_y_stride,
     59                           unsigned char *sig, int sig_stride,
     60                           unsigned int motion_magnitude,
     61                           int increase_denoising) {
     62   unsigned char *running_avg_y_start = running_avg_y;
     63   unsigned char *sig_start = sig;
     64   int sum_diff_thresh;
     65   int r, c;
     66   int sum_diff = 0;
     67   int adj_val[3] = { 3, 4, 6 };
     68   int shift_inc1 = 0;
     69   int shift_inc2 = 1;
     70   int col_sum[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
     71   /* If motion_magnitude is small, making the denoiser more aggressive by
     72    * increasing the adjustment for each level. Add another increment for
     73    * blocks that are labeled for increase denoising. */
     74   if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
     75     if (increase_denoising) {
     76       shift_inc1 = 1;
     77       shift_inc2 = 2;
     78     }
     79     adj_val[0] += shift_inc2;
     80     adj_val[1] += shift_inc2;
     81     adj_val[2] += shift_inc2;
     82   }
     83 
     84   for (r = 0; r < 16; ++r) {
     85     for (c = 0; c < 16; ++c) {
     86       int diff = 0;
     87       int adjustment = 0;
     88       int absdiff = 0;
     89 
     90       diff = mc_running_avg_y[c] - sig[c];
     91       absdiff = abs(diff);
     92 
     93       // When |diff| <= |3 + shift_inc1|, use pixel value from
     94       // last denoised raw.
     95       if (absdiff <= 3 + shift_inc1) {
     96         running_avg_y[c] = mc_running_avg_y[c];
     97         col_sum[c] += diff;
     98       } else {
     99         if (absdiff >= 4 + shift_inc1 && absdiff <= 7) {
    100           adjustment = adj_val[0];
    101         } else if (absdiff >= 8 && absdiff <= 15) {
    102           adjustment = adj_val[1];
    103         } else {
    104           adjustment = adj_val[2];
    105         }
    106 
    107         if (diff > 0) {
    108           if ((sig[c] + adjustment) > 255) {
    109             running_avg_y[c] = 255;
    110           } else {
    111             running_avg_y[c] = sig[c] + adjustment;
    112           }
    113 
    114           col_sum[c] += adjustment;
    115         } else {
    116           if ((sig[c] - adjustment) < 0) {
    117             running_avg_y[c] = 0;
    118           } else {
    119             running_avg_y[c] = sig[c] - adjustment;
    120           }
    121 
    122           col_sum[c] -= adjustment;
    123         }
    124       }
    125     }
    126 
    127     /* Update pointers for next iteration. */
    128     sig += sig_stride;
    129     mc_running_avg_y += mc_avg_y_stride;
    130     running_avg_y += avg_y_stride;
    131   }
    132 
    133   for (c = 0; c < 16; ++c) {
    134     // Below we clip the value in the same way which SSE code use.
    135     // When adopting aggressive denoiser, the adj_val for each pixel
    136     // could be at most 8 (this is current max adjustment of the map).
    137     // In SSE code, we calculate the sum of adj_val for
    138     // the columns, so the sum could be upto 128(16 rows). However,
    139     // the range of the value is -128 ~ 127 in SSE code, that's why
    140     // we do this change in C code.
    141     // We don't do this for UV denoiser, since there are only 8 rows,
    142     // and max adjustments <= 8, so the sum of the columns will not
    143     // exceed 64.
    144     if (col_sum[c] >= 128) {
    145       col_sum[c] = 127;
    146     }
    147     sum_diff += col_sum[c];
    148   }
    149 
    150   sum_diff_thresh = SUM_DIFF_THRESHOLD;
    151   if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH;
    152   if (abs(sum_diff) > sum_diff_thresh) {
    153     // Before returning to copy the block (i.e., apply no denoising), check
    154     // if we can still apply some (weaker) temporal filtering to this block,
    155     // that would otherwise not be denoised at all. Simplest is to apply
    156     // an additional adjustment to running_avg_y to bring it closer to sig.
    157     // The adjustment is capped by a maximum delta, and chosen such that
    158     // in most cases the resulting sum_diff will be within the
    159     // accceptable range given by sum_diff_thresh.
    160 
    161     // The delta is set by the excess of absolute pixel diff over threshold.
    162     int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
    163     // Only apply the adjustment for max delta up to 3.
    164     if (delta < 4) {
    165       sig -= sig_stride * 16;
    166       mc_running_avg_y -= mc_avg_y_stride * 16;
    167       running_avg_y -= avg_y_stride * 16;
    168       for (r = 0; r < 16; ++r) {
    169         for (c = 0; c < 16; ++c) {
    170           int diff = mc_running_avg_y[c] - sig[c];
    171           int adjustment = abs(diff);
    172           if (adjustment > delta) adjustment = delta;
    173           if (diff > 0) {
    174             // Bring denoised signal down.
    175             if (running_avg_y[c] - adjustment < 0) {
    176               running_avg_y[c] = 0;
    177             } else {
    178               running_avg_y[c] = running_avg_y[c] - adjustment;
    179             }
    180             col_sum[c] -= adjustment;
    181           } else if (diff < 0) {
    182             // Bring denoised signal up.
    183             if (running_avg_y[c] + adjustment > 255) {
    184               running_avg_y[c] = 255;
    185             } else {
    186               running_avg_y[c] = running_avg_y[c] + adjustment;
    187             }
    188             col_sum[c] += adjustment;
    189           }
    190         }
    191         // TODO(marpan): Check here if abs(sum_diff) has gone below the
    192         // threshold sum_diff_thresh, and if so, we can exit the row loop.
    193         sig += sig_stride;
    194         mc_running_avg_y += mc_avg_y_stride;
    195         running_avg_y += avg_y_stride;
    196       }
    197 
    198       sum_diff = 0;
    199       for (c = 0; c < 16; ++c) {
    200         if (col_sum[c] >= 128) {
    201           col_sum[c] = 127;
    202         }
    203         sum_diff += col_sum[c];
    204       }
    205 
    206       if (abs(sum_diff) > sum_diff_thresh) return COPY_BLOCK;
    207     } else {
    208       return COPY_BLOCK;
    209     }
    210   }
    211 
    212   vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride);
    213   return FILTER_BLOCK;
    214 }
    215 
    216 int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg, int mc_avg_stride,
    217                              unsigned char *running_avg, int avg_stride,
    218                              unsigned char *sig, int sig_stride,
    219                              unsigned int motion_magnitude,
    220                              int increase_denoising) {
    221   unsigned char *running_avg_start = running_avg;
    222   unsigned char *sig_start = sig;
    223   int sum_diff_thresh;
    224   int r, c;
    225   int sum_diff = 0;
    226   int sum_block = 0;
    227   int adj_val[3] = { 3, 4, 6 };
    228   int shift_inc1 = 0;
    229   int shift_inc2 = 1;
    230   /* If motion_magnitude is small, making the denoiser more aggressive by
    231    * increasing the adjustment for each level. Add another increment for
    232    * blocks that are labeled for increase denoising. */
    233   if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) {
    234     if (increase_denoising) {
    235       shift_inc1 = 1;
    236       shift_inc2 = 2;
    237     }
    238     adj_val[0] += shift_inc2;
    239     adj_val[1] += shift_inc2;
    240     adj_val[2] += shift_inc2;
    241   }
    242 
    243   // Avoid denoising color signal if its close to average level.
    244   for (r = 0; r < 8; ++r) {
    245     for (c = 0; c < 8; ++c) {
    246       sum_block += sig[c];
    247     }
    248     sig += sig_stride;
    249   }
    250   if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) {
    251     return COPY_BLOCK;
    252   }
    253 
    254   sig -= sig_stride * 8;
    255   for (r = 0; r < 8; ++r) {
    256     for (c = 0; c < 8; ++c) {
    257       int diff = 0;
    258       int adjustment = 0;
    259       int absdiff = 0;
    260 
    261       diff = mc_running_avg[c] - sig[c];
    262       absdiff = abs(diff);
    263 
    264       // When |diff| <= |3 + shift_inc1|, use pixel value from
    265       // last denoised raw.
    266       if (absdiff <= 3 + shift_inc1) {
    267         running_avg[c] = mc_running_avg[c];
    268         sum_diff += diff;
    269       } else {
    270         if (absdiff >= 4 && absdiff <= 7) {
    271           adjustment = adj_val[0];
    272         } else if (absdiff >= 8 && absdiff <= 15) {
    273           adjustment = adj_val[1];
    274         } else {
    275           adjustment = adj_val[2];
    276         }
    277         if (diff > 0) {
    278           if ((sig[c] + adjustment) > 255) {
    279             running_avg[c] = 255;
    280           } else {
    281             running_avg[c] = sig[c] + adjustment;
    282           }
    283           sum_diff += adjustment;
    284         } else {
    285           if ((sig[c] - adjustment) < 0) {
    286             running_avg[c] = 0;
    287           } else {
    288             running_avg[c] = sig[c] - adjustment;
    289           }
    290           sum_diff -= adjustment;
    291         }
    292       }
    293     }
    294     /* Update pointers for next iteration. */
    295     sig += sig_stride;
    296     mc_running_avg += mc_avg_stride;
    297     running_avg += avg_stride;
    298   }
    299 
    300   sum_diff_thresh = SUM_DIFF_THRESHOLD_UV;
    301   if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV;
    302   if (abs(sum_diff) > sum_diff_thresh) {
    303     // Before returning to copy the block (i.e., apply no denoising), check
    304     // if we can still apply some (weaker) temporal filtering to this block,
    305     // that would otherwise not be denoised at all. Simplest is to apply
    306     // an additional adjustment to running_avg_y to bring it closer to sig.
    307     // The adjustment is capped by a maximum delta, and chosen such that
    308     // in most cases the resulting sum_diff will be within the
    309     // accceptable range given by sum_diff_thresh.
    310 
    311     // The delta is set by the excess of absolute pixel diff over threshold.
    312     int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
    313     // Only apply the adjustment for max delta up to 3.
    314     if (delta < 4) {
    315       sig -= sig_stride * 8;
    316       mc_running_avg -= mc_avg_stride * 8;
    317       running_avg -= avg_stride * 8;
    318       for (r = 0; r < 8; ++r) {
    319         for (c = 0; c < 8; ++c) {
    320           int diff = mc_running_avg[c] - sig[c];
    321           int adjustment = abs(diff);
    322           if (adjustment > delta) adjustment = delta;
    323           if (diff > 0) {
    324             // Bring denoised signal down.
    325             if (running_avg[c] - adjustment < 0) {
    326               running_avg[c] = 0;
    327             } else {
    328               running_avg[c] = running_avg[c] - adjustment;
    329             }
    330             sum_diff -= adjustment;
    331           } else if (diff < 0) {
    332             // Bring denoised signal up.
    333             if (running_avg[c] + adjustment > 255) {
    334               running_avg[c] = 255;
    335             } else {
    336               running_avg[c] = running_avg[c] + adjustment;
    337             }
    338             sum_diff += adjustment;
    339           }
    340         }
    341         // TODO(marpan): Check here if abs(sum_diff) has gone below the
    342         // threshold sum_diff_thresh, and if so, we can exit the row loop.
    343         sig += sig_stride;
    344         mc_running_avg += mc_avg_stride;
    345         running_avg += avg_stride;
    346       }
    347       if (abs(sum_diff) > sum_diff_thresh) return COPY_BLOCK;
    348     } else {
    349       return COPY_BLOCK;
    350     }
    351   }
    352 
    353   vp8_copy_mem8x8(running_avg_start, avg_stride, sig_start, sig_stride);
    354   return FILTER_BLOCK;
    355 }
    356 
    357 void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) {
    358   assert(mode > 0);  // Denoiser is allocated only if mode > 0.
    359   if (mode == 1) {
    360     denoiser->denoiser_mode = kDenoiserOnYOnly;
    361   } else if (mode == 2) {
    362     denoiser->denoiser_mode = kDenoiserOnYUV;
    363   } else if (mode == 3) {
    364     denoiser->denoiser_mode = kDenoiserOnYUVAggressive;
    365   } else {
    366     denoiser->denoiser_mode = kDenoiserOnYUV;
    367   }
    368   if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) {
    369     denoiser->denoise_pars.scale_sse_thresh = 1;
    370     denoiser->denoise_pars.scale_motion_thresh = 8;
    371     denoiser->denoise_pars.scale_increase_filter = 0;
    372     denoiser->denoise_pars.denoise_mv_bias = 95;
    373     denoiser->denoise_pars.pickmode_mv_bias = 100;
    374     denoiser->denoise_pars.qp_thresh = 0;
    375     denoiser->denoise_pars.consec_zerolast = UINT_MAX;
    376     denoiser->denoise_pars.spatial_blur = 0;
    377   } else {
    378     denoiser->denoise_pars.scale_sse_thresh = 2;
    379     denoiser->denoise_pars.scale_motion_thresh = 16;
    380     denoiser->denoise_pars.scale_increase_filter = 1;
    381     denoiser->denoise_pars.denoise_mv_bias = 60;
    382     denoiser->denoise_pars.pickmode_mv_bias = 75;
    383     denoiser->denoise_pars.qp_thresh = 80;
    384     denoiser->denoise_pars.consec_zerolast = 15;
    385     denoiser->denoise_pars.spatial_blur = 0;
    386   }
    387 }
    388 
    389 int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height,
    390                           int num_mb_rows, int num_mb_cols, int mode) {
    391   int i;
    392   assert(denoiser);
    393   denoiser->num_mb_cols = num_mb_cols;
    394 
    395   for (i = 0; i < MAX_REF_FRAMES; ++i) {
    396     denoiser->yv12_running_avg[i].flags = 0;
    397 
    398     if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width,
    399                                     height, VP8BORDERINPIXELS) < 0) {
    400       vp8_denoiser_free(denoiser);
    401       return 1;
    402     }
    403     memset(denoiser->yv12_running_avg[i].buffer_alloc, 0,
    404            denoiser->yv12_running_avg[i].frame_size);
    405   }
    406   denoiser->yv12_mc_running_avg.flags = 0;
    407 
    408   if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width,
    409                                   height, VP8BORDERINPIXELS) < 0) {
    410     vp8_denoiser_free(denoiser);
    411     return 1;
    412   }
    413 
    414   memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
    415          denoiser->yv12_mc_running_avg.frame_size);
    416 
    417   if (vp8_yv12_alloc_frame_buffer(&denoiser->yv12_last_source, width, height,
    418                                   VP8BORDERINPIXELS) < 0) {
    419     vp8_denoiser_free(denoiser);
    420     return 1;
    421   }
    422   memset(denoiser->yv12_last_source.buffer_alloc, 0,
    423          denoiser->yv12_last_source.frame_size);
    424 
    425   denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1);
    426   if (!denoiser->denoise_state) {
    427     vp8_denoiser_free(denoiser);
    428     return 1;
    429   }
    430   memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols));
    431   vp8_denoiser_set_parameters(denoiser, mode);
    432   denoiser->nmse_source_diff = 0;
    433   denoiser->nmse_source_diff_count = 0;
    434   denoiser->qp_avg = 0;
    435   // QP threshold below which we can go up to aggressive mode.
    436   denoiser->qp_threshold_up = 80;
    437   // QP threshold above which we can go back down to normal mode.
    438   // For now keep this second threshold high, so not used currently.
    439   denoiser->qp_threshold_down = 128;
    440   // Bitrate thresholds and noise metric (nmse) thresholds for switching to
    441   // aggressive mode.
    442   // TODO(marpan): Adjust thresholds, including effect on resolution.
    443   denoiser->bitrate_threshold = 400000;  // (bits/sec).
    444   denoiser->threshold_aggressive_mode = 80;
    445   if (width * height > 1280 * 720) {
    446     denoiser->bitrate_threshold = 3000000;
    447     denoiser->threshold_aggressive_mode = 200;
    448   } else if (width * height > 960 * 540) {
    449     denoiser->bitrate_threshold = 1200000;
    450     denoiser->threshold_aggressive_mode = 120;
    451   } else if (width * height > 640 * 480) {
    452     denoiser->bitrate_threshold = 600000;
    453     denoiser->threshold_aggressive_mode = 100;
    454   }
    455   return 0;
    456 }
    457 
    458 void vp8_denoiser_free(VP8_DENOISER *denoiser) {
    459   int i;
    460   assert(denoiser);
    461 
    462   for (i = 0; i < MAX_REF_FRAMES; ++i) {
    463     vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]);
    464   }
    465   vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg);
    466   vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_last_source);
    467   vpx_free(denoiser->denoise_state);
    468 }
    469 
    470 void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser, MACROBLOCK *x,
    471                              unsigned int best_sse, unsigned int zero_mv_sse,
    472                              int recon_yoffset, int recon_uvoffset,
    473                              loop_filter_info_n *lfi_n, int mb_row, int mb_col,
    474                              int block_index, int consec_zero_last)
    475 
    476 {
    477   int mv_row;
    478   int mv_col;
    479   unsigned int motion_threshold;
    480   unsigned int motion_magnitude2;
    481   unsigned int sse_thresh;
    482   int sse_diff_thresh = 0;
    483   // Spatial loop filter: only applied selectively based on
    484   // temporal filter state of block relative to top/left neighbors.
    485   int apply_spatial_loop_filter = 1;
    486   MV_REFERENCE_FRAME frame = x->best_reference_frame;
    487   MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame;
    488 
    489   enum vp8_denoiser_decision decision = FILTER_BLOCK;
    490   enum vp8_denoiser_decision decision_u = COPY_BLOCK;
    491   enum vp8_denoiser_decision decision_v = COPY_BLOCK;
    492 
    493   if (zero_frame) {
    494     YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame];
    495     YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg;
    496     YV12_BUFFER_CONFIG saved_pre, saved_dst;
    497     MB_MODE_INFO saved_mbmi;
    498     MACROBLOCKD *filter_xd = &x->e_mbd;
    499     MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi;
    500     int sse_diff = 0;
    501     // Bias on zero motion vector sse.
    502     const int zero_bias = denoiser->denoise_pars.denoise_mv_bias;
    503     zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100);
    504     sse_diff = (int)zero_mv_sse - (int)best_sse;
    505 
    506     saved_mbmi = *mbmi;
    507 
    508     /* Use the best MV for the compensation. */
    509     mbmi->ref_frame = x->best_reference_frame;
    510     mbmi->mode = x->best_sse_inter_mode;
    511     mbmi->mv = x->best_sse_mv;
    512     mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs;
    513     mv_col = x->best_sse_mv.as_mv.col;
    514     mv_row = x->best_sse_mv.as_mv.row;
    515     // Bias to zero_mv if small amount of motion.
    516     // Note sse_diff_thresh is intialized to zero, so this ensures
    517     // we will always choose zero_mv for denoising if
    518     // zero_mv_see <= best_sse (i.e., sse_diff <= 0).
    519     if ((unsigned int)(mv_row * mv_row + mv_col * mv_col) <=
    520         NOISE_MOTION_THRESHOLD) {
    521       sse_diff_thresh = (int)SSE_DIFF_THRESHOLD;
    522     }
    523 
    524     if (frame == INTRA_FRAME || sse_diff <= sse_diff_thresh) {
    525       /*
    526        * Handle intra blocks as referring to last frame with zero motion
    527        * and let the absolute pixel difference affect the filter factor.
    528        * Also consider small amount of motion as being random walk due
    529        * to noise, if it doesn't mean that we get a much bigger error.
    530        * Note that any changes to the mode info only affects the
    531        * denoising.
    532        */
    533       x->denoise_zeromv = 1;
    534       mbmi->ref_frame = x->best_zeromv_reference_frame;
    535 
    536       src = &denoiser->yv12_running_avg[zero_frame];
    537 
    538       mbmi->mode = ZEROMV;
    539       mbmi->mv.as_int = 0;
    540       x->best_sse_inter_mode = ZEROMV;
    541       x->best_sse_mv.as_int = 0;
    542       best_sse = zero_mv_sse;
    543     }
    544 
    545     mv_row = x->best_sse_mv.as_mv.row;
    546     mv_col = x->best_sse_mv.as_mv.col;
    547     motion_magnitude2 = mv_row * mv_row + mv_col * mv_col;
    548     motion_threshold =
    549         denoiser->denoise_pars.scale_motion_thresh * NOISE_MOTION_THRESHOLD;
    550 
    551     if (motion_magnitude2 <
    552         denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD) {
    553       x->increase_denoising = 1;
    554     }
    555 
    556     sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD;
    557     if (x->increase_denoising) {
    558       sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH;
    559     }
    560 
    561     if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold) {
    562       decision = COPY_BLOCK;
    563     }
    564 
    565     // If block is considered skin, don't denoise if the block
    566     // (1) is selected as non-zero motion for current frame, or
    567     // (2) has not been selected as ZERO_LAST mode at least x past frames
    568     // in a row.
    569     // TODO(marpan): Parameter "x" should be varied with framerate.
    570     // In particualar, should be reduced for layers (base layer/LAST).
    571     if (x->is_skin && (consec_zero_last < 2 || motion_magnitude2 > 0)) {
    572       decision = COPY_BLOCK;
    573     }
    574 
    575     if (decision == FILTER_BLOCK) {
    576       saved_pre = filter_xd->pre;
    577       saved_dst = filter_xd->dst;
    578 
    579       /* Compensate the running average. */
    580       filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset;
    581       filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset;
    582       filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset;
    583       /* Write the compensated running average to the destination buffer. */
    584       filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset;
    585       filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset;
    586       filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset;
    587 
    588       if (!x->skip) {
    589         vp8_build_inter_predictors_mb(filter_xd);
    590       } else {
    591         vp8_build_inter16x16_predictors_mb(
    592             filter_xd, filter_xd->dst.y_buffer, filter_xd->dst.u_buffer,
    593             filter_xd->dst.v_buffer, filter_xd->dst.y_stride,
    594             filter_xd->dst.uv_stride);
    595       }
    596       filter_xd->pre = saved_pre;
    597       filter_xd->dst = saved_dst;
    598       *mbmi = saved_mbmi;
    599     }
    600   } else {
    601     // zero_frame should always be 1 for real-time mode, as the
    602     // ZEROMV mode is always checked, so we should never go into this branch.
    603     // If case ZEROMV is not checked, then we will force no denoise (COPY).
    604     decision = COPY_BLOCK;
    605   }
    606 
    607   if (decision == FILTER_BLOCK) {
    608     unsigned char *mc_running_avg_y =
    609         denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset;
    610     int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride;
    611     unsigned char *running_avg_y =
    612         denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset;
    613     int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
    614 
    615     /* Filter. */
    616     decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride,
    617                                    running_avg_y, avg_y_stride, x->thismb, 16,
    618                                    motion_magnitude2, x->increase_denoising);
    619     denoiser->denoise_state[block_index] =
    620         motion_magnitude2 > 0 ? kFilterNonZeroMV : kFilterZeroMV;
    621     // Only denoise UV for zero motion, and if y channel was denoised.
    622     if (denoiser->denoiser_mode != kDenoiserOnYOnly && motion_magnitude2 == 0 &&
    623         decision == FILTER_BLOCK) {
    624       unsigned char *mc_running_avg_u =
    625           denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset;
    626       unsigned char *running_avg_u =
    627           denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset;
    628       unsigned char *mc_running_avg_v =
    629           denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset;
    630       unsigned char *running_avg_v =
    631           denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset;
    632       int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride;
    633       int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
    634       int signal_stride = x->block[16].src_stride;
    635       decision_u = vp8_denoiser_filter_uv(
    636           mc_running_avg_u, mc_avg_uv_stride, running_avg_u, avg_uv_stride,
    637           x->block[16].src + *x->block[16].base_src, signal_stride,
    638           motion_magnitude2, 0);
    639       decision_v = vp8_denoiser_filter_uv(
    640           mc_running_avg_v, mc_avg_uv_stride, running_avg_v, avg_uv_stride,
    641           x->block[20].src + *x->block[20].base_src, signal_stride,
    642           motion_magnitude2, 0);
    643     }
    644   }
    645   if (decision == COPY_BLOCK) {
    646     /* No filtering of this block; it differs too much from the predictor,
    647      * or the motion vector magnitude is considered too big.
    648      */
    649     x->denoise_zeromv = 0;
    650     vp8_copy_mem16x16(
    651         x->thismb, 16,
    652         denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
    653         denoiser->yv12_running_avg[INTRA_FRAME].y_stride);
    654     denoiser->denoise_state[block_index] = kNoFilter;
    655   }
    656   if (denoiser->denoiser_mode != kDenoiserOnYOnly) {
    657     if (decision_u == COPY_BLOCK) {
    658       vp8_copy_mem8x8(
    659           x->block[16].src + *x->block[16].base_src, x->block[16].src_stride,
    660           denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset,
    661           denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
    662     }
    663     if (decision_v == COPY_BLOCK) {
    664       vp8_copy_mem8x8(
    665           x->block[20].src + *x->block[20].base_src, x->block[16].src_stride,
    666           denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset,
    667           denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
    668     }
    669   }
    670   // Option to selectively deblock the denoised signal, for y channel only.
    671   if (apply_spatial_loop_filter) {
    672     loop_filter_info lfi;
    673     int apply_filter_col = 0;
    674     int apply_filter_row = 0;
    675     int apply_filter = 0;
    676     int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
    677     int uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
    678 
    679     // Fix filter level to some nominal value for now.
    680     int filter_level = 48;
    681 
    682     int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level];
    683     lfi.mblim = lfi_n->mblim[filter_level];
    684     lfi.blim = lfi_n->blim[filter_level];
    685     lfi.lim = lfi_n->lim[filter_level];
    686     lfi.hev_thr = lfi_n->hev_thr[hev_index];
    687 
    688     // Apply filter if there is a difference in the denoiser filter state
    689     // between the current and left/top block, or if non-zero motion vector
    690     // is used for the motion-compensated filtering.
    691     if (mb_col > 0) {
    692       apply_filter_col =
    693           !((denoiser->denoise_state[block_index] ==
    694              denoiser->denoise_state[block_index - 1]) &&
    695             denoiser->denoise_state[block_index] != kFilterNonZeroMV);
    696       if (apply_filter_col) {
    697         // Filter left vertical edge.
    698         apply_filter = 1;
    699         vp8_loop_filter_mbv(
    700             denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
    701             NULL, NULL, y_stride, uv_stride, &lfi);
    702       }
    703     }
    704     if (mb_row > 0) {
    705       apply_filter_row =
    706           !((denoiser->denoise_state[block_index] ==
    707              denoiser->denoise_state[block_index - denoiser->num_mb_cols]) &&
    708             denoiser->denoise_state[block_index] != kFilterNonZeroMV);
    709       if (apply_filter_row) {
    710         // Filter top horizontal edge.
    711         apply_filter = 1;
    712         vp8_loop_filter_mbh(
    713             denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
    714             NULL, NULL, y_stride, uv_stride, &lfi);
    715       }
    716     }
    717     if (apply_filter) {
    718       // Update the signal block |x|. Pixel changes are only to top and/or
    719       // left boundary pixels: can we avoid full block copy here.
    720       vp8_copy_mem16x16(
    721           denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
    722           y_stride, x->thismb, 16);
    723     }
    724   }
    725 }
    726