Home | History | Annotate | Download | only in NEON
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2010 Konstantinos Margaritis <markos (at) freevec.org>
      6 // Heavily based on Gael's SSE version.
      7 //
      8 // This Source Code Form is subject to the terms of the Mozilla
      9 // Public License v. 2.0. If a copy of the MPL was not distributed
     10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     11 
     12 #ifndef EIGEN_PACKET_MATH_NEON_H
     13 #define EIGEN_PACKET_MATH_NEON_H
     14 
     15 namespace Eigen {
     16 
     17 namespace internal {
     18 
     19 #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
     20 #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
     21 #endif
     22 
     23 #ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
     24 #define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
     25 #endif
     26 
     27 #ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
     28 #define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
     29 #endif
     30 
     31 #ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
     32 #if EIGEN_ARCH_ARM64
     33 #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32
     34 #else
     35 #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
     36 #endif
     37 #endif
     38 
     39 typedef float32x2_t Packet2f;
     40 typedef float32x4_t Packet4f;
     41 typedef int32x4_t   Packet4i;
     42 typedef int32x2_t   Packet2i;
     43 typedef uint32x4_t  Packet4ui;
     44 
     45 #define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
     46   const Packet4f p4f_##NAME = pset1<Packet4f>(X)
     47 
     48 #define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
     49   const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int32_t>(X))
     50 
     51 #define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
     52   const Packet4i p4i_##NAME = pset1<Packet4i>(X)
     53 
     54 #if EIGEN_ARCH_ARM64
     55   // __builtin_prefetch tends to do nothing on ARM64 compilers because the
     56   // prefetch instructions there are too detailed for __builtin_prefetch to map
     57   // meaningfully to them.
     58   #define EIGEN_ARM_PREFETCH(ADDR)  __asm__ __volatile__("prfm pldl1keep, [%[addr]]\n" ::[addr] "r"(ADDR) : );
     59 #elif EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
     60   #define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
     61 #elif defined __pld
     62   #define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
     63 #elif EIGEN_ARCH_ARM32
     64   #define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ("pld [%[addr]]\n" :: [addr] "r" (ADDR) : );
     65 #else
     66   // by default no explicit prefetching
     67   #define EIGEN_ARM_PREFETCH(ADDR)
     68 #endif
     69 
     70 template<> struct packet_traits<float>  : default_packet_traits
     71 {
     72   typedef Packet4f type;
     73   typedef Packet4f half; // Packet2f intrinsics not implemented yet
     74   enum {
     75     Vectorizable = 1,
     76     AlignedOnScalar = 1,
     77     size = 4,
     78     HasHalfPacket=0, // Packet2f intrinsics not implemented yet
     79 
     80     HasDiv  = 1,
     81     // FIXME check the Has*
     82     HasSin  = 0,
     83     HasCos  = 0,
     84     HasLog  = 0,
     85     HasExp  = 1,
     86     HasSqrt = 0
     87   };
     88 };
     89 template<> struct packet_traits<int32_t>    : default_packet_traits
     90 {
     91   typedef Packet4i type;
     92   typedef Packet4i half; // Packet2i intrinsics not implemented yet
     93   enum {
     94     Vectorizable = 1,
     95     AlignedOnScalar = 1,
     96     size=4,
     97     HasHalfPacket=0 // Packet2i intrinsics not implemented yet
     98     // FIXME check the Has*
     99   };
    100 };
    101 
    102 #if EIGEN_GNUC_AT_MOST(4,4) && !EIGEN_COMP_LLVM
    103 // workaround gcc 4.2, 4.3 and 4.4 compilatin issue
    104 EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
    105 EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
    106 EIGEN_STRONG_INLINE float32x2_t vld1_dup_f32 (const float* x) { return ::vld1_dup_f32 ((const float32_t*)x); }
    107 EIGEN_STRONG_INLINE void        vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
    108 EIGEN_STRONG_INLINE void        vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
    109 #endif
    110 
    111 template<> struct unpacket_traits<Packet4f> { typedef float   type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; };
    112 template<> struct unpacket_traits<Packet4i> { typedef int32_t type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; };
    113 
    114 template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float&  from) { return vdupq_n_f32(from); }
    115 template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int32_t&    from)   { return vdupq_n_s32(from); }
    116 
    117 template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a)
    118 {
    119   const float f[] = {0, 1, 2, 3};
    120   Packet4f countdown = vld1q_f32(f);
    121   return vaddq_f32(pset1<Packet4f>(a), countdown);
    122 }
    123 template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int32_t& a)
    124 {
    125   const int32_t i[] = {0, 1, 2, 3};
    126   Packet4i countdown = vld1q_s32(i);
    127   return vaddq_s32(pset1<Packet4i>(a), countdown);
    128 }
    129 
    130 template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
    131 template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }
    132 
    133 template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
    134 template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }
    135 
    136 template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
    137 template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }
    138 
    139 template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
    140 template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
    141 
    142 template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
    143 template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }
    144 
    145 template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
    146 {
    147 #if EIGEN_ARCH_ARM64
    148   return vdivq_f32(a,b);
    149 #else
    150   Packet4f inv, restep, div;
    151 
    152   // NEON does not offer a divide instruction, we have to do a reciprocal approximation
    153   // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
    154   // a reciprocal estimate AND a reciprocal step -which saves a few instructions
    155   // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
    156   // Newton-Raphson and vrecpsq_f32()
    157   inv = vrecpeq_f32(b);
    158 
    159   // This returns a differential, by which we will have to multiply inv to get a better
    160   // approximation of 1/b.
    161   restep = vrecpsq_f32(b, inv);
    162   inv = vmulq_f32(restep, inv);
    163 
    164   // Finally, multiply a by 1/b and get the wanted result of the division.
    165   div = vmulq_f32(a, inv);
    166 
    167   return div;
    168 #endif
    169 }
    170 
    171 template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
    172 { eigen_assert(false && "packet integer division are not supported by NEON");
    173   return pset1<Packet4i>(0);
    174 }
    175 
    176 // Clang/ARM wrongly advertises __ARM_FEATURE_FMA even when it's not available,
    177 // then implements a slow software scalar fallback calling fmaf()!
    178 // Filed LLVM bug:
    179 //     https://llvm.org/bugs/show_bug.cgi?id=27216
    180 #if (defined __ARM_FEATURE_FMA) && !(EIGEN_COMP_CLANG && EIGEN_ARCH_ARM)
    181 // See bug 936.
    182 // FMA is available on VFPv4 i.e. when compiling with -mfpu=neon-vfpv4.
    183 // FMA is a true fused multiply-add i.e. only 1 rounding at the end, no intermediate rounding.
    184 // MLA is not fused i.e. does 2 roundings.
    185 // In addition to giving better accuracy, FMA also gives better performance here on a Krait (Nexus 4):
    186 // MLA: 10 GFlop/s ; FMA: 12 GFlops/s.
    187 template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vfmaq_f32(c,a,b); }
    188 #else
    189 template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) {
    190 #if EIGEN_COMP_CLANG && EIGEN_ARCH_ARM
    191   // Clang/ARM will replace VMLA by VMUL+VADD at least for some values of -mcpu,
    192   // at least -mcpu=cortex-a8 and -mcpu=cortex-a7. Since the former is the default on
    193   // -march=armv7-a, that is a very common case.
    194   // See e.g. this thread:
    195   //     http://lists.llvm.org/pipermail/llvm-dev/2013-December/068806.html
    196   // Filed LLVM bug:
    197   //     https://llvm.org/bugs/show_bug.cgi?id=27219
    198   Packet4f r = c;
    199   asm volatile(
    200     "vmla.f32 %q[r], %q[a], %q[b]"
    201     : [r] "+w" (r)
    202     : [a] "w" (a),
    203       [b] "w" (b)
    204     : );
    205   return r;
    206 #else
    207   return vmlaq_f32(c,a,b);
    208 #endif
    209 }
    210 #endif
    211 
    212 // No FMA instruction for int, so use MLA unconditionally.
    213 template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }
    214 
    215 template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
    216 template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }
    217 
    218 template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
    219 template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }
    220 
    221 // Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
    222 template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
    223 {
    224   return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
    225 }
    226 template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }
    227 
    228 template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
    229 {
    230   return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
    231 }
    232 template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }
    233 
    234 template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
    235 {
    236   return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
    237 }
    238 template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }
    239 
    240 template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
    241 {
    242   return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
    243 }
    244 template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }
    245 
    246 template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float*    from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
    247 template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int32_t*  from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
    248 
    249 template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float*   from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
    250 template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int32_t* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
    251 
    252 template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
    253 {
    254   float32x2_t lo, hi;
    255   lo = vld1_dup_f32(from);
    256   hi = vld1_dup_f32(from+1);
    257   return vcombine_f32(lo, hi);
    258 }
    259 template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int32_t* from)
    260 {
    261   int32x2_t lo, hi;
    262   lo = vld1_dup_s32(from);
    263   hi = vld1_dup_s32(from+1);
    264   return vcombine_s32(lo, hi);
    265 }
    266 
    267 template<> EIGEN_STRONG_INLINE void pstore<float>  (float*    to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
    268 template<> EIGEN_STRONG_INLINE void pstore<int32_t>(int32_t*  to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
    269 
    270 template<> EIGEN_STRONG_INLINE void pstoreu<float>  (float*   to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
    271 template<> EIGEN_STRONG_INLINE void pstoreu<int32_t>(int32_t* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
    272 
    273 template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride)
    274 {
    275   Packet4f res = pset1<Packet4f>(0.f);
    276   res = vsetq_lane_f32(from[0*stride], res, 0);
    277   res = vsetq_lane_f32(from[1*stride], res, 1);
    278   res = vsetq_lane_f32(from[2*stride], res, 2);
    279   res = vsetq_lane_f32(from[3*stride], res, 3);
    280   return res;
    281 }
    282 template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int32_t, Packet4i>(const int32_t* from, Index stride)
    283 {
    284   Packet4i res = pset1<Packet4i>(0);
    285   res = vsetq_lane_s32(from[0*stride], res, 0);
    286   res = vsetq_lane_s32(from[1*stride], res, 1);
    287   res = vsetq_lane_s32(from[2*stride], res, 2);
    288   res = vsetq_lane_s32(from[3*stride], res, 3);
    289   return res;
    290 }
    291 
    292 template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride)
    293 {
    294   to[stride*0] = vgetq_lane_f32(from, 0);
    295   to[stride*1] = vgetq_lane_f32(from, 1);
    296   to[stride*2] = vgetq_lane_f32(from, 2);
    297   to[stride*3] = vgetq_lane_f32(from, 3);
    298 }
    299 template<> EIGEN_DEVICE_FUNC inline void pscatter<int32_t, Packet4i>(int32_t* to, const Packet4i& from, Index stride)
    300 {
    301   to[stride*0] = vgetq_lane_s32(from, 0);
    302   to[stride*1] = vgetq_lane_s32(from, 1);
    303   to[stride*2] = vgetq_lane_s32(from, 2);
    304   to[stride*3] = vgetq_lane_s32(from, 3);
    305 }
    306 
    307 template<> EIGEN_STRONG_INLINE void prefetch<float>  (const float*    addr) { EIGEN_ARM_PREFETCH(addr); }
    308 template<> EIGEN_STRONG_INLINE void prefetch<int32_t>(const int32_t*  addr) { EIGEN_ARM_PREFETCH(addr); }
    309 
    310 // FIXME only store the 2 first elements ?
    311 template<> EIGEN_STRONG_INLINE float   pfirst<Packet4f>(const Packet4f& a) { float   EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
    312 template<> EIGEN_STRONG_INLINE int32_t pfirst<Packet4i>(const Packet4i& a) { int32_t EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
    313 
    314 template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
    315   float32x2_t a_lo, a_hi;
    316   Packet4f a_r64;
    317 
    318   a_r64 = vrev64q_f32(a);
    319   a_lo = vget_low_f32(a_r64);
    320   a_hi = vget_high_f32(a_r64);
    321   return vcombine_f32(a_hi, a_lo);
    322 }
    323 template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
    324   int32x2_t a_lo, a_hi;
    325   Packet4i a_r64;
    326 
    327   a_r64 = vrev64q_s32(a);
    328   a_lo = vget_low_s32(a_r64);
    329   a_hi = vget_high_s32(a_r64);
    330   return vcombine_s32(a_hi, a_lo);
    331 }
    332 
    333 template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
    334 template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }
    335 
    336 template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
    337 {
    338   float32x2_t a_lo, a_hi, sum;
    339 
    340   a_lo = vget_low_f32(a);
    341   a_hi = vget_high_f32(a);
    342   sum = vpadd_f32(a_lo, a_hi);
    343   sum = vpadd_f32(sum, sum);
    344   return vget_lane_f32(sum, 0);
    345 }
    346 
    347 template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
    348 {
    349   float32x4x2_t vtrn1, vtrn2, res1, res2;
    350   Packet4f sum1, sum2, sum;
    351 
    352   // NEON zip performs interleaving of the supplied vectors.
    353   // We perform two interleaves in a row to acquire the transposed vector
    354   vtrn1 = vzipq_f32(vecs[0], vecs[2]);
    355   vtrn2 = vzipq_f32(vecs[1], vecs[3]);
    356   res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
    357   res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);
    358 
    359   // Do the addition of the resulting vectors
    360   sum1 = vaddq_f32(res1.val[0], res1.val[1]);
    361   sum2 = vaddq_f32(res2.val[0], res2.val[1]);
    362   sum = vaddq_f32(sum1, sum2);
    363 
    364   return sum;
    365 }
    366 
    367 template<> EIGEN_STRONG_INLINE int32_t predux<Packet4i>(const Packet4i& a)
    368 {
    369   int32x2_t a_lo, a_hi, sum;
    370 
    371   a_lo = vget_low_s32(a);
    372   a_hi = vget_high_s32(a);
    373   sum = vpadd_s32(a_lo, a_hi);
    374   sum = vpadd_s32(sum, sum);
    375   return vget_lane_s32(sum, 0);
    376 }
    377 
    378 template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
    379 {
    380   int32x4x2_t vtrn1, vtrn2, res1, res2;
    381   Packet4i sum1, sum2, sum;
    382 
    383   // NEON zip performs interleaving of the supplied vectors.
    384   // We perform two interleaves in a row to acquire the transposed vector
    385   vtrn1 = vzipq_s32(vecs[0], vecs[2]);
    386   vtrn2 = vzipq_s32(vecs[1], vecs[3]);
    387   res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
    388   res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);
    389 
    390   // Do the addition of the resulting vectors
    391   sum1 = vaddq_s32(res1.val[0], res1.val[1]);
    392   sum2 = vaddq_s32(res2.val[0], res2.val[1]);
    393   sum = vaddq_s32(sum1, sum2);
    394 
    395   return sum;
    396 }
    397 
    398 // Other reduction functions:
    399 // mul
    400 template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
    401 {
    402   float32x2_t a_lo, a_hi, prod;
    403 
    404   // Get a_lo = |a1|a2| and a_hi = |a3|a4|
    405   a_lo = vget_low_f32(a);
    406   a_hi = vget_high_f32(a);
    407   // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
    408   prod = vmul_f32(a_lo, a_hi);
    409   // Multiply prod with its swapped value |a2*a4|a1*a3|
    410   prod = vmul_f32(prod, vrev64_f32(prod));
    411 
    412   return vget_lane_f32(prod, 0);
    413 }
    414 template<> EIGEN_STRONG_INLINE int32_t predux_mul<Packet4i>(const Packet4i& a)
    415 {
    416   int32x2_t a_lo, a_hi, prod;
    417 
    418   // Get a_lo = |a1|a2| and a_hi = |a3|a4|
    419   a_lo = vget_low_s32(a);
    420   a_hi = vget_high_s32(a);
    421   // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
    422   prod = vmul_s32(a_lo, a_hi);
    423   // Multiply prod with its swapped value |a2*a4|a1*a3|
    424   prod = vmul_s32(prod, vrev64_s32(prod));
    425 
    426   return vget_lane_s32(prod, 0);
    427 }
    428 
    429 // min
    430 template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
    431 {
    432   float32x2_t a_lo, a_hi, min;
    433 
    434   a_lo = vget_low_f32(a);
    435   a_hi = vget_high_f32(a);
    436   min = vpmin_f32(a_lo, a_hi);
    437   min = vpmin_f32(min, min);
    438 
    439   return vget_lane_f32(min, 0);
    440 }
    441 
    442 template<> EIGEN_STRONG_INLINE int32_t predux_min<Packet4i>(const Packet4i& a)
    443 {
    444   int32x2_t a_lo, a_hi, min;
    445 
    446   a_lo = vget_low_s32(a);
    447   a_hi = vget_high_s32(a);
    448   min = vpmin_s32(a_lo, a_hi);
    449   min = vpmin_s32(min, min);
    450 
    451   return vget_lane_s32(min, 0);
    452 }
    453 
    454 // max
    455 template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
    456 {
    457   float32x2_t a_lo, a_hi, max;
    458 
    459   a_lo = vget_low_f32(a);
    460   a_hi = vget_high_f32(a);
    461   max = vpmax_f32(a_lo, a_hi);
    462   max = vpmax_f32(max, max);
    463 
    464   return vget_lane_f32(max, 0);
    465 }
    466 
    467 template<> EIGEN_STRONG_INLINE int32_t predux_max<Packet4i>(const Packet4i& a)
    468 {
    469   int32x2_t a_lo, a_hi, max;
    470 
    471   a_lo = vget_low_s32(a);
    472   a_hi = vget_high_s32(a);
    473   max = vpmax_s32(a_lo, a_hi);
    474   max = vpmax_s32(max, max);
    475 
    476   return vget_lane_s32(max, 0);
    477 }
    478 
    479 // this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
    480 // see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
    481 #define PALIGN_NEON(Offset,Type,Command) \
    482 template<>\
    483 struct palign_impl<Offset,Type>\
    484 {\
    485     EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
    486     {\
    487         if (Offset!=0)\
    488             first = Command(first, second, Offset);\
    489     }\
    490 };\
    491 
    492 PALIGN_NEON(0,Packet4f,vextq_f32)
    493 PALIGN_NEON(1,Packet4f,vextq_f32)
    494 PALIGN_NEON(2,Packet4f,vextq_f32)
    495 PALIGN_NEON(3,Packet4f,vextq_f32)
    496 PALIGN_NEON(0,Packet4i,vextq_s32)
    497 PALIGN_NEON(1,Packet4i,vextq_s32)
    498 PALIGN_NEON(2,Packet4i,vextq_s32)
    499 PALIGN_NEON(3,Packet4i,vextq_s32)
    500 
    501 #undef PALIGN_NEON
    502 
    503 EIGEN_DEVICE_FUNC inline void
    504 ptranspose(PacketBlock<Packet4f,4>& kernel) {
    505   float32x4x2_t tmp1 = vzipq_f32(kernel.packet[0], kernel.packet[1]);
    506   float32x4x2_t tmp2 = vzipq_f32(kernel.packet[2], kernel.packet[3]);
    507 
    508   kernel.packet[0] = vcombine_f32(vget_low_f32(tmp1.val[0]), vget_low_f32(tmp2.val[0]));
    509   kernel.packet[1] = vcombine_f32(vget_high_f32(tmp1.val[0]), vget_high_f32(tmp2.val[0]));
    510   kernel.packet[2] = vcombine_f32(vget_low_f32(tmp1.val[1]), vget_low_f32(tmp2.val[1]));
    511   kernel.packet[3] = vcombine_f32(vget_high_f32(tmp1.val[1]), vget_high_f32(tmp2.val[1]));
    512 }
    513 
    514 EIGEN_DEVICE_FUNC inline void
    515 ptranspose(PacketBlock<Packet4i,4>& kernel) {
    516   int32x4x2_t tmp1 = vzipq_s32(kernel.packet[0], kernel.packet[1]);
    517   int32x4x2_t tmp2 = vzipq_s32(kernel.packet[2], kernel.packet[3]);
    518   kernel.packet[0] = vcombine_s32(vget_low_s32(tmp1.val[0]), vget_low_s32(tmp2.val[0]));
    519   kernel.packet[1] = vcombine_s32(vget_high_s32(tmp1.val[0]), vget_high_s32(tmp2.val[0]));
    520   kernel.packet[2] = vcombine_s32(vget_low_s32(tmp1.val[1]), vget_low_s32(tmp2.val[1]));
    521   kernel.packet[3] = vcombine_s32(vget_high_s32(tmp1.val[1]), vget_high_s32(tmp2.val[1]));
    522 }
    523 
    524 //---------- double ----------
    525 
    526 // Clang 3.5 in the iOS toolchain has an ICE triggered by NEON intrisics for double.
    527 // Confirmed at least with __apple_build_version__ = 6000054.
    528 #ifdef __apple_build_version__
    529 // Let's hope that by the time __apple_build_version__ hits the 601* range, the bug will be fixed.
    530 // https://gist.github.com/yamaya/2924292 suggests that the 3 first digits are only updated with
    531 // major toolchain updates.
    532 #define EIGEN_APPLE_DOUBLE_NEON_BUG (__apple_build_version__ < 6010000)
    533 #else
    534 #define EIGEN_APPLE_DOUBLE_NEON_BUG 0
    535 #endif
    536 
    537 #if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
    538 
    539 // Bug 907: workaround missing declarations of the following two functions in the ADK
    540 // Defining these functions as templates ensures that if these intrinsics are
    541 // already defined in arm_neon.h, then our workaround doesn't cause a conflict
    542 // and has lower priority in overload resolution.
    543 template <typename T>
    544 uint64x2_t vreinterpretq_u64_f64(T a)
    545 {
    546   return (uint64x2_t) a;
    547 }
    548 
    549 template <typename T>
    550 float64x2_t vreinterpretq_f64_u64(T a)
    551 {
    552   return (float64x2_t) a;
    553 }
    554 
    555 typedef float64x2_t Packet2d;
    556 typedef float64x1_t Packet1d;
    557 
    558 template<> struct packet_traits<double>  : default_packet_traits
    559 {
    560   typedef Packet2d type;
    561   typedef Packet2d half;
    562   enum {
    563     Vectorizable = 1,
    564     AlignedOnScalar = 1,
    565     size = 2,
    566     HasHalfPacket=0,
    567 
    568     HasDiv  = 1,
    569     // FIXME check the Has*
    570     HasSin  = 0,
    571     HasCos  = 0,
    572     HasLog  = 0,
    573     HasExp  = 0,
    574     HasSqrt = 0
    575   };
    576 };
    577 
    578 template<> struct unpacket_traits<Packet2d> { typedef double  type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; };
    579 
    580 template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double&  from) { return vdupq_n_f64(from); }
    581 
    582 template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a)
    583 {
    584   const double countdown_raw[] = {0.0,1.0};
    585   const Packet2d countdown = vld1q_f64(countdown_raw);
    586   return vaddq_f64(pset1<Packet2d>(a), countdown);
    587 }
    588 template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return vaddq_f64(a,b); }
    589 
    590 template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return vsubq_f64(a,b); }
    591 
    592 template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return vnegq_f64(a); }
    593 
    594 template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
    595 
    596 template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmulq_f64(a,b); }
    597 
    598 template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return vdivq_f64(a,b); }
    599 
    600 #ifdef __ARM_FEATURE_FMA
    601 // See bug 936. See above comment about FMA for float.
    602 template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vfmaq_f64(c,a,b); }
    603 #else
    604 template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vmlaq_f64(c,a,b); }
    605 #endif
    606 
    607 template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vminq_f64(a,b); }
    608 
    609 template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmaxq_f64(a,b); }
    610 
    611 // Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
    612 template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b)
    613 {
    614   return vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
    615 }
    616 
    617 template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b)
    618 {
    619   return vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
    620 }
    621 
    622 template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b)
    623 {
    624   return vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
    625 }
    626 
    627 template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b)
    628 {
    629   return vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
    630 }
    631 
    632 template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f64(from); }
    633 
    634 template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f64(from); }
    635 
    636 template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double*   from)
    637 {
    638   return vld1q_dup_f64(from);
    639 }
    640 template<> EIGEN_STRONG_INLINE void pstore<double>(double*   to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f64(to, from); }
    641 
    642 template<> EIGEN_STRONG_INLINE void pstoreu<double>(double*  to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f64(to, from); }
    643 
    644 template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
    645 {
    646   Packet2d res = pset1<Packet2d>(0.0);
    647   res = vsetq_lane_f64(from[0*stride], res, 0);
    648   res = vsetq_lane_f64(from[1*stride], res, 1);
    649   return res;
    650 }
    651 template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
    652 {
    653   to[stride*0] = vgetq_lane_f64(from, 0);
    654   to[stride*1] = vgetq_lane_f64(from, 1);
    655 }
    656 template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { EIGEN_ARM_PREFETCH(addr); }
    657 
    658 // FIXME only store the 2 first elements ?
    659 template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(a, 0); }
    660 
    661 template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return vcombine_f64(vget_high_f64(a), vget_low_f64(a)); }
    662 
    663 template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vabsq_f64(a); }
    664 
    665 #if EIGEN_COMP_CLANG && defined(__apple_build_version__)
    666 // workaround ICE, see bug 907
    667 template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) + vget_high_f64(a))[0]; }
    668 #else
    669 template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) + vget_high_f64(a), 0); }
    670 #endif
    671 
    672 template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
    673 {
    674   float64x2_t trn1, trn2;
    675 
    676   // NEON zip performs interleaving of the supplied vectors.
    677   // We perform two interleaves in a row to acquire the transposed vector
    678   trn1 = vzip1q_f64(vecs[0], vecs[1]);
    679   trn2 = vzip2q_f64(vecs[0], vecs[1]);
    680 
    681   // Do the addition of the resulting vectors
    682   return vaddq_f64(trn1, trn2);
    683 }
    684 // Other reduction functions:
    685 // mul
    686 #if EIGEN_COMP_CLANG && defined(__apple_build_version__)
    687 template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) * vget_high_f64(a))[0]; }
    688 #else
    689 template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) * vget_high_f64(a), 0); }
    690 #endif
    691 
    692 // min
    693 template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpminq_f64(a, a), 0); }
    694 
    695 // max
    696 template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpmaxq_f64(a, a), 0); }
    697 
    698 // this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
    699 // see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
    700 #define PALIGN_NEON(Offset,Type,Command) \
    701 template<>\
    702 struct palign_impl<Offset,Type>\
    703 {\
    704     EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
    705     {\
    706         if (Offset!=0)\
    707             first = Command(first, second, Offset);\
    708     }\
    709 };\
    710 
    711 PALIGN_NEON(0,Packet2d,vextq_f64)
    712 PALIGN_NEON(1,Packet2d,vextq_f64)
    713 #undef PALIGN_NEON
    714 
    715 EIGEN_DEVICE_FUNC inline void
    716 ptranspose(PacketBlock<Packet2d,2>& kernel) {
    717   float64x2_t trn1 = vzip1q_f64(kernel.packet[0], kernel.packet[1]);
    718   float64x2_t trn2 = vzip2q_f64(kernel.packet[0], kernel.packet[1]);
    719 
    720   kernel.packet[0] = trn1;
    721   kernel.packet[1] = trn2;
    722 }
    723 #endif // EIGEN_ARCH_ARM64
    724 
    725 } // end namespace internal
    726 
    727 } // end namespace Eigen
    728 
    729 #endif // EIGEN_PACKET_MATH_NEON_H
    730