Home | History | Annotate | Download | only in Writer
      1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Bitcode/BitcodeWriter.h"
     15 #include "ValueEnumerator.h"
     16 #include "llvm/ADT/APFloat.h"
     17 #include "llvm/ADT/APInt.h"
     18 #include "llvm/ADT/ArrayRef.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/None.h"
     21 #include "llvm/ADT/Optional.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 #include "llvm/ADT/SmallString.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/ADT/StringMap.h"
     26 #include "llvm/ADT/StringRef.h"
     27 #include "llvm/ADT/Triple.h"
     28 #include "llvm/Bitcode/BitCodes.h"
     29 #include "llvm/Bitcode/BitstreamWriter.h"
     30 #include "llvm/Bitcode/LLVMBitCodes.h"
     31 #include "llvm/Config/llvm-config.h"
     32 #include "llvm/IR/Attributes.h"
     33 #include "llvm/IR/BasicBlock.h"
     34 #include "llvm/IR/CallSite.h"
     35 #include "llvm/IR/Comdat.h"
     36 #include "llvm/IR/Constant.h"
     37 #include "llvm/IR/Constants.h"
     38 #include "llvm/IR/DebugInfoMetadata.h"
     39 #include "llvm/IR/DebugLoc.h"
     40 #include "llvm/IR/DerivedTypes.h"
     41 #include "llvm/IR/Function.h"
     42 #include "llvm/IR/GlobalAlias.h"
     43 #include "llvm/IR/GlobalIFunc.h"
     44 #include "llvm/IR/GlobalObject.h"
     45 #include "llvm/IR/GlobalValue.h"
     46 #include "llvm/IR/GlobalVariable.h"
     47 #include "llvm/IR/InlineAsm.h"
     48 #include "llvm/IR/InstrTypes.h"
     49 #include "llvm/IR/Instruction.h"
     50 #include "llvm/IR/Instructions.h"
     51 #include "llvm/IR/LLVMContext.h"
     52 #include "llvm/IR/Metadata.h"
     53 #include "llvm/IR/Module.h"
     54 #include "llvm/IR/ModuleSummaryIndex.h"
     55 #include "llvm/IR/Operator.h"
     56 #include "llvm/IR/Type.h"
     57 #include "llvm/IR/UseListOrder.h"
     58 #include "llvm/IR/Value.h"
     59 #include "llvm/IR/ValueSymbolTable.h"
     60 #include "llvm/MC/StringTableBuilder.h"
     61 #include "llvm/Object/IRSymtab.h"
     62 #include "llvm/Support/AtomicOrdering.h"
     63 #include "llvm/Support/Casting.h"
     64 #include "llvm/Support/CommandLine.h"
     65 #include "llvm/Support/Endian.h"
     66 #include "llvm/Support/Error.h"
     67 #include "llvm/Support/ErrorHandling.h"
     68 #include "llvm/Support/MathExtras.h"
     69 #include "llvm/Support/SHA1.h"
     70 #include "llvm/Support/TargetRegistry.h"
     71 #include "llvm/Support/raw_ostream.h"
     72 #include <algorithm>
     73 #include <cassert>
     74 #include <cstddef>
     75 #include <cstdint>
     76 #include <iterator>
     77 #include <map>
     78 #include <memory>
     79 #include <string>
     80 #include <utility>
     81 #include <vector>
     82 
     83 using namespace llvm;
     84 
     85 static cl::opt<unsigned>
     86     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
     87                    cl::desc("Number of metadatas above which we emit an index "
     88                             "to enable lazy-loading"));
     89 
     90 cl::opt<bool> WriteRelBFToSummary(
     91     "write-relbf-to-summary", cl::Hidden, cl::init(false),
     92     cl::desc("Write relative block frequency to function summary "));
     93 
     94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
     95 
     96 namespace {
     97 
     98 /// These are manifest constants used by the bitcode writer. They do not need to
     99 /// be kept in sync with the reader, but need to be consistent within this file.
    100 enum {
    101   // VALUE_SYMTAB_BLOCK abbrev id's.
    102   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
    103   VST_ENTRY_7_ABBREV,
    104   VST_ENTRY_6_ABBREV,
    105   VST_BBENTRY_6_ABBREV,
    106 
    107   // CONSTANTS_BLOCK abbrev id's.
    108   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
    109   CONSTANTS_INTEGER_ABBREV,
    110   CONSTANTS_CE_CAST_Abbrev,
    111   CONSTANTS_NULL_Abbrev,
    112 
    113   // FUNCTION_BLOCK abbrev id's.
    114   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
    115   FUNCTION_INST_BINOP_ABBREV,
    116   FUNCTION_INST_BINOP_FLAGS_ABBREV,
    117   FUNCTION_INST_CAST_ABBREV,
    118   FUNCTION_INST_RET_VOID_ABBREV,
    119   FUNCTION_INST_RET_VAL_ABBREV,
    120   FUNCTION_INST_UNREACHABLE_ABBREV,
    121   FUNCTION_INST_GEP_ABBREV,
    122 };
    123 
    124 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
    125 /// file type.
    126 class BitcodeWriterBase {
    127 protected:
    128   /// The stream created and owned by the client.
    129   BitstreamWriter &Stream;
    130 
    131   StringTableBuilder &StrtabBuilder;
    132 
    133 public:
    134   /// Constructs a BitcodeWriterBase object that writes to the provided
    135   /// \p Stream.
    136   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
    137       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
    138 
    139 protected:
    140   void writeBitcodeHeader();
    141   void writeModuleVersion();
    142 };
    143 
    144 void BitcodeWriterBase::writeModuleVersion() {
    145   // VERSION: [version#]
    146   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
    147 }
    148 
    149 /// Base class to manage the module bitcode writing, currently subclassed for
    150 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
    151 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
    152 protected:
    153   /// The Module to write to bitcode.
    154   const Module &M;
    155 
    156   /// Enumerates ids for all values in the module.
    157   ValueEnumerator VE;
    158 
    159   /// Optional per-module index to write for ThinLTO.
    160   const ModuleSummaryIndex *Index;
    161 
    162   /// Map that holds the correspondence between GUIDs in the summary index,
    163   /// that came from indirect call profiles, and a value id generated by this
    164   /// class to use in the VST and summary block records.
    165   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
    166 
    167   /// Tracks the last value id recorded in the GUIDToValueMap.
    168   unsigned GlobalValueId;
    169 
    170   /// Saves the offset of the VSTOffset record that must eventually be
    171   /// backpatched with the offset of the actual VST.
    172   uint64_t VSTOffsetPlaceholder = 0;
    173 
    174 public:
    175   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
    176   /// writing to the provided \p Buffer.
    177   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
    178                           BitstreamWriter &Stream,
    179                           bool ShouldPreserveUseListOrder,
    180                           const ModuleSummaryIndex *Index)
    181       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
    182         VE(M, ShouldPreserveUseListOrder), Index(Index) {
    183     // Assign ValueIds to any callee values in the index that came from
    184     // indirect call profiles and were recorded as a GUID not a Value*
    185     // (which would have been assigned an ID by the ValueEnumerator).
    186     // The starting ValueId is just after the number of values in the
    187     // ValueEnumerator, so that they can be emitted in the VST.
    188     GlobalValueId = VE.getValues().size();
    189     if (!Index)
    190       return;
    191     for (const auto &GUIDSummaryLists : *Index)
    192       // Examine all summaries for this GUID.
    193       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
    194         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
    195           // For each call in the function summary, see if the call
    196           // is to a GUID (which means it is for an indirect call,
    197           // otherwise we would have a Value for it). If so, synthesize
    198           // a value id.
    199           for (auto &CallEdge : FS->calls())
    200             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
    201               assignValueId(CallEdge.first.getGUID());
    202   }
    203 
    204 protected:
    205   void writePerModuleGlobalValueSummary();
    206 
    207 private:
    208   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
    209                                            GlobalValueSummary *Summary,
    210                                            unsigned ValueID,
    211                                            unsigned FSCallsAbbrev,
    212                                            unsigned FSCallsProfileAbbrev,
    213                                            const Function &F);
    214   void writeModuleLevelReferences(const GlobalVariable &V,
    215                                   SmallVector<uint64_t, 64> &NameVals,
    216                                   unsigned FSModRefsAbbrev);
    217 
    218   void assignValueId(GlobalValue::GUID ValGUID) {
    219     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
    220   }
    221 
    222   unsigned getValueId(GlobalValue::GUID ValGUID) {
    223     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
    224     // Expect that any GUID value had a value Id assigned by an
    225     // earlier call to assignValueId.
    226     assert(VMI != GUIDToValueIdMap.end() &&
    227            "GUID does not have assigned value Id");
    228     return VMI->second;
    229   }
    230 
    231   // Helper to get the valueId for the type of value recorded in VI.
    232   unsigned getValueId(ValueInfo VI) {
    233     if (!VI.haveGVs() || !VI.getValue())
    234       return getValueId(VI.getGUID());
    235     return VE.getValueID(VI.getValue());
    236   }
    237 
    238   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
    239 };
    240 
    241 /// Class to manage the bitcode writing for a module.
    242 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
    243   /// Pointer to the buffer allocated by caller for bitcode writing.
    244   const SmallVectorImpl<char> &Buffer;
    245 
    246   /// True if a module hash record should be written.
    247   bool GenerateHash;
    248 
    249   /// If non-null, when GenerateHash is true, the resulting hash is written
    250   /// into ModHash.
    251   ModuleHash *ModHash;
    252 
    253   SHA1 Hasher;
    254 
    255   /// The start bit of the identification block.
    256   uint64_t BitcodeStartBit;
    257 
    258 public:
    259   /// Constructs a ModuleBitcodeWriter object for the given Module,
    260   /// writing to the provided \p Buffer.
    261   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
    262                       StringTableBuilder &StrtabBuilder,
    263                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
    264                       const ModuleSummaryIndex *Index, bool GenerateHash,
    265                       ModuleHash *ModHash = nullptr)
    266       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
    267                                 ShouldPreserveUseListOrder, Index),
    268         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
    269         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
    270 
    271   /// Emit the current module to the bitstream.
    272   void write();
    273 
    274 private:
    275   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
    276 
    277   size_t addToStrtab(StringRef Str);
    278 
    279   void writeAttributeGroupTable();
    280   void writeAttributeTable();
    281   void writeTypeTable();
    282   void writeComdats();
    283   void writeValueSymbolTableForwardDecl();
    284   void writeModuleInfo();
    285   void writeValueAsMetadata(const ValueAsMetadata *MD,
    286                             SmallVectorImpl<uint64_t> &Record);
    287   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
    288                     unsigned Abbrev);
    289   unsigned createDILocationAbbrev();
    290   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
    291                        unsigned &Abbrev);
    292   unsigned createGenericDINodeAbbrev();
    293   void writeGenericDINode(const GenericDINode *N,
    294                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
    295   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
    296                        unsigned Abbrev);
    297   void writeDIEnumerator(const DIEnumerator *N,
    298                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    299   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
    300                         unsigned Abbrev);
    301   void writeDIDerivedType(const DIDerivedType *N,
    302                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    303   void writeDICompositeType(const DICompositeType *N,
    304                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    305   void writeDISubroutineType(const DISubroutineType *N,
    306                              SmallVectorImpl<uint64_t> &Record,
    307                              unsigned Abbrev);
    308   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
    309                    unsigned Abbrev);
    310   void writeDICompileUnit(const DICompileUnit *N,
    311                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    312   void writeDISubprogram(const DISubprogram *N,
    313                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    314   void writeDILexicalBlock(const DILexicalBlock *N,
    315                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    316   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
    317                                SmallVectorImpl<uint64_t> &Record,
    318                                unsigned Abbrev);
    319   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
    320                         unsigned Abbrev);
    321   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
    322                     unsigned Abbrev);
    323   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
    324                         unsigned Abbrev);
    325   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
    326                      unsigned Abbrev);
    327   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
    328                                     SmallVectorImpl<uint64_t> &Record,
    329                                     unsigned Abbrev);
    330   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
    331                                      SmallVectorImpl<uint64_t> &Record,
    332                                      unsigned Abbrev);
    333   void writeDIGlobalVariable(const DIGlobalVariable *N,
    334                              SmallVectorImpl<uint64_t> &Record,
    335                              unsigned Abbrev);
    336   void writeDILocalVariable(const DILocalVariable *N,
    337                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    338   void writeDILabel(const DILabel *N,
    339                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    340   void writeDIExpression(const DIExpression *N,
    341                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    342   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
    343                                        SmallVectorImpl<uint64_t> &Record,
    344                                        unsigned Abbrev);
    345   void writeDIObjCProperty(const DIObjCProperty *N,
    346                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
    347   void writeDIImportedEntity(const DIImportedEntity *N,
    348                              SmallVectorImpl<uint64_t> &Record,
    349                              unsigned Abbrev);
    350   unsigned createNamedMetadataAbbrev();
    351   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
    352   unsigned createMetadataStringsAbbrev();
    353   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
    354                             SmallVectorImpl<uint64_t> &Record);
    355   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
    356                             SmallVectorImpl<uint64_t> &Record,
    357                             std::vector<unsigned> *MDAbbrevs = nullptr,
    358                             std::vector<uint64_t> *IndexPos = nullptr);
    359   void writeModuleMetadata();
    360   void writeFunctionMetadata(const Function &F);
    361   void writeFunctionMetadataAttachment(const Function &F);
    362   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
    363   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
    364                                     const GlobalObject &GO);
    365   void writeModuleMetadataKinds();
    366   void writeOperandBundleTags();
    367   void writeSyncScopeNames();
    368   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
    369   void writeModuleConstants();
    370   bool pushValueAndType(const Value *V, unsigned InstID,
    371                         SmallVectorImpl<unsigned> &Vals);
    372   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
    373   void pushValue(const Value *V, unsigned InstID,
    374                  SmallVectorImpl<unsigned> &Vals);
    375   void pushValueSigned(const Value *V, unsigned InstID,
    376                        SmallVectorImpl<uint64_t> &Vals);
    377   void writeInstruction(const Instruction &I, unsigned InstID,
    378                         SmallVectorImpl<unsigned> &Vals);
    379   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
    380   void writeGlobalValueSymbolTable(
    381       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
    382   void writeUseList(UseListOrder &&Order);
    383   void writeUseListBlock(const Function *F);
    384   void
    385   writeFunction(const Function &F,
    386                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
    387   void writeBlockInfo();
    388   void writeModuleHash(size_t BlockStartPos);
    389 
    390   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
    391     return unsigned(SSID);
    392   }
    393 };
    394 
    395 /// Class to manage the bitcode writing for a combined index.
    396 class IndexBitcodeWriter : public BitcodeWriterBase {
    397   /// The combined index to write to bitcode.
    398   const ModuleSummaryIndex &Index;
    399 
    400   /// When writing a subset of the index for distributed backends, client
    401   /// provides a map of modules to the corresponding GUIDs/summaries to write.
    402   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
    403 
    404   /// Map that holds the correspondence between the GUID used in the combined
    405   /// index and a value id generated by this class to use in references.
    406   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
    407 
    408   /// Tracks the last value id recorded in the GUIDToValueMap.
    409   unsigned GlobalValueId = 0;
    410 
    411 public:
    412   /// Constructs a IndexBitcodeWriter object for the given combined index,
    413   /// writing to the provided \p Buffer. When writing a subset of the index
    414   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
    415   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
    416                      const ModuleSummaryIndex &Index,
    417                      const std::map<std::string, GVSummaryMapTy>
    418                          *ModuleToSummariesForIndex = nullptr)
    419       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
    420         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
    421     // Assign unique value ids to all summaries to be written, for use
    422     // in writing out the call graph edges. Save the mapping from GUID
    423     // to the new global value id to use when writing those edges, which
    424     // are currently saved in the index in terms of GUID.
    425     forEachSummary([&](GVInfo I, bool) {
    426       GUIDToValueIdMap[I.first] = ++GlobalValueId;
    427     });
    428   }
    429 
    430   /// The below iterator returns the GUID and associated summary.
    431   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
    432 
    433   /// Calls the callback for each value GUID and summary to be written to
    434   /// bitcode. This hides the details of whether they are being pulled from the
    435   /// entire index or just those in a provided ModuleToSummariesForIndex map.
    436   template<typename Functor>
    437   void forEachSummary(Functor Callback) {
    438     if (ModuleToSummariesForIndex) {
    439       for (auto &M : *ModuleToSummariesForIndex)
    440         for (auto &Summary : M.second) {
    441           Callback(Summary, false);
    442           // Ensure aliasee is handled, e.g. for assigning a valueId,
    443           // even if we are not importing the aliasee directly (the
    444           // imported alias will contain a copy of aliasee).
    445           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
    446             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
    447         }
    448     } else {
    449       for (auto &Summaries : Index)
    450         for (auto &Summary : Summaries.second.SummaryList)
    451           Callback({Summaries.first, Summary.get()}, false);
    452     }
    453   }
    454 
    455   /// Calls the callback for each entry in the modulePaths StringMap that
    456   /// should be written to the module path string table. This hides the details
    457   /// of whether they are being pulled from the entire index or just those in a
    458   /// provided ModuleToSummariesForIndex map.
    459   template <typename Functor> void forEachModule(Functor Callback) {
    460     if (ModuleToSummariesForIndex) {
    461       for (const auto &M : *ModuleToSummariesForIndex) {
    462         const auto &MPI = Index.modulePaths().find(M.first);
    463         if (MPI == Index.modulePaths().end()) {
    464           // This should only happen if the bitcode file was empty, in which
    465           // case we shouldn't be importing (the ModuleToSummariesForIndex
    466           // would only include the module we are writing and index for).
    467           assert(ModuleToSummariesForIndex->size() == 1);
    468           continue;
    469         }
    470         Callback(*MPI);
    471       }
    472     } else {
    473       for (const auto &MPSE : Index.modulePaths())
    474         Callback(MPSE);
    475     }
    476   }
    477 
    478   /// Main entry point for writing a combined index to bitcode.
    479   void write();
    480 
    481 private:
    482   void writeModStrings();
    483   void writeCombinedGlobalValueSummary();
    484 
    485   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
    486     auto VMI = GUIDToValueIdMap.find(ValGUID);
    487     if (VMI == GUIDToValueIdMap.end())
    488       return None;
    489     return VMI->second;
    490   }
    491 
    492   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
    493 };
    494 
    495 } // end anonymous namespace
    496 
    497 static unsigned getEncodedCastOpcode(unsigned Opcode) {
    498   switch (Opcode) {
    499   default: llvm_unreachable("Unknown cast instruction!");
    500   case Instruction::Trunc   : return bitc::CAST_TRUNC;
    501   case Instruction::ZExt    : return bitc::CAST_ZEXT;
    502   case Instruction::SExt    : return bitc::CAST_SEXT;
    503   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
    504   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
    505   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
    506   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
    507   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
    508   case Instruction::FPExt   : return bitc::CAST_FPEXT;
    509   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
    510   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
    511   case Instruction::BitCast : return bitc::CAST_BITCAST;
    512   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
    513   }
    514 }
    515 
    516 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
    517   switch (Opcode) {
    518   default: llvm_unreachable("Unknown binary instruction!");
    519   case Instruction::Add:
    520   case Instruction::FAdd: return bitc::BINOP_ADD;
    521   case Instruction::Sub:
    522   case Instruction::FSub: return bitc::BINOP_SUB;
    523   case Instruction::Mul:
    524   case Instruction::FMul: return bitc::BINOP_MUL;
    525   case Instruction::UDiv: return bitc::BINOP_UDIV;
    526   case Instruction::FDiv:
    527   case Instruction::SDiv: return bitc::BINOP_SDIV;
    528   case Instruction::URem: return bitc::BINOP_UREM;
    529   case Instruction::FRem:
    530   case Instruction::SRem: return bitc::BINOP_SREM;
    531   case Instruction::Shl:  return bitc::BINOP_SHL;
    532   case Instruction::LShr: return bitc::BINOP_LSHR;
    533   case Instruction::AShr: return bitc::BINOP_ASHR;
    534   case Instruction::And:  return bitc::BINOP_AND;
    535   case Instruction::Or:   return bitc::BINOP_OR;
    536   case Instruction::Xor:  return bitc::BINOP_XOR;
    537   }
    538 }
    539 
    540 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
    541   switch (Op) {
    542   default: llvm_unreachable("Unknown RMW operation!");
    543   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
    544   case AtomicRMWInst::Add: return bitc::RMW_ADD;
    545   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
    546   case AtomicRMWInst::And: return bitc::RMW_AND;
    547   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
    548   case AtomicRMWInst::Or: return bitc::RMW_OR;
    549   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
    550   case AtomicRMWInst::Max: return bitc::RMW_MAX;
    551   case AtomicRMWInst::Min: return bitc::RMW_MIN;
    552   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
    553   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
    554   }
    555 }
    556 
    557 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
    558   switch (Ordering) {
    559   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
    560   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
    561   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
    562   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
    563   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
    564   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
    565   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
    566   }
    567   llvm_unreachable("Invalid ordering");
    568 }
    569 
    570 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
    571                               StringRef Str, unsigned AbbrevToUse) {
    572   SmallVector<unsigned, 64> Vals;
    573 
    574   // Code: [strchar x N]
    575   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    576     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    577       AbbrevToUse = 0;
    578     Vals.push_back(Str[i]);
    579   }
    580 
    581   // Emit the finished record.
    582   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    583 }
    584 
    585 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
    586   switch (Kind) {
    587   case Attribute::Alignment:
    588     return bitc::ATTR_KIND_ALIGNMENT;
    589   case Attribute::AllocSize:
    590     return bitc::ATTR_KIND_ALLOC_SIZE;
    591   case Attribute::AlwaysInline:
    592     return bitc::ATTR_KIND_ALWAYS_INLINE;
    593   case Attribute::ArgMemOnly:
    594     return bitc::ATTR_KIND_ARGMEMONLY;
    595   case Attribute::Builtin:
    596     return bitc::ATTR_KIND_BUILTIN;
    597   case Attribute::ByVal:
    598     return bitc::ATTR_KIND_BY_VAL;
    599   case Attribute::Convergent:
    600     return bitc::ATTR_KIND_CONVERGENT;
    601   case Attribute::InAlloca:
    602     return bitc::ATTR_KIND_IN_ALLOCA;
    603   case Attribute::Cold:
    604     return bitc::ATTR_KIND_COLD;
    605   case Attribute::InaccessibleMemOnly:
    606     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
    607   case Attribute::InaccessibleMemOrArgMemOnly:
    608     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
    609   case Attribute::InlineHint:
    610     return bitc::ATTR_KIND_INLINE_HINT;
    611   case Attribute::InReg:
    612     return bitc::ATTR_KIND_IN_REG;
    613   case Attribute::JumpTable:
    614     return bitc::ATTR_KIND_JUMP_TABLE;
    615   case Attribute::MinSize:
    616     return bitc::ATTR_KIND_MIN_SIZE;
    617   case Attribute::Naked:
    618     return bitc::ATTR_KIND_NAKED;
    619   case Attribute::Nest:
    620     return bitc::ATTR_KIND_NEST;
    621   case Attribute::NoAlias:
    622     return bitc::ATTR_KIND_NO_ALIAS;
    623   case Attribute::NoBuiltin:
    624     return bitc::ATTR_KIND_NO_BUILTIN;
    625   case Attribute::NoCapture:
    626     return bitc::ATTR_KIND_NO_CAPTURE;
    627   case Attribute::NoDuplicate:
    628     return bitc::ATTR_KIND_NO_DUPLICATE;
    629   case Attribute::NoImplicitFloat:
    630     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
    631   case Attribute::NoInline:
    632     return bitc::ATTR_KIND_NO_INLINE;
    633   case Attribute::NoRecurse:
    634     return bitc::ATTR_KIND_NO_RECURSE;
    635   case Attribute::NonLazyBind:
    636     return bitc::ATTR_KIND_NON_LAZY_BIND;
    637   case Attribute::NonNull:
    638     return bitc::ATTR_KIND_NON_NULL;
    639   case Attribute::Dereferenceable:
    640     return bitc::ATTR_KIND_DEREFERENCEABLE;
    641   case Attribute::DereferenceableOrNull:
    642     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
    643   case Attribute::NoRedZone:
    644     return bitc::ATTR_KIND_NO_RED_ZONE;
    645   case Attribute::NoReturn:
    646     return bitc::ATTR_KIND_NO_RETURN;
    647   case Attribute::NoCfCheck:
    648     return bitc::ATTR_KIND_NOCF_CHECK;
    649   case Attribute::NoUnwind:
    650     return bitc::ATTR_KIND_NO_UNWIND;
    651   case Attribute::OptForFuzzing:
    652     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
    653   case Attribute::OptimizeForSize:
    654     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
    655   case Attribute::OptimizeNone:
    656     return bitc::ATTR_KIND_OPTIMIZE_NONE;
    657   case Attribute::ReadNone:
    658     return bitc::ATTR_KIND_READ_NONE;
    659   case Attribute::ReadOnly:
    660     return bitc::ATTR_KIND_READ_ONLY;
    661   case Attribute::Returned:
    662     return bitc::ATTR_KIND_RETURNED;
    663   case Attribute::ReturnsTwice:
    664     return bitc::ATTR_KIND_RETURNS_TWICE;
    665   case Attribute::SExt:
    666     return bitc::ATTR_KIND_S_EXT;
    667   case Attribute::Speculatable:
    668     return bitc::ATTR_KIND_SPECULATABLE;
    669   case Attribute::StackAlignment:
    670     return bitc::ATTR_KIND_STACK_ALIGNMENT;
    671   case Attribute::StackProtect:
    672     return bitc::ATTR_KIND_STACK_PROTECT;
    673   case Attribute::StackProtectReq:
    674     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
    675   case Attribute::StackProtectStrong:
    676     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
    677   case Attribute::SafeStack:
    678     return bitc::ATTR_KIND_SAFESTACK;
    679   case Attribute::ShadowCallStack:
    680     return bitc::ATTR_KIND_SHADOWCALLSTACK;
    681   case Attribute::StrictFP:
    682     return bitc::ATTR_KIND_STRICT_FP;
    683   case Attribute::StructRet:
    684     return bitc::ATTR_KIND_STRUCT_RET;
    685   case Attribute::SanitizeAddress:
    686     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
    687   case Attribute::SanitizeHWAddress:
    688     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
    689   case Attribute::SanitizeThread:
    690     return bitc::ATTR_KIND_SANITIZE_THREAD;
    691   case Attribute::SanitizeMemory:
    692     return bitc::ATTR_KIND_SANITIZE_MEMORY;
    693   case Attribute::SwiftError:
    694     return bitc::ATTR_KIND_SWIFT_ERROR;
    695   case Attribute::SwiftSelf:
    696     return bitc::ATTR_KIND_SWIFT_SELF;
    697   case Attribute::UWTable:
    698     return bitc::ATTR_KIND_UW_TABLE;
    699   case Attribute::WriteOnly:
    700     return bitc::ATTR_KIND_WRITEONLY;
    701   case Attribute::ZExt:
    702     return bitc::ATTR_KIND_Z_EXT;
    703   case Attribute::EndAttrKinds:
    704     llvm_unreachable("Can not encode end-attribute kinds marker.");
    705   case Attribute::None:
    706     llvm_unreachable("Can not encode none-attribute.");
    707   }
    708 
    709   llvm_unreachable("Trying to encode unknown attribute");
    710 }
    711 
    712 void ModuleBitcodeWriter::writeAttributeGroupTable() {
    713   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
    714       VE.getAttributeGroups();
    715   if (AttrGrps.empty()) return;
    716 
    717   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
    718 
    719   SmallVector<uint64_t, 64> Record;
    720   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
    721     unsigned AttrListIndex = Pair.first;
    722     AttributeSet AS = Pair.second;
    723     Record.push_back(VE.getAttributeGroupID(Pair));
    724     Record.push_back(AttrListIndex);
    725 
    726     for (Attribute Attr : AS) {
    727       if (Attr.isEnumAttribute()) {
    728         Record.push_back(0);
    729         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
    730       } else if (Attr.isIntAttribute()) {
    731         Record.push_back(1);
    732         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
    733         Record.push_back(Attr.getValueAsInt());
    734       } else {
    735         StringRef Kind = Attr.getKindAsString();
    736         StringRef Val = Attr.getValueAsString();
    737 
    738         Record.push_back(Val.empty() ? 3 : 4);
    739         Record.append(Kind.begin(), Kind.end());
    740         Record.push_back(0);
    741         if (!Val.empty()) {
    742           Record.append(Val.begin(), Val.end());
    743           Record.push_back(0);
    744         }
    745       }
    746     }
    747 
    748     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
    749     Record.clear();
    750   }
    751 
    752   Stream.ExitBlock();
    753 }
    754 
    755 void ModuleBitcodeWriter::writeAttributeTable() {
    756   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
    757   if (Attrs.empty()) return;
    758 
    759   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    760 
    761   SmallVector<uint64_t, 64> Record;
    762   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    763     AttributeList AL = Attrs[i];
    764     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
    765       AttributeSet AS = AL.getAttributes(i);
    766       if (AS.hasAttributes())
    767         Record.push_back(VE.getAttributeGroupID({i, AS}));
    768     }
    769 
    770     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    771     Record.clear();
    772   }
    773 
    774   Stream.ExitBlock();
    775 }
    776 
    777 /// WriteTypeTable - Write out the type table for a module.
    778 void ModuleBitcodeWriter::writeTypeTable() {
    779   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
    780 
    781   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
    782   SmallVector<uint64_t, 64> TypeVals;
    783 
    784   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
    785 
    786   // Abbrev for TYPE_CODE_POINTER.
    787   auto Abbv = std::make_shared<BitCodeAbbrev>();
    788   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    789   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    790   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    791   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
    792 
    793   // Abbrev for TYPE_CODE_FUNCTION.
    794   Abbv = std::make_shared<BitCodeAbbrev>();
    795   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
    796   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    797   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    798   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    799   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
    800 
    801   // Abbrev for TYPE_CODE_STRUCT_ANON.
    802   Abbv = std::make_shared<BitCodeAbbrev>();
    803   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    804   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    805   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    806   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    807   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
    808 
    809   // Abbrev for TYPE_CODE_STRUCT_NAME.
    810   Abbv = std::make_shared<BitCodeAbbrev>();
    811   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    812   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    813   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    814   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
    815 
    816   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    817   Abbv = std::make_shared<BitCodeAbbrev>();
    818   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    819   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    820   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    821   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    822   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
    823 
    824   // Abbrev for TYPE_CODE_ARRAY.
    825   Abbv = std::make_shared<BitCodeAbbrev>();
    826   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    827   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    828   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    829   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
    830 
    831   // Emit an entry count so the reader can reserve space.
    832   TypeVals.push_back(TypeList.size());
    833   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    834   TypeVals.clear();
    835 
    836   // Loop over all of the types, emitting each in turn.
    837   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    838     Type *T = TypeList[i];
    839     int AbbrevToUse = 0;
    840     unsigned Code = 0;
    841 
    842     switch (T->getTypeID()) {
    843     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
    844     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
    845     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
    846     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
    847     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
    848     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
    849     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    850     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
    851     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
    852     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
    853     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
    854     case Type::IntegerTyID:
    855       // INTEGER: [width]
    856       Code = bitc::TYPE_CODE_INTEGER;
    857       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    858       break;
    859     case Type::PointerTyID: {
    860       PointerType *PTy = cast<PointerType>(T);
    861       // POINTER: [pointee type, address space]
    862       Code = bitc::TYPE_CODE_POINTER;
    863       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    864       unsigned AddressSpace = PTy->getAddressSpace();
    865       TypeVals.push_back(AddressSpace);
    866       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    867       break;
    868     }
    869     case Type::FunctionTyID: {
    870       FunctionType *FT = cast<FunctionType>(T);
    871       // FUNCTION: [isvararg, retty, paramty x N]
    872       Code = bitc::TYPE_CODE_FUNCTION;
    873       TypeVals.push_back(FT->isVarArg());
    874       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    875       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    876         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    877       AbbrevToUse = FunctionAbbrev;
    878       break;
    879     }
    880     case Type::StructTyID: {
    881       StructType *ST = cast<StructType>(T);
    882       // STRUCT: [ispacked, eltty x N]
    883       TypeVals.push_back(ST->isPacked());
    884       // Output all of the element types.
    885       for (StructType::element_iterator I = ST->element_begin(),
    886            E = ST->element_end(); I != E; ++I)
    887         TypeVals.push_back(VE.getTypeID(*I));
    888 
    889       if (ST->isLiteral()) {
    890         Code = bitc::TYPE_CODE_STRUCT_ANON;
    891         AbbrevToUse = StructAnonAbbrev;
    892       } else {
    893         if (ST->isOpaque()) {
    894           Code = bitc::TYPE_CODE_OPAQUE;
    895         } else {
    896           Code = bitc::TYPE_CODE_STRUCT_NAMED;
    897           AbbrevToUse = StructNamedAbbrev;
    898         }
    899 
    900         // Emit the name if it is present.
    901         if (!ST->getName().empty())
    902           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
    903                             StructNameAbbrev);
    904       }
    905       break;
    906     }
    907     case Type::ArrayTyID: {
    908       ArrayType *AT = cast<ArrayType>(T);
    909       // ARRAY: [numelts, eltty]
    910       Code = bitc::TYPE_CODE_ARRAY;
    911       TypeVals.push_back(AT->getNumElements());
    912       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    913       AbbrevToUse = ArrayAbbrev;
    914       break;
    915     }
    916     case Type::VectorTyID: {
    917       VectorType *VT = cast<VectorType>(T);
    918       // VECTOR [numelts, eltty]
    919       Code = bitc::TYPE_CODE_VECTOR;
    920       TypeVals.push_back(VT->getNumElements());
    921       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    922       break;
    923     }
    924     }
    925 
    926     // Emit the finished record.
    927     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    928     TypeVals.clear();
    929   }
    930 
    931   Stream.ExitBlock();
    932 }
    933 
    934 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
    935   switch (Linkage) {
    936   case GlobalValue::ExternalLinkage:
    937     return 0;
    938   case GlobalValue::WeakAnyLinkage:
    939     return 16;
    940   case GlobalValue::AppendingLinkage:
    941     return 2;
    942   case GlobalValue::InternalLinkage:
    943     return 3;
    944   case GlobalValue::LinkOnceAnyLinkage:
    945     return 18;
    946   case GlobalValue::ExternalWeakLinkage:
    947     return 7;
    948   case GlobalValue::CommonLinkage:
    949     return 8;
    950   case GlobalValue::PrivateLinkage:
    951     return 9;
    952   case GlobalValue::WeakODRLinkage:
    953     return 17;
    954   case GlobalValue::LinkOnceODRLinkage:
    955     return 19;
    956   case GlobalValue::AvailableExternallyLinkage:
    957     return 12;
    958   }
    959   llvm_unreachable("Invalid linkage");
    960 }
    961 
    962 static unsigned getEncodedLinkage(const GlobalValue &GV) {
    963   return getEncodedLinkage(GV.getLinkage());
    964 }
    965 
    966 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
    967   uint64_t RawFlags = 0;
    968   RawFlags |= Flags.ReadNone;
    969   RawFlags |= (Flags.ReadOnly << 1);
    970   RawFlags |= (Flags.NoRecurse << 2);
    971   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
    972   return RawFlags;
    973 }
    974 
    975 // Decode the flags for GlobalValue in the summary
    976 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
    977   uint64_t RawFlags = 0;
    978 
    979   RawFlags |= Flags.NotEligibleToImport; // bool
    980   RawFlags |= (Flags.Live << 1);
    981   RawFlags |= (Flags.DSOLocal << 2);
    982 
    983   // Linkage don't need to be remapped at that time for the summary. Any future
    984   // change to the getEncodedLinkage() function will need to be taken into
    985   // account here as well.
    986   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
    987 
    988   return RawFlags;
    989 }
    990 
    991 static unsigned getEncodedVisibility(const GlobalValue &GV) {
    992   switch (GV.getVisibility()) {
    993   case GlobalValue::DefaultVisibility:   return 0;
    994   case GlobalValue::HiddenVisibility:    return 1;
    995   case GlobalValue::ProtectedVisibility: return 2;
    996   }
    997   llvm_unreachable("Invalid visibility");
    998 }
    999 
   1000 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
   1001   switch (GV.getDLLStorageClass()) {
   1002   case GlobalValue::DefaultStorageClass:   return 0;
   1003   case GlobalValue::DLLImportStorageClass: return 1;
   1004   case GlobalValue::DLLExportStorageClass: return 2;
   1005   }
   1006   llvm_unreachable("Invalid DLL storage class");
   1007 }
   1008 
   1009 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
   1010   switch (GV.getThreadLocalMode()) {
   1011     case GlobalVariable::NotThreadLocal:         return 0;
   1012     case GlobalVariable::GeneralDynamicTLSModel: return 1;
   1013     case GlobalVariable::LocalDynamicTLSModel:   return 2;
   1014     case GlobalVariable::InitialExecTLSModel:    return 3;
   1015     case GlobalVariable::LocalExecTLSModel:      return 4;
   1016   }
   1017   llvm_unreachable("Invalid TLS model");
   1018 }
   1019 
   1020 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
   1021   switch (C.getSelectionKind()) {
   1022   case Comdat::Any:
   1023     return bitc::COMDAT_SELECTION_KIND_ANY;
   1024   case Comdat::ExactMatch:
   1025     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
   1026   case Comdat::Largest:
   1027     return bitc::COMDAT_SELECTION_KIND_LARGEST;
   1028   case Comdat::NoDuplicates:
   1029     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
   1030   case Comdat::SameSize:
   1031     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
   1032   }
   1033   llvm_unreachable("Invalid selection kind");
   1034 }
   1035 
   1036 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
   1037   switch (GV.getUnnamedAddr()) {
   1038   case GlobalValue::UnnamedAddr::None:   return 0;
   1039   case GlobalValue::UnnamedAddr::Local:  return 2;
   1040   case GlobalValue::UnnamedAddr::Global: return 1;
   1041   }
   1042   llvm_unreachable("Invalid unnamed_addr");
   1043 }
   1044 
   1045 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
   1046   if (GenerateHash)
   1047     Hasher.update(Str);
   1048   return StrtabBuilder.add(Str);
   1049 }
   1050 
   1051 void ModuleBitcodeWriter::writeComdats() {
   1052   SmallVector<unsigned, 64> Vals;
   1053   for (const Comdat *C : VE.getComdats()) {
   1054     // COMDAT: [strtab offset, strtab size, selection_kind]
   1055     Vals.push_back(addToStrtab(C->getName()));
   1056     Vals.push_back(C->getName().size());
   1057     Vals.push_back(getEncodedComdatSelectionKind(*C));
   1058     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
   1059     Vals.clear();
   1060   }
   1061 }
   1062 
   1063 /// Write a record that will eventually hold the word offset of the
   1064 /// module-level VST. For now the offset is 0, which will be backpatched
   1065 /// after the real VST is written. Saves the bit offset to backpatch.
   1066 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
   1067   // Write a placeholder value in for the offset of the real VST,
   1068   // which is written after the function blocks so that it can include
   1069   // the offset of each function. The placeholder offset will be
   1070   // updated when the real VST is written.
   1071   auto Abbv = std::make_shared<BitCodeAbbrev>();
   1072   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
   1073   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
   1074   // hold the real VST offset. Must use fixed instead of VBR as we don't
   1075   // know how many VBR chunks to reserve ahead of time.
   1076   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   1077   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   1078 
   1079   // Emit the placeholder
   1080   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
   1081   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
   1082 
   1083   // Compute and save the bit offset to the placeholder, which will be
   1084   // patched when the real VST is written. We can simply subtract the 32-bit
   1085   // fixed size from the current bit number to get the location to backpatch.
   1086   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
   1087 }
   1088 
   1089 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
   1090 
   1091 /// Determine the encoding to use for the given string name and length.
   1092 static StringEncoding getStringEncoding(StringRef Str) {
   1093   bool isChar6 = true;
   1094   for (char C : Str) {
   1095     if (isChar6)
   1096       isChar6 = BitCodeAbbrevOp::isChar6(C);
   1097     if ((unsigned char)C & 128)
   1098       // don't bother scanning the rest.
   1099       return SE_Fixed8;
   1100   }
   1101   if (isChar6)
   1102     return SE_Char6;
   1103   return SE_Fixed7;
   1104 }
   1105 
   1106 /// Emit top-level description of module, including target triple, inline asm,
   1107 /// descriptors for global variables, and function prototype info.
   1108 /// Returns the bit offset to backpatch with the location of the real VST.
   1109 void ModuleBitcodeWriter::writeModuleInfo() {
   1110   // Emit various pieces of data attached to a module.
   1111   if (!M.getTargetTriple().empty())
   1112     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
   1113                       0 /*TODO*/);
   1114   const std::string &DL = M.getDataLayoutStr();
   1115   if (!DL.empty())
   1116     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
   1117   if (!M.getModuleInlineAsm().empty())
   1118     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
   1119                       0 /*TODO*/);
   1120 
   1121   // Emit information about sections and GC, computing how many there are. Also
   1122   // compute the maximum alignment value.
   1123   std::map<std::string, unsigned> SectionMap;
   1124   std::map<std::string, unsigned> GCMap;
   1125   unsigned MaxAlignment = 0;
   1126   unsigned MaxGlobalType = 0;
   1127   for (const GlobalValue &GV : M.globals()) {
   1128     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
   1129     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
   1130     if (GV.hasSection()) {
   1131       // Give section names unique ID's.
   1132       unsigned &Entry = SectionMap[GV.getSection()];
   1133       if (!Entry) {
   1134         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
   1135                           0 /*TODO*/);
   1136         Entry = SectionMap.size();
   1137       }
   1138     }
   1139   }
   1140   for (const Function &F : M) {
   1141     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
   1142     if (F.hasSection()) {
   1143       // Give section names unique ID's.
   1144       unsigned &Entry = SectionMap[F.getSection()];
   1145       if (!Entry) {
   1146         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
   1147                           0 /*TODO*/);
   1148         Entry = SectionMap.size();
   1149       }
   1150     }
   1151     if (F.hasGC()) {
   1152       // Same for GC names.
   1153       unsigned &Entry = GCMap[F.getGC()];
   1154       if (!Entry) {
   1155         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
   1156                           0 /*TODO*/);
   1157         Entry = GCMap.size();
   1158       }
   1159     }
   1160   }
   1161 
   1162   // Emit abbrev for globals, now that we know # sections and max alignment.
   1163   unsigned SimpleGVarAbbrev = 0;
   1164   if (!M.global_empty()) {
   1165     // Add an abbrev for common globals with no visibility or thread localness.
   1166     auto Abbv = std::make_shared<BitCodeAbbrev>();
   1167     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
   1168     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1169     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1170     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1171                               Log2_32_Ceil(MaxGlobalType+1)));
   1172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
   1173                                                            //| explicitType << 1
   1174                                                            //| constant
   1175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
   1176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
   1177     if (MaxAlignment == 0)                                 // Alignment.
   1178       Abbv->Add(BitCodeAbbrevOp(0));
   1179     else {
   1180       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
   1181       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1182                                Log2_32_Ceil(MaxEncAlignment+1)));
   1183     }
   1184     if (SectionMap.empty())                                    // Section.
   1185       Abbv->Add(BitCodeAbbrevOp(0));
   1186     else
   1187       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1188                                Log2_32_Ceil(SectionMap.size()+1)));
   1189     // Don't bother emitting vis + thread local.
   1190     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   1191   }
   1192 
   1193   SmallVector<unsigned, 64> Vals;
   1194   // Emit the module's source file name.
   1195   {
   1196     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
   1197     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
   1198     if (Bits == SE_Char6)
   1199       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
   1200     else if (Bits == SE_Fixed7)
   1201       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
   1202 
   1203     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
   1204     auto Abbv = std::make_shared<BitCodeAbbrev>();
   1205     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
   1206     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1207     Abbv->Add(AbbrevOpToUse);
   1208     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   1209 
   1210     for (const auto P : M.getSourceFileName())
   1211       Vals.push_back((unsigned char)P);
   1212 
   1213     // Emit the finished record.
   1214     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
   1215     Vals.clear();
   1216   }
   1217 
   1218   // Emit the global variable information.
   1219   for (const GlobalVariable &GV : M.globals()) {
   1220     unsigned AbbrevToUse = 0;
   1221 
   1222     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
   1223     //             linkage, alignment, section, visibility, threadlocal,
   1224     //             unnamed_addr, externally_initialized, dllstorageclass,
   1225     //             comdat, attributes, DSO_Local]
   1226     Vals.push_back(addToStrtab(GV.getName()));
   1227     Vals.push_back(GV.getName().size());
   1228     Vals.push_back(VE.getTypeID(GV.getValueType()));
   1229     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
   1230     Vals.push_back(GV.isDeclaration() ? 0 :
   1231                    (VE.getValueID(GV.getInitializer()) + 1));
   1232     Vals.push_back(getEncodedLinkage(GV));
   1233     Vals.push_back(Log2_32(GV.getAlignment())+1);
   1234     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
   1235     if (GV.isThreadLocal() ||
   1236         GV.getVisibility() != GlobalValue::DefaultVisibility ||
   1237         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
   1238         GV.isExternallyInitialized() ||
   1239         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
   1240         GV.hasComdat() ||
   1241         GV.hasAttributes() ||
   1242         GV.isDSOLocal()) {
   1243       Vals.push_back(getEncodedVisibility(GV));
   1244       Vals.push_back(getEncodedThreadLocalMode(GV));
   1245       Vals.push_back(getEncodedUnnamedAddr(GV));
   1246       Vals.push_back(GV.isExternallyInitialized());
   1247       Vals.push_back(getEncodedDLLStorageClass(GV));
   1248       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
   1249 
   1250       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
   1251       Vals.push_back(VE.getAttributeListID(AL));
   1252 
   1253       Vals.push_back(GV.isDSOLocal());
   1254     } else {
   1255       AbbrevToUse = SimpleGVarAbbrev;
   1256     }
   1257 
   1258     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
   1259     Vals.clear();
   1260   }
   1261 
   1262   // Emit the function proto information.
   1263   for (const Function &F : M) {
   1264     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
   1265     //             linkage, paramattrs, alignment, section, visibility, gc,
   1266     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
   1267     //             prefixdata, personalityfn, DSO_Local]
   1268     Vals.push_back(addToStrtab(F.getName()));
   1269     Vals.push_back(F.getName().size());
   1270     Vals.push_back(VE.getTypeID(F.getFunctionType()));
   1271     Vals.push_back(F.getCallingConv());
   1272     Vals.push_back(F.isDeclaration());
   1273     Vals.push_back(getEncodedLinkage(F));
   1274     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
   1275     Vals.push_back(Log2_32(F.getAlignment())+1);
   1276     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
   1277     Vals.push_back(getEncodedVisibility(F));
   1278     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
   1279     Vals.push_back(getEncodedUnnamedAddr(F));
   1280     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
   1281                                        : 0);
   1282     Vals.push_back(getEncodedDLLStorageClass(F));
   1283     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
   1284     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
   1285                                      : 0);
   1286     Vals.push_back(
   1287         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
   1288 
   1289     Vals.push_back(F.isDSOLocal());
   1290     unsigned AbbrevToUse = 0;
   1291     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
   1292     Vals.clear();
   1293   }
   1294 
   1295   // Emit the alias information.
   1296   for (const GlobalAlias &A : M.aliases()) {
   1297     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
   1298     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
   1299     //         DSO_Local]
   1300     Vals.push_back(addToStrtab(A.getName()));
   1301     Vals.push_back(A.getName().size());
   1302     Vals.push_back(VE.getTypeID(A.getValueType()));
   1303     Vals.push_back(A.getType()->getAddressSpace());
   1304     Vals.push_back(VE.getValueID(A.getAliasee()));
   1305     Vals.push_back(getEncodedLinkage(A));
   1306     Vals.push_back(getEncodedVisibility(A));
   1307     Vals.push_back(getEncodedDLLStorageClass(A));
   1308     Vals.push_back(getEncodedThreadLocalMode(A));
   1309     Vals.push_back(getEncodedUnnamedAddr(A));
   1310     Vals.push_back(A.isDSOLocal());
   1311 
   1312     unsigned AbbrevToUse = 0;
   1313     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
   1314     Vals.clear();
   1315   }
   1316 
   1317   // Emit the ifunc information.
   1318   for (const GlobalIFunc &I : M.ifuncs()) {
   1319     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
   1320     //         val#, linkage, visibility, DSO_Local]
   1321     Vals.push_back(addToStrtab(I.getName()));
   1322     Vals.push_back(I.getName().size());
   1323     Vals.push_back(VE.getTypeID(I.getValueType()));
   1324     Vals.push_back(I.getType()->getAddressSpace());
   1325     Vals.push_back(VE.getValueID(I.getResolver()));
   1326     Vals.push_back(getEncodedLinkage(I));
   1327     Vals.push_back(getEncodedVisibility(I));
   1328     Vals.push_back(I.isDSOLocal());
   1329     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
   1330     Vals.clear();
   1331   }
   1332 
   1333   writeValueSymbolTableForwardDecl();
   1334 }
   1335 
   1336 static uint64_t getOptimizationFlags(const Value *V) {
   1337   uint64_t Flags = 0;
   1338 
   1339   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
   1340     if (OBO->hasNoSignedWrap())
   1341       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
   1342     if (OBO->hasNoUnsignedWrap())
   1343       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
   1344   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
   1345     if (PEO->isExact())
   1346       Flags |= 1 << bitc::PEO_EXACT;
   1347   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
   1348     if (FPMO->hasAllowReassoc())
   1349       Flags |= bitc::AllowReassoc;
   1350     if (FPMO->hasNoNaNs())
   1351       Flags |= bitc::NoNaNs;
   1352     if (FPMO->hasNoInfs())
   1353       Flags |= bitc::NoInfs;
   1354     if (FPMO->hasNoSignedZeros())
   1355       Flags |= bitc::NoSignedZeros;
   1356     if (FPMO->hasAllowReciprocal())
   1357       Flags |= bitc::AllowReciprocal;
   1358     if (FPMO->hasAllowContract())
   1359       Flags |= bitc::AllowContract;
   1360     if (FPMO->hasApproxFunc())
   1361       Flags |= bitc::ApproxFunc;
   1362   }
   1363 
   1364   return Flags;
   1365 }
   1366 
   1367 void ModuleBitcodeWriter::writeValueAsMetadata(
   1368     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
   1369   // Mimic an MDNode with a value as one operand.
   1370   Value *V = MD->getValue();
   1371   Record.push_back(VE.getTypeID(V->getType()));
   1372   Record.push_back(VE.getValueID(V));
   1373   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
   1374   Record.clear();
   1375 }
   1376 
   1377 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
   1378                                        SmallVectorImpl<uint64_t> &Record,
   1379                                        unsigned Abbrev) {
   1380   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1381     Metadata *MD = N->getOperand(i);
   1382     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
   1383            "Unexpected function-local metadata");
   1384     Record.push_back(VE.getMetadataOrNullID(MD));
   1385   }
   1386   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
   1387                                     : bitc::METADATA_NODE,
   1388                     Record, Abbrev);
   1389   Record.clear();
   1390 }
   1391 
   1392 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
   1393   // Assume the column is usually under 128, and always output the inlined-at
   1394   // location (it's never more expensive than building an array size 1).
   1395   auto Abbv = std::make_shared<BitCodeAbbrev>();
   1396   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
   1397   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
   1398   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1399   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1400   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1401   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1402   return Stream.EmitAbbrev(std::move(Abbv));
   1403 }
   1404 
   1405 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
   1406                                           SmallVectorImpl<uint64_t> &Record,
   1407                                           unsigned &Abbrev) {
   1408   if (!Abbrev)
   1409     Abbrev = createDILocationAbbrev();
   1410 
   1411   Record.push_back(N->isDistinct());
   1412   Record.push_back(N->getLine());
   1413   Record.push_back(N->getColumn());
   1414   Record.push_back(VE.getMetadataID(N->getScope()));
   1415   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
   1416 
   1417   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
   1418   Record.clear();
   1419 }
   1420 
   1421 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
   1422   // Assume the column is usually under 128, and always output the inlined-at
   1423   // location (it's never more expensive than building an array size 1).
   1424   auto Abbv = std::make_shared<BitCodeAbbrev>();
   1425   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
   1426   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
   1427   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1428   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
   1429   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1430   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1431   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1432   return Stream.EmitAbbrev(std::move(Abbv));
   1433 }
   1434 
   1435 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
   1436                                              SmallVectorImpl<uint64_t> &Record,
   1437                                              unsigned &Abbrev) {
   1438   if (!Abbrev)
   1439     Abbrev = createGenericDINodeAbbrev();
   1440 
   1441   Record.push_back(N->isDistinct());
   1442   Record.push_back(N->getTag());
   1443   Record.push_back(0); // Per-tag version field; unused for now.
   1444 
   1445   for (auto &I : N->operands())
   1446     Record.push_back(VE.getMetadataOrNullID(I));
   1447 
   1448   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
   1449   Record.clear();
   1450 }
   1451 
   1452 static uint64_t rotateSign(int64_t I) {
   1453   uint64_t U = I;
   1454   return I < 0 ? ~(U << 1) : U << 1;
   1455 }
   1456 
   1457 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
   1458                                           SmallVectorImpl<uint64_t> &Record,
   1459                                           unsigned Abbrev) {
   1460   const uint64_t Version = 1 << 1;
   1461   Record.push_back((uint64_t)N->isDistinct() | Version);
   1462   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
   1463   Record.push_back(rotateSign(N->getLowerBound()));
   1464 
   1465   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
   1466   Record.clear();
   1467 }
   1468 
   1469 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
   1470                                             SmallVectorImpl<uint64_t> &Record,
   1471                                             unsigned Abbrev) {
   1472   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
   1473   Record.push_back(rotateSign(N->getValue()));
   1474   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1475 
   1476   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
   1477   Record.clear();
   1478 }
   1479 
   1480 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
   1481                                            SmallVectorImpl<uint64_t> &Record,
   1482                                            unsigned Abbrev) {
   1483   Record.push_back(N->isDistinct());
   1484   Record.push_back(N->getTag());
   1485   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1486   Record.push_back(N->getSizeInBits());
   1487   Record.push_back(N->getAlignInBits());
   1488   Record.push_back(N->getEncoding());
   1489 
   1490   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
   1491   Record.clear();
   1492 }
   1493 
   1494 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
   1495                                              SmallVectorImpl<uint64_t> &Record,
   1496                                              unsigned Abbrev) {
   1497   Record.push_back(N->isDistinct());
   1498   Record.push_back(N->getTag());
   1499   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1500   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1501   Record.push_back(N->getLine());
   1502   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1503   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
   1504   Record.push_back(N->getSizeInBits());
   1505   Record.push_back(N->getAlignInBits());
   1506   Record.push_back(N->getOffsetInBits());
   1507   Record.push_back(N->getFlags());
   1508   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
   1509 
   1510   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
   1511   // that there is no DWARF address space associated with DIDerivedType.
   1512   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
   1513     Record.push_back(*DWARFAddressSpace + 1);
   1514   else
   1515     Record.push_back(0);
   1516 
   1517   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
   1518   Record.clear();
   1519 }
   1520 
   1521 void ModuleBitcodeWriter::writeDICompositeType(
   1522     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
   1523     unsigned Abbrev) {
   1524   const unsigned IsNotUsedInOldTypeRef = 0x2;
   1525   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
   1526   Record.push_back(N->getTag());
   1527   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1528   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1529   Record.push_back(N->getLine());
   1530   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1531   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
   1532   Record.push_back(N->getSizeInBits());
   1533   Record.push_back(N->getAlignInBits());
   1534   Record.push_back(N->getOffsetInBits());
   1535   Record.push_back(N->getFlags());
   1536   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
   1537   Record.push_back(N->getRuntimeLang());
   1538   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
   1539   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
   1540   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
   1541   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
   1542 
   1543   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
   1544   Record.clear();
   1545 }
   1546 
   1547 void ModuleBitcodeWriter::writeDISubroutineType(
   1548     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
   1549     unsigned Abbrev) {
   1550   const unsigned HasNoOldTypeRefs = 0x2;
   1551   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
   1552   Record.push_back(N->getFlags());
   1553   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
   1554   Record.push_back(N->getCC());
   1555 
   1556   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
   1557   Record.clear();
   1558 }
   1559 
   1560 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
   1561                                       SmallVectorImpl<uint64_t> &Record,
   1562                                       unsigned Abbrev) {
   1563   Record.push_back(N->isDistinct());
   1564   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
   1565   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
   1566   if (N->getRawChecksum()) {
   1567     Record.push_back(N->getRawChecksum()->Kind);
   1568     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
   1569   } else {
   1570     // Maintain backwards compatibility with the old internal representation of
   1571     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
   1572     Record.push_back(0);
   1573     Record.push_back(VE.getMetadataOrNullID(nullptr));
   1574   }
   1575   auto Source = N->getRawSource();
   1576   if (Source)
   1577     Record.push_back(VE.getMetadataOrNullID(*Source));
   1578 
   1579   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
   1580   Record.clear();
   1581 }
   1582 
   1583 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
   1584                                              SmallVectorImpl<uint64_t> &Record,
   1585                                              unsigned Abbrev) {
   1586   assert(N->isDistinct() && "Expected distinct compile units");
   1587   Record.push_back(/* IsDistinct */ true);
   1588   Record.push_back(N->getSourceLanguage());
   1589   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1590   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
   1591   Record.push_back(N->isOptimized());
   1592   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
   1593   Record.push_back(N->getRuntimeVersion());
   1594   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
   1595   Record.push_back(N->getEmissionKind());
   1596   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
   1597   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
   1598   Record.push_back(/* subprograms */ 0);
   1599   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
   1600   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
   1601   Record.push_back(N->getDWOId());
   1602   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
   1603   Record.push_back(N->getSplitDebugInlining());
   1604   Record.push_back(N->getDebugInfoForProfiling());
   1605   Record.push_back(N->getGnuPubnames());
   1606 
   1607   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
   1608   Record.clear();
   1609 }
   1610 
   1611 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
   1612                                             SmallVectorImpl<uint64_t> &Record,
   1613                                             unsigned Abbrev) {
   1614   uint64_t HasUnitFlag = 1 << 1;
   1615   Record.push_back(N->isDistinct() | HasUnitFlag);
   1616   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1617   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1618   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
   1619   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1620   Record.push_back(N->getLine());
   1621   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1622   Record.push_back(N->isLocalToUnit());
   1623   Record.push_back(N->isDefinition());
   1624   Record.push_back(N->getScopeLine());
   1625   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
   1626   Record.push_back(N->getVirtuality());
   1627   Record.push_back(N->getVirtualIndex());
   1628   Record.push_back(N->getFlags());
   1629   Record.push_back(N->isOptimized());
   1630   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
   1631   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
   1632   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
   1633   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
   1634   Record.push_back(N->getThisAdjustment());
   1635   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
   1636 
   1637   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
   1638   Record.clear();
   1639 }
   1640 
   1641 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
   1642                                               SmallVectorImpl<uint64_t> &Record,
   1643                                               unsigned Abbrev) {
   1644   Record.push_back(N->isDistinct());
   1645   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1646   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1647   Record.push_back(N->getLine());
   1648   Record.push_back(N->getColumn());
   1649 
   1650   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
   1651   Record.clear();
   1652 }
   1653 
   1654 void ModuleBitcodeWriter::writeDILexicalBlockFile(
   1655     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
   1656     unsigned Abbrev) {
   1657   Record.push_back(N->isDistinct());
   1658   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1659   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1660   Record.push_back(N->getDiscriminator());
   1661 
   1662   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
   1663   Record.clear();
   1664 }
   1665 
   1666 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
   1667                                            SmallVectorImpl<uint64_t> &Record,
   1668                                            unsigned Abbrev) {
   1669   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
   1670   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1671   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1672 
   1673   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
   1674   Record.clear();
   1675 }
   1676 
   1677 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
   1678                                        SmallVectorImpl<uint64_t> &Record,
   1679                                        unsigned Abbrev) {
   1680   Record.push_back(N->isDistinct());
   1681   Record.push_back(N->getMacinfoType());
   1682   Record.push_back(N->getLine());
   1683   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1684   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
   1685 
   1686   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
   1687   Record.clear();
   1688 }
   1689 
   1690 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
   1691                                            SmallVectorImpl<uint64_t> &Record,
   1692                                            unsigned Abbrev) {
   1693   Record.push_back(N->isDistinct());
   1694   Record.push_back(N->getMacinfoType());
   1695   Record.push_back(N->getLine());
   1696   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1697   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
   1698 
   1699   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
   1700   Record.clear();
   1701 }
   1702 
   1703 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
   1704                                         SmallVectorImpl<uint64_t> &Record,
   1705                                         unsigned Abbrev) {
   1706   Record.push_back(N->isDistinct());
   1707   for (auto &I : N->operands())
   1708     Record.push_back(VE.getMetadataOrNullID(I));
   1709 
   1710   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
   1711   Record.clear();
   1712 }
   1713 
   1714 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
   1715     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
   1716     unsigned Abbrev) {
   1717   Record.push_back(N->isDistinct());
   1718   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1719   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1720 
   1721   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
   1722   Record.clear();
   1723 }
   1724 
   1725 void ModuleBitcodeWriter::writeDITemplateValueParameter(
   1726     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
   1727     unsigned Abbrev) {
   1728   Record.push_back(N->isDistinct());
   1729   Record.push_back(N->getTag());
   1730   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1731   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1732   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
   1733 
   1734   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
   1735   Record.clear();
   1736 }
   1737 
   1738 void ModuleBitcodeWriter::writeDIGlobalVariable(
   1739     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
   1740     unsigned Abbrev) {
   1741   const uint64_t Version = 1 << 1;
   1742   Record.push_back((uint64_t)N->isDistinct() | Version);
   1743   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1744   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1745   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
   1746   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1747   Record.push_back(N->getLine());
   1748   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1749   Record.push_back(N->isLocalToUnit());
   1750   Record.push_back(N->isDefinition());
   1751   Record.push_back(/* expr */ 0);
   1752   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
   1753   Record.push_back(N->getAlignInBits());
   1754 
   1755   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
   1756   Record.clear();
   1757 }
   1758 
   1759 void ModuleBitcodeWriter::writeDILocalVariable(
   1760     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
   1761     unsigned Abbrev) {
   1762   // In order to support all possible bitcode formats in BitcodeReader we need
   1763   // to distinguish the following cases:
   1764   // 1) Record has no artificial tag (Record[1]),
   1765   //   has no obsolete inlinedAt field (Record[9]).
   1766   //   In this case Record size will be 8, HasAlignment flag is false.
   1767   // 2) Record has artificial tag (Record[1]),
   1768   //   has no obsolete inlignedAt field (Record[9]).
   1769   //   In this case Record size will be 9, HasAlignment flag is false.
   1770   // 3) Record has both artificial tag (Record[1]) and
   1771   //   obsolete inlignedAt field (Record[9]).
   1772   //   In this case Record size will be 10, HasAlignment flag is false.
   1773   // 4) Record has neither artificial tag, nor inlignedAt field, but
   1774   //   HasAlignment flag is true and Record[8] contains alignment value.
   1775   const uint64_t HasAlignmentFlag = 1 << 1;
   1776   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
   1777   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1778   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1779   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1780   Record.push_back(N->getLine());
   1781   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1782   Record.push_back(N->getArg());
   1783   Record.push_back(N->getFlags());
   1784   Record.push_back(N->getAlignInBits());
   1785 
   1786   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
   1787   Record.clear();
   1788 }
   1789 
   1790 void ModuleBitcodeWriter::writeDILabel(
   1791     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
   1792     unsigned Abbrev) {
   1793   Record.push_back((uint64_t)N->isDistinct());
   1794   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1795   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1796   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1797   Record.push_back(N->getLine());
   1798 
   1799   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
   1800   Record.clear();
   1801 }
   1802 
   1803 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
   1804                                             SmallVectorImpl<uint64_t> &Record,
   1805                                             unsigned Abbrev) {
   1806   Record.reserve(N->getElements().size() + 1);
   1807   const uint64_t Version = 3 << 1;
   1808   Record.push_back((uint64_t)N->isDistinct() | Version);
   1809   Record.append(N->elements_begin(), N->elements_end());
   1810 
   1811   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
   1812   Record.clear();
   1813 }
   1814 
   1815 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
   1816     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
   1817     unsigned Abbrev) {
   1818   Record.push_back(N->isDistinct());
   1819   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
   1820   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
   1821 
   1822   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
   1823   Record.clear();
   1824 }
   1825 
   1826 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
   1827                                               SmallVectorImpl<uint64_t> &Record,
   1828                                               unsigned Abbrev) {
   1829   Record.push_back(N->isDistinct());
   1830   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1831   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
   1832   Record.push_back(N->getLine());
   1833   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
   1834   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
   1835   Record.push_back(N->getAttributes());
   1836   Record.push_back(VE.getMetadataOrNullID(N->getType()));
   1837 
   1838   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
   1839   Record.clear();
   1840 }
   1841 
   1842 void ModuleBitcodeWriter::writeDIImportedEntity(
   1843     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
   1844     unsigned Abbrev) {
   1845   Record.push_back(N->isDistinct());
   1846   Record.push_back(N->getTag());
   1847   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
   1848   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
   1849   Record.push_back(N->getLine());
   1850   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
   1851   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
   1852 
   1853   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
   1854   Record.clear();
   1855 }
   1856 
   1857 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
   1858   auto Abbv = std::make_shared<BitCodeAbbrev>();
   1859   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
   1860   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1861   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1862   return Stream.EmitAbbrev(std::move(Abbv));
   1863 }
   1864 
   1865 void ModuleBitcodeWriter::writeNamedMetadata(
   1866     SmallVectorImpl<uint64_t> &Record) {
   1867   if (M.named_metadata_empty())
   1868     return;
   1869 
   1870   unsigned Abbrev = createNamedMetadataAbbrev();
   1871   for (const NamedMDNode &NMD : M.named_metadata()) {
   1872     // Write name.
   1873     StringRef Str = NMD.getName();
   1874     Record.append(Str.bytes_begin(), Str.bytes_end());
   1875     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
   1876     Record.clear();
   1877 
   1878     // Write named metadata operands.
   1879     for (const MDNode *N : NMD.operands())
   1880       Record.push_back(VE.getMetadataID(N));
   1881     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
   1882     Record.clear();
   1883   }
   1884 }
   1885 
   1886 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
   1887   auto Abbv = std::make_shared<BitCodeAbbrev>();
   1888   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
   1889   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
   1890   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
   1891   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
   1892   return Stream.EmitAbbrev(std::move(Abbv));
   1893 }
   1894 
   1895 /// Write out a record for MDString.
   1896 ///
   1897 /// All the metadata strings in a metadata block are emitted in a single
   1898 /// record.  The sizes and strings themselves are shoved into a blob.
   1899 void ModuleBitcodeWriter::writeMetadataStrings(
   1900     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
   1901   if (Strings.empty())
   1902     return;
   1903 
   1904   // Start the record with the number of strings.
   1905   Record.push_back(bitc::METADATA_STRINGS);
   1906   Record.push_back(Strings.size());
   1907 
   1908   // Emit the sizes of the strings in the blob.
   1909   SmallString<256> Blob;
   1910   {
   1911     BitstreamWriter W(Blob);
   1912     for (const Metadata *MD : Strings)
   1913       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
   1914     W.FlushToWord();
   1915   }
   1916 
   1917   // Add the offset to the strings to the record.
   1918   Record.push_back(Blob.size());
   1919 
   1920   // Add the strings to the blob.
   1921   for (const Metadata *MD : Strings)
   1922     Blob.append(cast<MDString>(MD)->getString());
   1923 
   1924   // Emit the final record.
   1925   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
   1926   Record.clear();
   1927 }
   1928 
   1929 // Generates an enum to use as an index in the Abbrev array of Metadata record.
   1930 enum MetadataAbbrev : unsigned {
   1931 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
   1932 #include "llvm/IR/Metadata.def"
   1933   LastPlusOne
   1934 };
   1935 
   1936 void ModuleBitcodeWriter::writeMetadataRecords(
   1937     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
   1938     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
   1939   if (MDs.empty())
   1940     return;
   1941 
   1942   // Initialize MDNode abbreviations.
   1943 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
   1944 #include "llvm/IR/Metadata.def"
   1945 
   1946   for (const Metadata *MD : MDs) {
   1947     if (IndexPos)
   1948       IndexPos->push_back(Stream.GetCurrentBitNo());
   1949     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
   1950       assert(N->isResolved() && "Expected forward references to be resolved");
   1951 
   1952       switch (N->getMetadataID()) {
   1953       default:
   1954         llvm_unreachable("Invalid MDNode subclass");
   1955 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
   1956   case Metadata::CLASS##Kind:                                                  \
   1957     if (MDAbbrevs)                                                             \
   1958       write##CLASS(cast<CLASS>(N), Record,                                     \
   1959                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
   1960     else                                                                       \
   1961       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
   1962     continue;
   1963 #include "llvm/IR/Metadata.def"
   1964       }
   1965     }
   1966     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
   1967   }
   1968 }
   1969 
   1970 void ModuleBitcodeWriter::writeModuleMetadata() {
   1971   if (!VE.hasMDs() && M.named_metadata_empty())
   1972     return;
   1973 
   1974   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
   1975   SmallVector<uint64_t, 64> Record;
   1976 
   1977   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
   1978   // block and load any metadata.
   1979   std::vector<unsigned> MDAbbrevs;
   1980 
   1981   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
   1982   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
   1983   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
   1984       createGenericDINodeAbbrev();
   1985 
   1986   auto Abbv = std::make_shared<BitCodeAbbrev>();
   1987   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
   1988   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   1989   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   1990   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   1991 
   1992   Abbv = std::make_shared<BitCodeAbbrev>();
   1993   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
   1994   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1995   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   1996   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   1997 
   1998   // Emit MDStrings together upfront.
   1999   writeMetadataStrings(VE.getMDStrings(), Record);
   2000 
   2001   // We only emit an index for the metadata record if we have more than a given
   2002   // (naive) threshold of metadatas, otherwise it is not worth it.
   2003   if (VE.getNonMDStrings().size() > IndexThreshold) {
   2004     // Write a placeholder value in for the offset of the metadata index,
   2005     // which is written after the records, so that it can include
   2006     // the offset of each entry. The placeholder offset will be
   2007     // updated after all records are emitted.
   2008     uint64_t Vals[] = {0, 0};
   2009     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
   2010   }
   2011 
   2012   // Compute and save the bit offset to the current position, which will be
   2013   // patched when we emit the index later. We can simply subtract the 64-bit
   2014   // fixed size from the current bit number to get the location to backpatch.
   2015   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
   2016 
   2017   // This index will contain the bitpos for each individual record.
   2018   std::vector<uint64_t> IndexPos;
   2019   IndexPos.reserve(VE.getNonMDStrings().size());
   2020 
   2021   // Write all the records
   2022   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
   2023 
   2024   if (VE.getNonMDStrings().size() > IndexThreshold) {
   2025     // Now that we have emitted all the records we will emit the index. But
   2026     // first
   2027     // backpatch the forward reference so that the reader can skip the records
   2028     // efficiently.
   2029     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
   2030                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
   2031 
   2032     // Delta encode the index.
   2033     uint64_t PreviousValue = IndexOffsetRecordBitPos;
   2034     for (auto &Elt : IndexPos) {
   2035       auto EltDelta = Elt - PreviousValue;
   2036       PreviousValue = Elt;
   2037       Elt = EltDelta;
   2038     }
   2039     // Emit the index record.
   2040     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
   2041     IndexPos.clear();
   2042   }
   2043 
   2044   // Write the named metadata now.
   2045   writeNamedMetadata(Record);
   2046 
   2047   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
   2048     SmallVector<uint64_t, 4> Record;
   2049     Record.push_back(VE.getValueID(&GO));
   2050     pushGlobalMetadataAttachment(Record, GO);
   2051     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
   2052   };
   2053   for (const Function &F : M)
   2054     if (F.isDeclaration() && F.hasMetadata())
   2055       AddDeclAttachedMetadata(F);
   2056   // FIXME: Only store metadata for declarations here, and move data for global
   2057   // variable definitions to a separate block (PR28134).
   2058   for (const GlobalVariable &GV : M.globals())
   2059     if (GV.hasMetadata())
   2060       AddDeclAttachedMetadata(GV);
   2061 
   2062   Stream.ExitBlock();
   2063 }
   2064 
   2065 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
   2066   if (!VE.hasMDs())
   2067     return;
   2068 
   2069   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
   2070   SmallVector<uint64_t, 64> Record;
   2071   writeMetadataStrings(VE.getMDStrings(), Record);
   2072   writeMetadataRecords(VE.getNonMDStrings(), Record);
   2073   Stream.ExitBlock();
   2074 }
   2075 
   2076 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
   2077     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
   2078   // [n x [id, mdnode]]
   2079   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
   2080   GO.getAllMetadata(MDs);
   2081   for (const auto &I : MDs) {
   2082     Record.push_back(I.first);
   2083     Record.push_back(VE.getMetadataID(I.second));
   2084   }
   2085 }
   2086 
   2087 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
   2088   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
   2089 
   2090   SmallVector<uint64_t, 64> Record;
   2091 
   2092   if (F.hasMetadata()) {
   2093     pushGlobalMetadataAttachment(Record, F);
   2094     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
   2095     Record.clear();
   2096   }
   2097 
   2098   // Write metadata attachments
   2099   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
   2100   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
   2101   for (const BasicBlock &BB : F)
   2102     for (const Instruction &I : BB) {
   2103       MDs.clear();
   2104       I.getAllMetadataOtherThanDebugLoc(MDs);
   2105 
   2106       // If no metadata, ignore instruction.
   2107       if (MDs.empty()) continue;
   2108 
   2109       Record.push_back(VE.getInstructionID(&I));
   2110 
   2111       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
   2112         Record.push_back(MDs[i].first);
   2113         Record.push_back(VE.getMetadataID(MDs[i].second));
   2114       }
   2115       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
   2116       Record.clear();
   2117     }
   2118 
   2119   Stream.ExitBlock();
   2120 }
   2121 
   2122 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
   2123   SmallVector<uint64_t, 64> Record;
   2124 
   2125   // Write metadata kinds
   2126   // METADATA_KIND - [n x [id, name]]
   2127   SmallVector<StringRef, 8> Names;
   2128   M.getMDKindNames(Names);
   2129 
   2130   if (Names.empty()) return;
   2131 
   2132   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
   2133 
   2134   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
   2135     Record.push_back(MDKindID);
   2136     StringRef KName = Names[MDKindID];
   2137     Record.append(KName.begin(), KName.end());
   2138 
   2139     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
   2140     Record.clear();
   2141   }
   2142 
   2143   Stream.ExitBlock();
   2144 }
   2145 
   2146 void ModuleBitcodeWriter::writeOperandBundleTags() {
   2147   // Write metadata kinds
   2148   //
   2149   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
   2150   //
   2151   // OPERAND_BUNDLE_TAG - [strchr x N]
   2152 
   2153   SmallVector<StringRef, 8> Tags;
   2154   M.getOperandBundleTags(Tags);
   2155 
   2156   if (Tags.empty())
   2157     return;
   2158 
   2159   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
   2160 
   2161   SmallVector<uint64_t, 64> Record;
   2162 
   2163   for (auto Tag : Tags) {
   2164     Record.append(Tag.begin(), Tag.end());
   2165 
   2166     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
   2167     Record.clear();
   2168   }
   2169 
   2170   Stream.ExitBlock();
   2171 }
   2172 
   2173 void ModuleBitcodeWriter::writeSyncScopeNames() {
   2174   SmallVector<StringRef, 8> SSNs;
   2175   M.getContext().getSyncScopeNames(SSNs);
   2176   if (SSNs.empty())
   2177     return;
   2178 
   2179   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
   2180 
   2181   SmallVector<uint64_t, 64> Record;
   2182   for (auto SSN : SSNs) {
   2183     Record.append(SSN.begin(), SSN.end());
   2184     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
   2185     Record.clear();
   2186   }
   2187 
   2188   Stream.ExitBlock();
   2189 }
   2190 
   2191 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
   2192   if ((int64_t)V >= 0)
   2193     Vals.push_back(V << 1);
   2194   else
   2195     Vals.push_back((-V << 1) | 1);
   2196 }
   2197 
   2198 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
   2199                                          bool isGlobal) {
   2200   if (FirstVal == LastVal) return;
   2201 
   2202   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
   2203 
   2204   unsigned AggregateAbbrev = 0;
   2205   unsigned String8Abbrev = 0;
   2206   unsigned CString7Abbrev = 0;
   2207   unsigned CString6Abbrev = 0;
   2208   // If this is a constant pool for the module, emit module-specific abbrevs.
   2209   if (isGlobal) {
   2210     // Abbrev for CST_CODE_AGGREGATE.
   2211     auto Abbv = std::make_shared<BitCodeAbbrev>();
   2212     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
   2213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
   2215     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   2216 
   2217     // Abbrev for CST_CODE_STRING.
   2218     Abbv = std::make_shared<BitCodeAbbrev>();
   2219     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
   2220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   2222     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
   2223     // Abbrev for CST_CODE_CSTRING.
   2224     Abbv = std::make_shared<BitCodeAbbrev>();
   2225     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
   2226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   2228     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
   2229     // Abbrev for CST_CODE_CSTRING.
   2230     Abbv = std::make_shared<BitCodeAbbrev>();
   2231     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
   2232     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   2233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   2234     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
   2235   }
   2236 
   2237   SmallVector<uint64_t, 64> Record;
   2238 
   2239   const ValueEnumerator::ValueList &Vals = VE.getValues();
   2240   Type *LastTy = nullptr;
   2241   for (unsigned i = FirstVal; i != LastVal; ++i) {
   2242     const Value *V = Vals[i].first;
   2243     // If we need to switch types, do so now.
   2244     if (V->getType() != LastTy) {
   2245       LastTy = V->getType();
   2246       Record.push_back(VE.getTypeID(LastTy));
   2247       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
   2248                         CONSTANTS_SETTYPE_ABBREV);
   2249       Record.clear();
   2250     }
   2251 
   2252     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
   2253       Record.push_back(unsigned(IA->hasSideEffects()) |
   2254                        unsigned(IA->isAlignStack()) << 1 |
   2255                        unsigned(IA->getDialect()&1) << 2);
   2256 
   2257       // Add the asm string.
   2258       const std::string &AsmStr = IA->getAsmString();
   2259       Record.push_back(AsmStr.size());
   2260       Record.append(AsmStr.begin(), AsmStr.end());
   2261 
   2262       // Add the constraint string.
   2263       const std::string &ConstraintStr = IA->getConstraintString();
   2264       Record.push_back(ConstraintStr.size());
   2265       Record.append(ConstraintStr.begin(), ConstraintStr.end());
   2266       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
   2267       Record.clear();
   2268       continue;
   2269     }
   2270     const Constant *C = cast<Constant>(V);
   2271     unsigned Code = -1U;
   2272     unsigned AbbrevToUse = 0;
   2273     if (C->isNullValue()) {
   2274       Code = bitc::CST_CODE_NULL;
   2275     } else if (isa<UndefValue>(C)) {
   2276       Code = bitc::CST_CODE_UNDEF;
   2277     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
   2278       if (IV->getBitWidth() <= 64) {
   2279         uint64_t V = IV->getSExtValue();
   2280         emitSignedInt64(Record, V);
   2281         Code = bitc::CST_CODE_INTEGER;
   2282         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
   2283       } else {                             // Wide integers, > 64 bits in size.
   2284         // We have an arbitrary precision integer value to write whose
   2285         // bit width is > 64. However, in canonical unsigned integer
   2286         // format it is likely that the high bits are going to be zero.
   2287         // So, we only write the number of active words.
   2288         unsigned NWords = IV->getValue().getActiveWords();
   2289         const uint64_t *RawWords = IV->getValue().getRawData();
   2290         for (unsigned i = 0; i != NWords; ++i) {
   2291           emitSignedInt64(Record, RawWords[i]);
   2292         }
   2293         Code = bitc::CST_CODE_WIDE_INTEGER;
   2294       }
   2295     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
   2296       Code = bitc::CST_CODE_FLOAT;
   2297       Type *Ty = CFP->getType();
   2298       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
   2299         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
   2300       } else if (Ty->isX86_FP80Ty()) {
   2301         // api needed to prevent premature destruction
   2302         // bits are not in the same order as a normal i80 APInt, compensate.
   2303         APInt api = CFP->getValueAPF().bitcastToAPInt();
   2304         const uint64_t *p = api.getRawData();
   2305         Record.push_back((p[1] << 48) | (p[0] >> 16));
   2306         Record.push_back(p[0] & 0xffffLL);
   2307       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
   2308         APInt api = CFP->getValueAPF().bitcastToAPInt();
   2309         const uint64_t *p = api.getRawData();
   2310         Record.push_back(p[0]);
   2311         Record.push_back(p[1]);
   2312       } else {
   2313         assert(0 && "Unknown FP type!");
   2314       }
   2315     } else if (isa<ConstantDataSequential>(C) &&
   2316                cast<ConstantDataSequential>(C)->isString()) {
   2317       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
   2318       // Emit constant strings specially.
   2319       unsigned NumElts = Str->getNumElements();
   2320       // If this is a null-terminated string, use the denser CSTRING encoding.
   2321       if (Str->isCString()) {
   2322         Code = bitc::CST_CODE_CSTRING;
   2323         --NumElts;  // Don't encode the null, which isn't allowed by char6.
   2324       } else {
   2325         Code = bitc::CST_CODE_STRING;
   2326         AbbrevToUse = String8Abbrev;
   2327       }
   2328       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
   2329       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
   2330       for (unsigned i = 0; i != NumElts; ++i) {
   2331         unsigned char V = Str->getElementAsInteger(i);
   2332         Record.push_back(V);
   2333         isCStr7 &= (V & 128) == 0;
   2334         if (isCStrChar6)
   2335           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
   2336       }
   2337 
   2338       if (isCStrChar6)
   2339         AbbrevToUse = CString6Abbrev;
   2340       else if (isCStr7)
   2341         AbbrevToUse = CString7Abbrev;
   2342     } else if (const ConstantDataSequential *CDS =
   2343                   dyn_cast<ConstantDataSequential>(C)) {
   2344       Code = bitc::CST_CODE_DATA;
   2345       Type *EltTy = CDS->getType()->getElementType();
   2346       if (isa<IntegerType>(EltTy)) {
   2347         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
   2348           Record.push_back(CDS->getElementAsInteger(i));
   2349       } else {
   2350         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
   2351           Record.push_back(
   2352               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
   2353       }
   2354     } else if (isa<ConstantAggregate>(C)) {
   2355       Code = bitc::CST_CODE_AGGREGATE;
   2356       for (const Value *Op : C->operands())
   2357         Record.push_back(VE.getValueID(Op));
   2358       AbbrevToUse = AggregateAbbrev;
   2359     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   2360       switch (CE->getOpcode()) {
   2361       default:
   2362         if (Instruction::isCast(CE->getOpcode())) {
   2363           Code = bitc::CST_CODE_CE_CAST;
   2364           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
   2365           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   2366           Record.push_back(VE.getValueID(C->getOperand(0)));
   2367           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
   2368         } else {
   2369           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
   2370           Code = bitc::CST_CODE_CE_BINOP;
   2371           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
   2372           Record.push_back(VE.getValueID(C->getOperand(0)));
   2373           Record.push_back(VE.getValueID(C->getOperand(1)));
   2374           uint64_t Flags = getOptimizationFlags(CE);
   2375           if (Flags != 0)
   2376             Record.push_back(Flags);
   2377         }
   2378         break;
   2379       case Instruction::GetElementPtr: {
   2380         Code = bitc::CST_CODE_CE_GEP;
   2381         const auto *GO = cast<GEPOperator>(C);
   2382         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
   2383         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
   2384           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
   2385           Record.push_back((*Idx << 1) | GO->isInBounds());
   2386         } else if (GO->isInBounds())
   2387           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
   2388         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
   2389           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
   2390           Record.push_back(VE.getValueID(C->getOperand(i)));
   2391         }
   2392         break;
   2393       }
   2394       case Instruction::Select:
   2395         Code = bitc::CST_CODE_CE_SELECT;
   2396         Record.push_back(VE.getValueID(C->getOperand(0)));
   2397         Record.push_back(VE.getValueID(C->getOperand(1)));
   2398         Record.push_back(VE.getValueID(C->getOperand(2)));
   2399         break;
   2400       case Instruction::ExtractElement:
   2401         Code = bitc::CST_CODE_CE_EXTRACTELT;
   2402         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   2403         Record.push_back(VE.getValueID(C->getOperand(0)));
   2404         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
   2405         Record.push_back(VE.getValueID(C->getOperand(1)));
   2406         break;
   2407       case Instruction::InsertElement:
   2408         Code = bitc::CST_CODE_CE_INSERTELT;
   2409         Record.push_back(VE.getValueID(C->getOperand(0)));
   2410         Record.push_back(VE.getValueID(C->getOperand(1)));
   2411         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
   2412         Record.push_back(VE.getValueID(C->getOperand(2)));
   2413         break;
   2414       case Instruction::ShuffleVector:
   2415         // If the return type and argument types are the same, this is a
   2416         // standard shufflevector instruction.  If the types are different,
   2417         // then the shuffle is widening or truncating the input vectors, and
   2418         // the argument type must also be encoded.
   2419         if (C->getType() == C->getOperand(0)->getType()) {
   2420           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
   2421         } else {
   2422           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
   2423           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   2424         }
   2425         Record.push_back(VE.getValueID(C->getOperand(0)));
   2426         Record.push_back(VE.getValueID(C->getOperand(1)));
   2427         Record.push_back(VE.getValueID(C->getOperand(2)));
   2428         break;
   2429       case Instruction::ICmp:
   2430       case Instruction::FCmp:
   2431         Code = bitc::CST_CODE_CE_CMP;
   2432         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   2433         Record.push_back(VE.getValueID(C->getOperand(0)));
   2434         Record.push_back(VE.getValueID(C->getOperand(1)));
   2435         Record.push_back(CE->getPredicate());
   2436         break;
   2437       }
   2438     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
   2439       Code = bitc::CST_CODE_BLOCKADDRESS;
   2440       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
   2441       Record.push_back(VE.getValueID(BA->getFunction()));
   2442       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
   2443     } else {
   2444 #ifndef NDEBUG
   2445       C->dump();
   2446 #endif
   2447       llvm_unreachable("Unknown constant!");
   2448     }
   2449     Stream.EmitRecord(Code, Record, AbbrevToUse);
   2450     Record.clear();
   2451   }
   2452 
   2453   Stream.ExitBlock();
   2454 }
   2455 
   2456 void ModuleBitcodeWriter::writeModuleConstants() {
   2457   const ValueEnumerator::ValueList &Vals = VE.getValues();
   2458 
   2459   // Find the first constant to emit, which is the first non-globalvalue value.
   2460   // We know globalvalues have been emitted by WriteModuleInfo.
   2461   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   2462     if (!isa<GlobalValue>(Vals[i].first)) {
   2463       writeConstants(i, Vals.size(), true);
   2464       return;
   2465     }
   2466   }
   2467 }
   2468 
   2469 /// pushValueAndType - The file has to encode both the value and type id for
   2470 /// many values, because we need to know what type to create for forward
   2471 /// references.  However, most operands are not forward references, so this type
   2472 /// field is not needed.
   2473 ///
   2474 /// This function adds V's value ID to Vals.  If the value ID is higher than the
   2475 /// instruction ID, then it is a forward reference, and it also includes the
   2476 /// type ID.  The value ID that is written is encoded relative to the InstID.
   2477 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
   2478                                            SmallVectorImpl<unsigned> &Vals) {
   2479   unsigned ValID = VE.getValueID(V);
   2480   // Make encoding relative to the InstID.
   2481   Vals.push_back(InstID - ValID);
   2482   if (ValID >= InstID) {
   2483     Vals.push_back(VE.getTypeID(V->getType()));
   2484     return true;
   2485   }
   2486   return false;
   2487 }
   2488 
   2489 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
   2490                                               unsigned InstID) {
   2491   SmallVector<unsigned, 64> Record;
   2492   LLVMContext &C = CS.getInstruction()->getContext();
   2493 
   2494   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
   2495     const auto &Bundle = CS.getOperandBundleAt(i);
   2496     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
   2497 
   2498     for (auto &Input : Bundle.Inputs)
   2499       pushValueAndType(Input, InstID, Record);
   2500 
   2501     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
   2502     Record.clear();
   2503   }
   2504 }
   2505 
   2506 /// pushValue - Like pushValueAndType, but where the type of the value is
   2507 /// omitted (perhaps it was already encoded in an earlier operand).
   2508 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
   2509                                     SmallVectorImpl<unsigned> &Vals) {
   2510   unsigned ValID = VE.getValueID(V);
   2511   Vals.push_back(InstID - ValID);
   2512 }
   2513 
   2514 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
   2515                                           SmallVectorImpl<uint64_t> &Vals) {
   2516   unsigned ValID = VE.getValueID(V);
   2517   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
   2518   emitSignedInt64(Vals, diff);
   2519 }
   2520 
   2521 /// WriteInstruction - Emit an instruction to the specified stream.
   2522 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
   2523                                            unsigned InstID,
   2524                                            SmallVectorImpl<unsigned> &Vals) {
   2525   unsigned Code = 0;
   2526   unsigned AbbrevToUse = 0;
   2527   VE.setInstructionID(&I);
   2528   switch (I.getOpcode()) {
   2529   default:
   2530     if (Instruction::isCast(I.getOpcode())) {
   2531       Code = bitc::FUNC_CODE_INST_CAST;
   2532       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
   2533         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   2534       Vals.push_back(VE.getTypeID(I.getType()));
   2535       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
   2536     } else {
   2537       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   2538       Code = bitc::FUNC_CODE_INST_BINOP;
   2539       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
   2540         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   2541       pushValue(I.getOperand(1), InstID, Vals);
   2542       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
   2543       uint64_t Flags = getOptimizationFlags(&I);
   2544       if (Flags != 0) {
   2545         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   2546           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   2547         Vals.push_back(Flags);
   2548       }
   2549     }
   2550     break;
   2551 
   2552   case Instruction::GetElementPtr: {
   2553     Code = bitc::FUNC_CODE_INST_GEP;
   2554     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
   2555     auto &GEPInst = cast<GetElementPtrInst>(I);
   2556     Vals.push_back(GEPInst.isInBounds());
   2557     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
   2558     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   2559       pushValueAndType(I.getOperand(i), InstID, Vals);
   2560     break;
   2561   }
   2562   case Instruction::ExtractValue: {
   2563     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   2564     pushValueAndType(I.getOperand(0), InstID, Vals);
   2565     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   2566     Vals.append(EVI->idx_begin(), EVI->idx_end());
   2567     break;
   2568   }
   2569   case Instruction::InsertValue: {
   2570     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   2571     pushValueAndType(I.getOperand(0), InstID, Vals);
   2572     pushValueAndType(I.getOperand(1), InstID, Vals);
   2573     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   2574     Vals.append(IVI->idx_begin(), IVI->idx_end());
   2575     break;
   2576   }
   2577   case Instruction::Select:
   2578     Code = bitc::FUNC_CODE_INST_VSELECT;
   2579     pushValueAndType(I.getOperand(1), InstID, Vals);
   2580     pushValue(I.getOperand(2), InstID, Vals);
   2581     pushValueAndType(I.getOperand(0), InstID, Vals);
   2582     break;
   2583   case Instruction::ExtractElement:
   2584     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   2585     pushValueAndType(I.getOperand(0), InstID, Vals);
   2586     pushValueAndType(I.getOperand(1), InstID, Vals);
   2587     break;
   2588   case Instruction::InsertElement:
   2589     Code = bitc::FUNC_CODE_INST_INSERTELT;
   2590     pushValueAndType(I.getOperand(0), InstID, Vals);
   2591     pushValue(I.getOperand(1), InstID, Vals);
   2592     pushValueAndType(I.getOperand(2), InstID, Vals);
   2593     break;
   2594   case Instruction::ShuffleVector:
   2595     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   2596     pushValueAndType(I.getOperand(0), InstID, Vals);
   2597     pushValue(I.getOperand(1), InstID, Vals);
   2598     pushValue(I.getOperand(2), InstID, Vals);
   2599     break;
   2600   case Instruction::ICmp:
   2601   case Instruction::FCmp: {
   2602     // compare returning Int1Ty or vector of Int1Ty
   2603     Code = bitc::FUNC_CODE_INST_CMP2;
   2604     pushValueAndType(I.getOperand(0), InstID, Vals);
   2605     pushValue(I.getOperand(1), InstID, Vals);
   2606     Vals.push_back(cast<CmpInst>(I).getPredicate());
   2607     uint64_t Flags = getOptimizationFlags(&I);
   2608     if (Flags != 0)
   2609       Vals.push_back(Flags);
   2610     break;
   2611   }
   2612 
   2613   case Instruction::Ret:
   2614     {
   2615       Code = bitc::FUNC_CODE_INST_RET;
   2616       unsigned NumOperands = I.getNumOperands();
   2617       if (NumOperands == 0)
   2618         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   2619       else if (NumOperands == 1) {
   2620         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
   2621           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   2622       } else {
   2623         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   2624           pushValueAndType(I.getOperand(i), InstID, Vals);
   2625       }
   2626     }
   2627     break;
   2628   case Instruction::Br:
   2629     {
   2630       Code = bitc::FUNC_CODE_INST_BR;
   2631       const BranchInst &II = cast<BranchInst>(I);
   2632       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   2633       if (II.isConditional()) {
   2634         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   2635         pushValue(II.getCondition(), InstID, Vals);
   2636       }
   2637     }
   2638     break;
   2639   case Instruction::Switch:
   2640     {
   2641       Code = bitc::FUNC_CODE_INST_SWITCH;
   2642       const SwitchInst &SI = cast<SwitchInst>(I);
   2643       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
   2644       pushValue(SI.getCondition(), InstID, Vals);
   2645       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
   2646       for (auto Case : SI.cases()) {
   2647         Vals.push_back(VE.getValueID(Case.getCaseValue()));
   2648         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
   2649       }
   2650     }
   2651     break;
   2652   case Instruction::IndirectBr:
   2653     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   2654     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   2655     // Encode the address operand as relative, but not the basic blocks.
   2656     pushValue(I.getOperand(0), InstID, Vals);
   2657     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
   2658       Vals.push_back(VE.getValueID(I.getOperand(i)));
   2659     break;
   2660 
   2661   case Instruction::Invoke: {
   2662     const InvokeInst *II = cast<InvokeInst>(&I);
   2663     const Value *Callee = II->getCalledValue();
   2664     FunctionType *FTy = II->getFunctionType();
   2665 
   2666     if (II->hasOperandBundles())
   2667       writeOperandBundles(II, InstID);
   2668 
   2669     Code = bitc::FUNC_CODE_INST_INVOKE;
   2670 
   2671     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
   2672     Vals.push_back(II->getCallingConv() | 1 << 13);
   2673     Vals.push_back(VE.getValueID(II->getNormalDest()));
   2674     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   2675     Vals.push_back(VE.getTypeID(FTy));
   2676     pushValueAndType(Callee, InstID, Vals);
   2677 
   2678     // Emit value #'s for the fixed parameters.
   2679     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   2680       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
   2681 
   2682     // Emit type/value pairs for varargs params.
   2683     if (FTy->isVarArg()) {
   2684       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
   2685            i != e; ++i)
   2686         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
   2687     }
   2688     break;
   2689   }
   2690   case Instruction::Resume:
   2691     Code = bitc::FUNC_CODE_INST_RESUME;
   2692     pushValueAndType(I.getOperand(0), InstID, Vals);
   2693     break;
   2694   case Instruction::CleanupRet: {
   2695     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
   2696     const auto &CRI = cast<CleanupReturnInst>(I);
   2697     pushValue(CRI.getCleanupPad(), InstID, Vals);
   2698     if (CRI.hasUnwindDest())
   2699       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
   2700     break;
   2701   }
   2702   case Instruction::CatchRet: {
   2703     Code = bitc::FUNC_CODE_INST_CATCHRET;
   2704     const auto &CRI = cast<CatchReturnInst>(I);
   2705     pushValue(CRI.getCatchPad(), InstID, Vals);
   2706     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
   2707     break;
   2708   }
   2709   case Instruction::CleanupPad:
   2710   case Instruction::CatchPad: {
   2711     const auto &FuncletPad = cast<FuncletPadInst>(I);
   2712     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
   2713                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
   2714     pushValue(FuncletPad.getParentPad(), InstID, Vals);
   2715 
   2716     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
   2717     Vals.push_back(NumArgOperands);
   2718     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
   2719       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
   2720     break;
   2721   }
   2722   case Instruction::CatchSwitch: {
   2723     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
   2724     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
   2725 
   2726     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
   2727 
   2728     unsigned NumHandlers = CatchSwitch.getNumHandlers();
   2729     Vals.push_back(NumHandlers);
   2730     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
   2731       Vals.push_back(VE.getValueID(CatchPadBB));
   2732 
   2733     if (CatchSwitch.hasUnwindDest())
   2734       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
   2735     break;
   2736   }
   2737   case Instruction::Unreachable:
   2738     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   2739     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   2740     break;
   2741 
   2742   case Instruction::PHI: {
   2743     const PHINode &PN = cast<PHINode>(I);
   2744     Code = bitc::FUNC_CODE_INST_PHI;
   2745     // With the newer instruction encoding, forward references could give
   2746     // negative valued IDs.  This is most common for PHIs, so we use
   2747     // signed VBRs.
   2748     SmallVector<uint64_t, 128> Vals64;
   2749     Vals64.push_back(VE.getTypeID(PN.getType()));
   2750     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   2751       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
   2752       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   2753     }
   2754     // Emit a Vals64 vector and exit.
   2755     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
   2756     Vals64.clear();
   2757     return;
   2758   }
   2759 
   2760   case Instruction::LandingPad: {
   2761     const LandingPadInst &LP = cast<LandingPadInst>(I);
   2762     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
   2763     Vals.push_back(VE.getTypeID(LP.getType()));
   2764     Vals.push_back(LP.isCleanup());
   2765     Vals.push_back(LP.getNumClauses());
   2766     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
   2767       if (LP.isCatch(I))
   2768         Vals.push_back(LandingPadInst::Catch);
   2769       else
   2770         Vals.push_back(LandingPadInst::Filter);
   2771       pushValueAndType(LP.getClause(I), InstID, Vals);
   2772     }
   2773     break;
   2774   }
   2775 
   2776   case Instruction::Alloca: {
   2777     Code = bitc::FUNC_CODE_INST_ALLOCA;
   2778     const AllocaInst &AI = cast<AllocaInst>(I);
   2779     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
   2780     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   2781     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   2782     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
   2783     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
   2784            "not enough bits for maximum alignment");
   2785     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
   2786     AlignRecord |= AI.isUsedWithInAlloca() << 5;
   2787     AlignRecord |= 1 << 6;
   2788     AlignRecord |= AI.isSwiftError() << 7;
   2789     Vals.push_back(AlignRecord);
   2790     break;
   2791   }
   2792 
   2793   case Instruction::Load:
   2794     if (cast<LoadInst>(I).isAtomic()) {
   2795       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
   2796       pushValueAndType(I.getOperand(0), InstID, Vals);
   2797     } else {
   2798       Code = bitc::FUNC_CODE_INST_LOAD;
   2799       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
   2800         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   2801     }
   2802     Vals.push_back(VE.getTypeID(I.getType()));
   2803     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   2804     Vals.push_back(cast<LoadInst>(I).isVolatile());
   2805     if (cast<LoadInst>(I).isAtomic()) {
   2806       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
   2807       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
   2808     }
   2809     break;
   2810   case Instruction::Store:
   2811     if (cast<StoreInst>(I).isAtomic())
   2812       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
   2813     else
   2814       Code = bitc::FUNC_CODE_INST_STORE;
   2815     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
   2816     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
   2817     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   2818     Vals.push_back(cast<StoreInst>(I).isVolatile());
   2819     if (cast<StoreInst>(I).isAtomic()) {
   2820       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
   2821       Vals.push_back(
   2822           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
   2823     }
   2824     break;
   2825   case Instruction::AtomicCmpXchg:
   2826     Code = bitc::FUNC_CODE_INST_CMPXCHG;
   2827     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
   2828     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
   2829     pushValue(I.getOperand(2), InstID, Vals);        // newval.
   2830     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
   2831     Vals.push_back(
   2832         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
   2833     Vals.push_back(
   2834         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
   2835     Vals.push_back(
   2836         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
   2837     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
   2838     break;
   2839   case Instruction::AtomicRMW:
   2840     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
   2841     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
   2842     pushValue(I.getOperand(1), InstID, Vals);        // val.
   2843     Vals.push_back(
   2844         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
   2845     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
   2846     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
   2847     Vals.push_back(
   2848         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
   2849     break;
   2850   case Instruction::Fence:
   2851     Code = bitc::FUNC_CODE_INST_FENCE;
   2852     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
   2853     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
   2854     break;
   2855   case Instruction::Call: {
   2856     const CallInst &CI = cast<CallInst>(I);
   2857     FunctionType *FTy = CI.getFunctionType();
   2858 
   2859     if (CI.hasOperandBundles())
   2860       writeOperandBundles(&CI, InstID);
   2861 
   2862     Code = bitc::FUNC_CODE_INST_CALL;
   2863 
   2864     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
   2865 
   2866     unsigned Flags = getOptimizationFlags(&I);
   2867     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
   2868                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
   2869                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
   2870                    1 << bitc::CALL_EXPLICIT_TYPE |
   2871                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
   2872                    unsigned(Flags != 0) << bitc::CALL_FMF);
   2873     if (Flags != 0)
   2874       Vals.push_back(Flags);
   2875 
   2876     Vals.push_back(VE.getTypeID(FTy));
   2877     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
   2878 
   2879     // Emit value #'s for the fixed parameters.
   2880     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
   2881       // Check for labels (can happen with asm labels).
   2882       if (FTy->getParamType(i)->isLabelTy())
   2883         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
   2884       else
   2885         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
   2886     }
   2887 
   2888     // Emit type/value pairs for varargs params.
   2889     if (FTy->isVarArg()) {
   2890       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   2891            i != e; ++i)
   2892         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
   2893     }
   2894     break;
   2895   }
   2896   case Instruction::VAArg:
   2897     Code = bitc::FUNC_CODE_INST_VAARG;
   2898     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   2899     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
   2900     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   2901     break;
   2902   }
   2903 
   2904   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   2905   Vals.clear();
   2906 }
   2907 
   2908 /// Write a GlobalValue VST to the module. The purpose of this data structure is
   2909 /// to allow clients to efficiently find the function body.
   2910 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
   2911   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
   2912   // Get the offset of the VST we are writing, and backpatch it into
   2913   // the VST forward declaration record.
   2914   uint64_t VSTOffset = Stream.GetCurrentBitNo();
   2915   // The BitcodeStartBit was the stream offset of the identification block.
   2916   VSTOffset -= bitcodeStartBit();
   2917   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
   2918   // Note that we add 1 here because the offset is relative to one word
   2919   // before the start of the identification block, which was historically
   2920   // always the start of the regular bitcode header.
   2921   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
   2922 
   2923   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   2924 
   2925   auto Abbv = std::make_shared<BitCodeAbbrev>();
   2926   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
   2927   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
   2928   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
   2929   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   2930 
   2931   for (const Function &F : M) {
   2932     uint64_t Record[2];
   2933 
   2934     if (F.isDeclaration())
   2935       continue;
   2936 
   2937     Record[0] = VE.getValueID(&F);
   2938 
   2939     // Save the word offset of the function (from the start of the
   2940     // actual bitcode written to the stream).
   2941     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
   2942     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
   2943     // Note that we add 1 here because the offset is relative to one word
   2944     // before the start of the identification block, which was historically
   2945     // always the start of the regular bitcode header.
   2946     Record[1] = BitcodeIndex / 32 + 1;
   2947 
   2948     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
   2949   }
   2950 
   2951   Stream.ExitBlock();
   2952 }
   2953 
   2954 /// Emit names for arguments, instructions and basic blocks in a function.
   2955 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
   2956     const ValueSymbolTable &VST) {
   2957   if (VST.empty())
   2958     return;
   2959 
   2960   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   2961 
   2962   // FIXME: Set up the abbrev, we know how many values there are!
   2963   // FIXME: We know if the type names can use 7-bit ascii.
   2964   SmallVector<uint64_t, 64> NameVals;
   2965 
   2966   for (const ValueName &Name : VST) {
   2967     // Figure out the encoding to use for the name.
   2968     StringEncoding Bits = getStringEncoding(Name.getKey());
   2969 
   2970     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   2971     NameVals.push_back(VE.getValueID(Name.getValue()));
   2972 
   2973     // VST_CODE_ENTRY:   [valueid, namechar x N]
   2974     // VST_CODE_BBENTRY: [bbid, namechar x N]
   2975     unsigned Code;
   2976     if (isa<BasicBlock>(Name.getValue())) {
   2977       Code = bitc::VST_CODE_BBENTRY;
   2978       if (Bits == SE_Char6)
   2979         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   2980     } else {
   2981       Code = bitc::VST_CODE_ENTRY;
   2982       if (Bits == SE_Char6)
   2983         AbbrevToUse = VST_ENTRY_6_ABBREV;
   2984       else if (Bits == SE_Fixed7)
   2985         AbbrevToUse = VST_ENTRY_7_ABBREV;
   2986     }
   2987 
   2988     for (const auto P : Name.getKey())
   2989       NameVals.push_back((unsigned char)P);
   2990 
   2991     // Emit the finished record.
   2992     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   2993     NameVals.clear();
   2994   }
   2995 
   2996   Stream.ExitBlock();
   2997 }
   2998 
   2999 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
   3000   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
   3001   unsigned Code;
   3002   if (isa<BasicBlock>(Order.V))
   3003     Code = bitc::USELIST_CODE_BB;
   3004   else
   3005     Code = bitc::USELIST_CODE_DEFAULT;
   3006 
   3007   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
   3008   Record.push_back(VE.getValueID(Order.V));
   3009   Stream.EmitRecord(Code, Record);
   3010 }
   3011 
   3012 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
   3013   assert(VE.shouldPreserveUseListOrder() &&
   3014          "Expected to be preserving use-list order");
   3015 
   3016   auto hasMore = [&]() {
   3017     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
   3018   };
   3019   if (!hasMore())
   3020     // Nothing to do.
   3021     return;
   3022 
   3023   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
   3024   while (hasMore()) {
   3025     writeUseList(std::move(VE.UseListOrders.back()));
   3026     VE.UseListOrders.pop_back();
   3027   }
   3028   Stream.ExitBlock();
   3029 }
   3030 
   3031 /// Emit a function body to the module stream.
   3032 void ModuleBitcodeWriter::writeFunction(
   3033     const Function &F,
   3034     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
   3035   // Save the bitcode index of the start of this function block for recording
   3036   // in the VST.
   3037   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
   3038 
   3039   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   3040   VE.incorporateFunction(F);
   3041 
   3042   SmallVector<unsigned, 64> Vals;
   3043 
   3044   // Emit the number of basic blocks, so the reader can create them ahead of
   3045   // time.
   3046   Vals.push_back(VE.getBasicBlocks().size());
   3047   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   3048   Vals.clear();
   3049 
   3050   // If there are function-local constants, emit them now.
   3051   unsigned CstStart, CstEnd;
   3052   VE.getFunctionConstantRange(CstStart, CstEnd);
   3053   writeConstants(CstStart, CstEnd, false);
   3054 
   3055   // If there is function-local metadata, emit it now.
   3056   writeFunctionMetadata(F);
   3057 
   3058   // Keep a running idea of what the instruction ID is.
   3059   unsigned InstID = CstEnd;
   3060 
   3061   bool NeedsMetadataAttachment = F.hasMetadata();
   3062 
   3063   DILocation *LastDL = nullptr;
   3064   // Finally, emit all the instructions, in order.
   3065   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   3066     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   3067          I != E; ++I) {
   3068       writeInstruction(*I, InstID, Vals);
   3069 
   3070       if (!I->getType()->isVoidTy())
   3071         ++InstID;
   3072 
   3073       // If the instruction has metadata, write a metadata attachment later.
   3074       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   3075 
   3076       // If the instruction has a debug location, emit it.
   3077       DILocation *DL = I->getDebugLoc();
   3078       if (!DL)
   3079         continue;
   3080 
   3081       if (DL == LastDL) {
   3082         // Just repeat the same debug loc as last time.
   3083         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   3084         continue;
   3085       }
   3086 
   3087       Vals.push_back(DL->getLine());
   3088       Vals.push_back(DL->getColumn());
   3089       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
   3090       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
   3091       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
   3092       Vals.clear();
   3093 
   3094       LastDL = DL;
   3095     }
   3096 
   3097   // Emit names for all the instructions etc.
   3098   if (auto *Symtab = F.getValueSymbolTable())
   3099     writeFunctionLevelValueSymbolTable(*Symtab);
   3100 
   3101   if (NeedsMetadataAttachment)
   3102     writeFunctionMetadataAttachment(F);
   3103   if (VE.shouldPreserveUseListOrder())
   3104     writeUseListBlock(&F);
   3105   VE.purgeFunction();
   3106   Stream.ExitBlock();
   3107 }
   3108 
   3109 // Emit blockinfo, which defines the standard abbreviations etc.
   3110 void ModuleBitcodeWriter::writeBlockInfo() {
   3111   // We only want to emit block info records for blocks that have multiple
   3112   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
   3113   // Other blocks can define their abbrevs inline.
   3114   Stream.EnterBlockInfoBlock();
   3115 
   3116   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
   3117     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3118     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   3119     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3120     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3121     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   3122     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
   3123         VST_ENTRY_8_ABBREV)
   3124       llvm_unreachable("Unexpected abbrev ordering!");
   3125   }
   3126 
   3127   { // 7-bit fixed width VST_CODE_ENTRY strings.
   3128     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3129     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   3130     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3131     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3132     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   3133     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
   3134         VST_ENTRY_7_ABBREV)
   3135       llvm_unreachable("Unexpected abbrev ordering!");
   3136   }
   3137   { // 6-bit char6 VST_CODE_ENTRY strings.
   3138     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3139     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   3140     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3141     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3142     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   3143     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
   3144         VST_ENTRY_6_ABBREV)
   3145       llvm_unreachable("Unexpected abbrev ordering!");
   3146   }
   3147   { // 6-bit char6 VST_CODE_BBENTRY strings.
   3148     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3149     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   3150     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3151     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3152     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   3153     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
   3154         VST_BBENTRY_6_ABBREV)
   3155       llvm_unreachable("Unexpected abbrev ordering!");
   3156   }
   3157 
   3158   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   3159     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3160     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   3161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   3162                               VE.computeBitsRequiredForTypeIndicies()));
   3163     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
   3164         CONSTANTS_SETTYPE_ABBREV)
   3165       llvm_unreachable("Unexpected abbrev ordering!");
   3166   }
   3167 
   3168   { // INTEGER abbrev for CONSTANTS_BLOCK.
   3169     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3170     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   3171     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3172     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
   3173         CONSTANTS_INTEGER_ABBREV)
   3174       llvm_unreachable("Unexpected abbrev ordering!");
   3175   }
   3176 
   3177   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   3178     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3179     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   3180     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   3181     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   3182                               VE.computeBitsRequiredForTypeIndicies()));
   3183     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   3184 
   3185     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
   3186         CONSTANTS_CE_CAST_Abbrev)
   3187       llvm_unreachable("Unexpected abbrev ordering!");
   3188   }
   3189   { // NULL abbrev for CONSTANTS_BLOCK.
   3190     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3191     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   3192     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
   3193         CONSTANTS_NULL_Abbrev)
   3194       llvm_unreachable("Unexpected abbrev ordering!");
   3195   }
   3196 
   3197   // FIXME: This should only use space for first class types!
   3198 
   3199   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   3200     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3201     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   3202     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   3203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
   3204                               VE.computeBitsRequiredForTypeIndicies()));
   3205     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   3206     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   3207     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3208         FUNCTION_INST_LOAD_ABBREV)
   3209       llvm_unreachable("Unexpected abbrev ordering!");
   3210   }
   3211   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   3212     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3213     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   3214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   3215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   3216     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   3217     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3218         FUNCTION_INST_BINOP_ABBREV)
   3219       llvm_unreachable("Unexpected abbrev ordering!");
   3220   }
   3221   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   3222     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3223     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   3224     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   3225     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   3226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   3227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
   3228     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3229         FUNCTION_INST_BINOP_FLAGS_ABBREV)
   3230       llvm_unreachable("Unexpected abbrev ordering!");
   3231   }
   3232   { // INST_CAST abbrev for FUNCTION_BLOCK.
   3233     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3234     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   3235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   3236     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   3237                               VE.computeBitsRequiredForTypeIndicies()));
   3238     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   3239     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3240         FUNCTION_INST_CAST_ABBREV)
   3241       llvm_unreachable("Unexpected abbrev ordering!");
   3242   }
   3243 
   3244   { // INST_RET abbrev for FUNCTION_BLOCK.
   3245     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3246     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   3247     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3248         FUNCTION_INST_RET_VOID_ABBREV)
   3249       llvm_unreachable("Unexpected abbrev ordering!");
   3250   }
   3251   { // INST_RET abbrev for FUNCTION_BLOCK.
   3252     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3253     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   3254     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   3255     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3256         FUNCTION_INST_RET_VAL_ABBREV)
   3257       llvm_unreachable("Unexpected abbrev ordering!");
   3258   }
   3259   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   3260     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3261     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   3262     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3263         FUNCTION_INST_UNREACHABLE_ABBREV)
   3264       llvm_unreachable("Unexpected abbrev ordering!");
   3265   }
   3266   {
   3267     auto Abbv = std::make_shared<BitCodeAbbrev>();
   3268     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
   3269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
   3270     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
   3271                               Log2_32_Ceil(VE.getTypes().size() + 1)));
   3272     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3273     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   3274     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
   3275         FUNCTION_INST_GEP_ABBREV)
   3276       llvm_unreachable("Unexpected abbrev ordering!");
   3277   }
   3278 
   3279   Stream.ExitBlock();
   3280 }
   3281 
   3282 /// Write the module path strings, currently only used when generating
   3283 /// a combined index file.
   3284 void IndexBitcodeWriter::writeModStrings() {
   3285   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
   3286 
   3287   // TODO: See which abbrev sizes we actually need to emit
   3288 
   3289   // 8-bit fixed-width MST_ENTRY strings.
   3290   auto Abbv = std::make_shared<BitCodeAbbrev>();
   3291   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
   3292   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3293   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3294   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   3295   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
   3296 
   3297   // 7-bit fixed width MST_ENTRY strings.
   3298   Abbv = std::make_shared<BitCodeAbbrev>();
   3299   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
   3300   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3301   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3302   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   3303   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
   3304 
   3305   // 6-bit char6 MST_ENTRY strings.
   3306   Abbv = std::make_shared<BitCodeAbbrev>();
   3307   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
   3308   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3309   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3310   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   3311   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
   3312 
   3313   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
   3314   Abbv = std::make_shared<BitCodeAbbrev>();
   3315   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
   3316   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3317   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3318   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3319   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3320   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
   3321   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
   3322 
   3323   SmallVector<unsigned, 64> Vals;
   3324   forEachModule(
   3325       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
   3326         StringRef Key = MPSE.getKey();
   3327         const auto &Value = MPSE.getValue();
   3328         StringEncoding Bits = getStringEncoding(Key);
   3329         unsigned AbbrevToUse = Abbrev8Bit;
   3330         if (Bits == SE_Char6)
   3331           AbbrevToUse = Abbrev6Bit;
   3332         else if (Bits == SE_Fixed7)
   3333           AbbrevToUse = Abbrev7Bit;
   3334 
   3335         Vals.push_back(Value.first);
   3336         Vals.append(Key.begin(), Key.end());
   3337 
   3338         // Emit the finished record.
   3339         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
   3340 
   3341         // Emit an optional hash for the module now
   3342         const auto &Hash = Value.second;
   3343         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
   3344           Vals.assign(Hash.begin(), Hash.end());
   3345           // Emit the hash record.
   3346           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
   3347         }
   3348 
   3349         Vals.clear();
   3350       });
   3351   Stream.ExitBlock();
   3352 }
   3353 
   3354 /// Write the function type metadata related records that need to appear before
   3355 /// a function summary entry (whether per-module or combined).
   3356 static void writeFunctionTypeMetadataRecords(
   3357     BitstreamWriter &Stream, FunctionSummary *FS,
   3358     std::set<GlobalValue::GUID> &ReferencedTypeIds) {
   3359   if (!FS->type_tests().empty()) {
   3360     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
   3361     for (auto &TT : FS->type_tests())
   3362       ReferencedTypeIds.insert(TT);
   3363   }
   3364 
   3365   SmallVector<uint64_t, 64> Record;
   3366 
   3367   auto WriteVFuncIdVec = [&](uint64_t Ty,
   3368                              ArrayRef<FunctionSummary::VFuncId> VFs) {
   3369     if (VFs.empty())
   3370       return;
   3371     Record.clear();
   3372     for (auto &VF : VFs) {
   3373       Record.push_back(VF.GUID);
   3374       Record.push_back(VF.Offset);
   3375       ReferencedTypeIds.insert(VF.GUID);
   3376     }
   3377     Stream.EmitRecord(Ty, Record);
   3378   };
   3379 
   3380   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
   3381                   FS->type_test_assume_vcalls());
   3382   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
   3383                   FS->type_checked_load_vcalls());
   3384 
   3385   auto WriteConstVCallVec = [&](uint64_t Ty,
   3386                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
   3387     for (auto &VC : VCs) {
   3388       Record.clear();
   3389       Record.push_back(VC.VFunc.GUID);
   3390       ReferencedTypeIds.insert(VC.VFunc.GUID);
   3391       Record.push_back(VC.VFunc.Offset);
   3392       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
   3393       Stream.EmitRecord(Ty, Record);
   3394     }
   3395   };
   3396 
   3397   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
   3398                      FS->type_test_assume_const_vcalls());
   3399   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
   3400                      FS->type_checked_load_const_vcalls());
   3401 }
   3402 
   3403 static void writeWholeProgramDevirtResolutionByArg(
   3404     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
   3405     const WholeProgramDevirtResolution::ByArg &ByArg) {
   3406   NameVals.push_back(args.size());
   3407   NameVals.insert(NameVals.end(), args.begin(), args.end());
   3408 
   3409   NameVals.push_back(ByArg.TheKind);
   3410   NameVals.push_back(ByArg.Info);
   3411   NameVals.push_back(ByArg.Byte);
   3412   NameVals.push_back(ByArg.Bit);
   3413 }
   3414 
   3415 static void writeWholeProgramDevirtResolution(
   3416     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
   3417     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
   3418   NameVals.push_back(Id);
   3419 
   3420   NameVals.push_back(Wpd.TheKind);
   3421   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
   3422   NameVals.push_back(Wpd.SingleImplName.size());
   3423 
   3424   NameVals.push_back(Wpd.ResByArg.size());
   3425   for (auto &A : Wpd.ResByArg)
   3426     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
   3427 }
   3428 
   3429 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
   3430                                      StringTableBuilder &StrtabBuilder,
   3431                                      const std::string &Id,
   3432                                      const TypeIdSummary &Summary) {
   3433   NameVals.push_back(StrtabBuilder.add(Id));
   3434   NameVals.push_back(Id.size());
   3435 
   3436   NameVals.push_back(Summary.TTRes.TheKind);
   3437   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
   3438   NameVals.push_back(Summary.TTRes.AlignLog2);
   3439   NameVals.push_back(Summary.TTRes.SizeM1);
   3440   NameVals.push_back(Summary.TTRes.BitMask);
   3441   NameVals.push_back(Summary.TTRes.InlineBits);
   3442 
   3443   for (auto &W : Summary.WPDRes)
   3444     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
   3445                                       W.second);
   3446 }
   3447 
   3448 // Helper to emit a single function summary record.
   3449 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
   3450     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
   3451     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
   3452     const Function &F) {
   3453   NameVals.push_back(ValueID);
   3454 
   3455   FunctionSummary *FS = cast<FunctionSummary>(Summary);
   3456   std::set<GlobalValue::GUID> ReferencedTypeIds;
   3457   writeFunctionTypeMetadataRecords(Stream, FS, ReferencedTypeIds);
   3458 
   3459   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
   3460   NameVals.push_back(FS->instCount());
   3461   NameVals.push_back(getEncodedFFlags(FS->fflags()));
   3462   NameVals.push_back(FS->refs().size());
   3463 
   3464   for (auto &RI : FS->refs())
   3465     NameVals.push_back(VE.getValueID(RI.getValue()));
   3466 
   3467   bool HasProfileData =
   3468       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
   3469   for (auto &ECI : FS->calls()) {
   3470     NameVals.push_back(getValueId(ECI.first));
   3471     if (HasProfileData)
   3472       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
   3473     else if (WriteRelBFToSummary)
   3474       NameVals.push_back(ECI.second.RelBlockFreq);
   3475   }
   3476 
   3477   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
   3478   unsigned Code =
   3479       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
   3480                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
   3481                                              : bitc::FS_PERMODULE));
   3482 
   3483   // Emit the finished record.
   3484   Stream.EmitRecord(Code, NameVals, FSAbbrev);
   3485   NameVals.clear();
   3486 }
   3487 
   3488 // Collect the global value references in the given variable's initializer,
   3489 // and emit them in a summary record.
   3490 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
   3491     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
   3492     unsigned FSModRefsAbbrev) {
   3493   auto VI = Index->getValueInfo(V.getGUID());
   3494   if (!VI || VI.getSummaryList().empty()) {
   3495     // Only declarations should not have a summary (a declaration might however
   3496     // have a summary if the def was in module level asm).
   3497     assert(V.isDeclaration());
   3498     return;
   3499   }
   3500   auto *Summary = VI.getSummaryList()[0].get();
   3501   NameVals.push_back(VE.getValueID(&V));
   3502   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
   3503   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
   3504 
   3505   unsigned SizeBeforeRefs = NameVals.size();
   3506   for (auto &RI : VS->refs())
   3507     NameVals.push_back(VE.getValueID(RI.getValue()));
   3508   // Sort the refs for determinism output, the vector returned by FS->refs() has
   3509   // been initialized from a DenseSet.
   3510   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
   3511 
   3512   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
   3513                     FSModRefsAbbrev);
   3514   NameVals.clear();
   3515 }
   3516 
   3517 // Current version for the summary.
   3518 // This is bumped whenever we introduce changes in the way some record are
   3519 // interpreted, like flags for instance.
   3520 static const uint64_t INDEX_VERSION = 4;
   3521 
   3522 /// Emit the per-module summary section alongside the rest of
   3523 /// the module's bitcode.
   3524 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
   3525   // By default we compile with ThinLTO if the module has a summary, but the
   3526   // client can request full LTO with a module flag.
   3527   bool IsThinLTO = true;
   3528   if (auto *MD =
   3529           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
   3530     IsThinLTO = MD->getZExtValue();
   3531   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
   3532                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
   3533                        4);
   3534 
   3535   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
   3536 
   3537   if (Index->begin() == Index->end()) {
   3538     Stream.ExitBlock();
   3539     return;
   3540   }
   3541 
   3542   for (const auto &GVI : valueIds()) {
   3543     Stream.EmitRecord(bitc::FS_VALUE_GUID,
   3544                       ArrayRef<uint64_t>{GVI.second, GVI.first});
   3545   }
   3546 
   3547   // Abbrev for FS_PERMODULE_PROFILE.
   3548   auto Abbv = std::make_shared<BitCodeAbbrev>();
   3549   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
   3550   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3551   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3552   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
   3553   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
   3554   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
   3555   // numrefs x valueid, n x (valueid, hotness)
   3556   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3557   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3558   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3559 
   3560   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
   3561   Abbv = std::make_shared<BitCodeAbbrev>();
   3562   if (WriteRelBFToSummary)
   3563     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
   3564   else
   3565     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
   3566   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3567   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3568   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
   3569   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
   3570   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
   3571   // numrefs x valueid, n x (valueid [, rel_block_freq])
   3572   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3573   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3574   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3575 
   3576   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
   3577   Abbv = std::make_shared<BitCodeAbbrev>();
   3578   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
   3579   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
   3580   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
   3581   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
   3582   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3583   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3584 
   3585   // Abbrev for FS_ALIAS.
   3586   Abbv = std::make_shared<BitCodeAbbrev>();
   3587   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
   3588   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3589   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3590   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3591   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3592 
   3593   SmallVector<uint64_t, 64> NameVals;
   3594   // Iterate over the list of functions instead of the Index to
   3595   // ensure the ordering is stable.
   3596   for (const Function &F : M) {
   3597     // Summary emission does not support anonymous functions, they have to
   3598     // renamed using the anonymous function renaming pass.
   3599     if (!F.hasName())
   3600       report_fatal_error("Unexpected anonymous function when writing summary");
   3601 
   3602     ValueInfo VI = Index->getValueInfo(F.getGUID());
   3603     if (!VI || VI.getSummaryList().empty()) {
   3604       // Only declarations should not have a summary (a declaration might
   3605       // however have a summary if the def was in module level asm).
   3606       assert(F.isDeclaration());
   3607       continue;
   3608     }
   3609     auto *Summary = VI.getSummaryList()[0].get();
   3610     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
   3611                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
   3612   }
   3613 
   3614   // Capture references from GlobalVariable initializers, which are outside
   3615   // of a function scope.
   3616   for (const GlobalVariable &G : M.globals())
   3617     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
   3618 
   3619   for (const GlobalAlias &A : M.aliases()) {
   3620     auto *Aliasee = A.getBaseObject();
   3621     if (!Aliasee->hasName())
   3622       // Nameless function don't have an entry in the summary, skip it.
   3623       continue;
   3624     auto AliasId = VE.getValueID(&A);
   3625     auto AliaseeId = VE.getValueID(Aliasee);
   3626     NameVals.push_back(AliasId);
   3627     auto *Summary = Index->getGlobalValueSummary(A);
   3628     AliasSummary *AS = cast<AliasSummary>(Summary);
   3629     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
   3630     NameVals.push_back(AliaseeId);
   3631     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
   3632     NameVals.clear();
   3633   }
   3634 
   3635   Stream.ExitBlock();
   3636 }
   3637 
   3638 /// Emit the combined summary section into the combined index file.
   3639 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
   3640   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
   3641   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
   3642 
   3643   // Write the index flags.
   3644   uint64_t Flags = 0;
   3645   if (Index.withGlobalValueDeadStripping())
   3646     Flags |= 0x1;
   3647   if (Index.skipModuleByDistributedBackend())
   3648     Flags |= 0x2;
   3649   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
   3650 
   3651   for (const auto &GVI : valueIds()) {
   3652     Stream.EmitRecord(bitc::FS_VALUE_GUID,
   3653                       ArrayRef<uint64_t>{GVI.second, GVI.first});
   3654   }
   3655 
   3656   // Abbrev for FS_COMBINED.
   3657   auto Abbv = std::make_shared<BitCodeAbbrev>();
   3658   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
   3659   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3660   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
   3661   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3662   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
   3663   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
   3664   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
   3665   // numrefs x valueid, n x (valueid)
   3666   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3667   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3668   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3669 
   3670   // Abbrev for FS_COMBINED_PROFILE.
   3671   Abbv = std::make_shared<BitCodeAbbrev>();
   3672   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
   3673   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3674   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
   3675   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3676   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
   3677   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
   3678   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
   3679   // numrefs x valueid, n x (valueid, hotness)
   3680   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3681   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3682   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3683 
   3684   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
   3685   Abbv = std::make_shared<BitCodeAbbrev>();
   3686   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
   3687   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3688   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
   3689   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3690   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
   3691   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   3692   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3693 
   3694   // Abbrev for FS_COMBINED_ALIAS.
   3695   Abbv = std::make_shared<BitCodeAbbrev>();
   3696   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
   3697   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3698   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
   3699   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
   3700   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
   3701   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3702 
   3703   // The aliases are emitted as a post-pass, and will point to the value
   3704   // id of the aliasee. Save them in a vector for post-processing.
   3705   SmallVector<AliasSummary *, 64> Aliases;
   3706 
   3707   // Save the value id for each summary for alias emission.
   3708   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
   3709 
   3710   SmallVector<uint64_t, 64> NameVals;
   3711 
   3712   // Set that will be populated during call to writeFunctionTypeMetadataRecords
   3713   // with the type ids referenced by this index file.
   3714   std::set<GlobalValue::GUID> ReferencedTypeIds;
   3715 
   3716   // For local linkage, we also emit the original name separately
   3717   // immediately after the record.
   3718   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
   3719     if (!GlobalValue::isLocalLinkage(S.linkage()))
   3720       return;
   3721     NameVals.push_back(S.getOriginalName());
   3722     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
   3723     NameVals.clear();
   3724   };
   3725 
   3726   forEachSummary([&](GVInfo I, bool IsAliasee) {
   3727     GlobalValueSummary *S = I.second;
   3728     assert(S);
   3729 
   3730     auto ValueId = getValueId(I.first);
   3731     assert(ValueId);
   3732     SummaryToValueIdMap[S] = *ValueId;
   3733 
   3734     // If this is invoked for an aliasee, we want to record the above
   3735     // mapping, but then not emit a summary entry (if the aliasee is
   3736     // to be imported, we will invoke this separately with IsAliasee=false).
   3737     if (IsAliasee)
   3738       return;
   3739 
   3740     if (auto *AS = dyn_cast<AliasSummary>(S)) {
   3741       // Will process aliases as a post-pass because the reader wants all
   3742       // global to be loaded first.
   3743       Aliases.push_back(AS);
   3744       return;
   3745     }
   3746 
   3747     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
   3748       NameVals.push_back(*ValueId);
   3749       NameVals.push_back(Index.getModuleId(VS->modulePath()));
   3750       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
   3751       for (auto &RI : VS->refs()) {
   3752         auto RefValueId = getValueId(RI.getGUID());
   3753         if (!RefValueId)
   3754           continue;
   3755         NameVals.push_back(*RefValueId);
   3756       }
   3757 
   3758       // Emit the finished record.
   3759       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
   3760                         FSModRefsAbbrev);
   3761       NameVals.clear();
   3762       MaybeEmitOriginalName(*S);
   3763       return;
   3764     }
   3765 
   3766     auto *FS = cast<FunctionSummary>(S);
   3767     writeFunctionTypeMetadataRecords(Stream, FS, ReferencedTypeIds);
   3768 
   3769     NameVals.push_back(*ValueId);
   3770     NameVals.push_back(Index.getModuleId(FS->modulePath()));
   3771     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
   3772     NameVals.push_back(FS->instCount());
   3773     NameVals.push_back(getEncodedFFlags(FS->fflags()));
   3774     // Fill in below
   3775     NameVals.push_back(0);
   3776 
   3777     unsigned Count = 0;
   3778     for (auto &RI : FS->refs()) {
   3779       auto RefValueId = getValueId(RI.getGUID());
   3780       if (!RefValueId)
   3781         continue;
   3782       NameVals.push_back(*RefValueId);
   3783       Count++;
   3784     }
   3785     NameVals[5] = Count;
   3786 
   3787     bool HasProfileData = false;
   3788     for (auto &EI : FS->calls()) {
   3789       HasProfileData |=
   3790           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
   3791       if (HasProfileData)
   3792         break;
   3793     }
   3794 
   3795     for (auto &EI : FS->calls()) {
   3796       // If this GUID doesn't have a value id, it doesn't have a function
   3797       // summary and we don't need to record any calls to it.
   3798       GlobalValue::GUID GUID = EI.first.getGUID();
   3799       auto CallValueId = getValueId(GUID);
   3800       if (!CallValueId) {
   3801         // For SamplePGO, the indirect call targets for local functions will
   3802         // have its original name annotated in profile. We try to find the
   3803         // corresponding PGOFuncName as the GUID.
   3804         GUID = Index.getGUIDFromOriginalID(GUID);
   3805         if (GUID == 0)
   3806           continue;
   3807         CallValueId = getValueId(GUID);
   3808         if (!CallValueId)
   3809           continue;
   3810         // The mapping from OriginalId to GUID may return a GUID
   3811         // that corresponds to a static variable. Filter it out here.
   3812         // This can happen when
   3813         // 1) There is a call to a library function which does not have
   3814         // a CallValidId;
   3815         // 2) There is a static variable with the  OriginalGUID identical
   3816         // to the GUID of the library function in 1);
   3817         // When this happens, the logic for SamplePGO kicks in and
   3818         // the static variable in 2) will be found, which needs to be
   3819         // filtered out.
   3820         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
   3821         if (GVSum &&
   3822             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
   3823           continue;
   3824       }
   3825       NameVals.push_back(*CallValueId);
   3826       if (HasProfileData)
   3827         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
   3828     }
   3829 
   3830     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
   3831     unsigned Code =
   3832         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
   3833 
   3834     // Emit the finished record.
   3835     Stream.EmitRecord(Code, NameVals, FSAbbrev);
   3836     NameVals.clear();
   3837     MaybeEmitOriginalName(*S);
   3838   });
   3839 
   3840   for (auto *AS : Aliases) {
   3841     auto AliasValueId = SummaryToValueIdMap[AS];
   3842     assert(AliasValueId);
   3843     NameVals.push_back(AliasValueId);
   3844     NameVals.push_back(Index.getModuleId(AS->modulePath()));
   3845     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
   3846     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
   3847     assert(AliaseeValueId);
   3848     NameVals.push_back(AliaseeValueId);
   3849 
   3850     // Emit the finished record.
   3851     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
   3852     NameVals.clear();
   3853     MaybeEmitOriginalName(*AS);
   3854   }
   3855 
   3856   if (!Index.cfiFunctionDefs().empty()) {
   3857     for (auto &S : Index.cfiFunctionDefs()) {
   3858       NameVals.push_back(StrtabBuilder.add(S));
   3859       NameVals.push_back(S.size());
   3860     }
   3861     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
   3862     NameVals.clear();
   3863   }
   3864 
   3865   if (!Index.cfiFunctionDecls().empty()) {
   3866     for (auto &S : Index.cfiFunctionDecls()) {
   3867       NameVals.push_back(StrtabBuilder.add(S));
   3868       NameVals.push_back(S.size());
   3869     }
   3870     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
   3871     NameVals.clear();
   3872   }
   3873 
   3874   if (!Index.typeIds().empty()) {
   3875     for (auto &S : Index.typeIds()) {
   3876       // Skip if not referenced in any GV summary within this index file.
   3877       if (!ReferencedTypeIds.count(GlobalValue::getGUID(S.first)))
   3878         continue;
   3879       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, S.first, S.second);
   3880       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
   3881       NameVals.clear();
   3882     }
   3883   }
   3884 
   3885   Stream.ExitBlock();
   3886 }
   3887 
   3888 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
   3889 /// current llvm version, and a record for the epoch number.
   3890 static void writeIdentificationBlock(BitstreamWriter &Stream) {
   3891   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
   3892 
   3893   // Write the "user readable" string identifying the bitcode producer
   3894   auto Abbv = std::make_shared<BitCodeAbbrev>();
   3895   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
   3896   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   3897   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   3898   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3899   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
   3900                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
   3901 
   3902   // Write the epoch version
   3903   Abbv = std::make_shared<BitCodeAbbrev>();
   3904   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
   3905   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
   3906   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   3907   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
   3908   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
   3909   Stream.ExitBlock();
   3910 }
   3911 
   3912 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
   3913   // Emit the module's hash.
   3914   // MODULE_CODE_HASH: [5*i32]
   3915   if (GenerateHash) {
   3916     uint32_t Vals[5];
   3917     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
   3918                                     Buffer.size() - BlockStartPos));
   3919     StringRef Hash = Hasher.result();
   3920     for (int Pos = 0; Pos < 20; Pos += 4) {
   3921       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
   3922     }
   3923 
   3924     // Emit the finished record.
   3925     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
   3926 
   3927     if (ModHash)
   3928       // Save the written hash value.
   3929       std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
   3930   }
   3931 }
   3932 
   3933 void ModuleBitcodeWriter::write() {
   3934   writeIdentificationBlock(Stream);
   3935 
   3936   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   3937   size_t BlockStartPos = Buffer.size();
   3938 
   3939   writeModuleVersion();
   3940 
   3941   // Emit blockinfo, which defines the standard abbreviations etc.
   3942   writeBlockInfo();
   3943 
   3944   // Emit information about attribute groups.
   3945   writeAttributeGroupTable();
   3946 
   3947   // Emit information about parameter attributes.
   3948   writeAttributeTable();
   3949 
   3950   // Emit information describing all of the types in the module.
   3951   writeTypeTable();
   3952 
   3953   writeComdats();
   3954 
   3955   // Emit top-level description of module, including target triple, inline asm,
   3956   // descriptors for global variables, and function prototype info.
   3957   writeModuleInfo();
   3958 
   3959   // Emit constants.
   3960   writeModuleConstants();
   3961 
   3962   // Emit metadata kind names.
   3963   writeModuleMetadataKinds();
   3964 
   3965   // Emit metadata.
   3966   writeModuleMetadata();
   3967 
   3968   // Emit module-level use-lists.
   3969   if (VE.shouldPreserveUseListOrder())
   3970     writeUseListBlock(nullptr);
   3971 
   3972   writeOperandBundleTags();
   3973   writeSyncScopeNames();
   3974 
   3975   // Emit function bodies.
   3976   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
   3977   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
   3978     if (!F->isDeclaration())
   3979       writeFunction(*F, FunctionToBitcodeIndex);
   3980 
   3981   // Need to write after the above call to WriteFunction which populates
   3982   // the summary information in the index.
   3983   if (Index)
   3984     writePerModuleGlobalValueSummary();
   3985 
   3986   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
   3987 
   3988   writeModuleHash(BlockStartPos);
   3989 
   3990   Stream.ExitBlock();
   3991 }
   3992 
   3993 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
   3994                                uint32_t &Position) {
   3995   support::endian::write32le(&Buffer[Position], Value);
   3996   Position += 4;
   3997 }
   3998 
   3999 /// If generating a bc file on darwin, we have to emit a
   4000 /// header and trailer to make it compatible with the system archiver.  To do
   4001 /// this we emit the following header, and then emit a trailer that pads the
   4002 /// file out to be a multiple of 16 bytes.
   4003 ///
   4004 /// struct bc_header {
   4005 ///   uint32_t Magic;         // 0x0B17C0DE
   4006 ///   uint32_t Version;       // Version, currently always 0.
   4007 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   4008 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   4009 ///   uint32_t CPUType;       // CPU specifier.
   4010 ///   ... potentially more later ...
   4011 /// };
   4012 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
   4013                                          const Triple &TT) {
   4014   unsigned CPUType = ~0U;
   4015 
   4016   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   4017   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   4018   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   4019   // specific constants here because they are implicitly part of the Darwin ABI.
   4020   enum {
   4021     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   4022     DARWIN_CPU_TYPE_X86        = 7,
   4023     DARWIN_CPU_TYPE_ARM        = 12,
   4024     DARWIN_CPU_TYPE_POWERPC    = 18
   4025   };
   4026 
   4027   Triple::ArchType Arch = TT.getArch();
   4028   if (Arch == Triple::x86_64)
   4029     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   4030   else if (Arch == Triple::x86)
   4031     CPUType = DARWIN_CPU_TYPE_X86;
   4032   else if (Arch == Triple::ppc)
   4033     CPUType = DARWIN_CPU_TYPE_POWERPC;
   4034   else if (Arch == Triple::ppc64)
   4035     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   4036   else if (Arch == Triple::arm || Arch == Triple::thumb)
   4037     CPUType = DARWIN_CPU_TYPE_ARM;
   4038 
   4039   // Traditional Bitcode starts after header.
   4040   assert(Buffer.size() >= BWH_HeaderSize &&
   4041          "Expected header size to be reserved");
   4042   unsigned BCOffset = BWH_HeaderSize;
   4043   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
   4044 
   4045   // Write the magic and version.
   4046   unsigned Position = 0;
   4047   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
   4048   writeInt32ToBuffer(0, Buffer, Position); // Version.
   4049   writeInt32ToBuffer(BCOffset, Buffer, Position);
   4050   writeInt32ToBuffer(BCSize, Buffer, Position);
   4051   writeInt32ToBuffer(CPUType, Buffer, Position);
   4052 
   4053   // If the file is not a multiple of 16 bytes, insert dummy padding.
   4054   while (Buffer.size() & 15)
   4055     Buffer.push_back(0);
   4056 }
   4057 
   4058 /// Helper to write the header common to all bitcode files.
   4059 static void writeBitcodeHeader(BitstreamWriter &Stream) {
   4060   // Emit the file header.
   4061   Stream.Emit((unsigned)'B', 8);
   4062   Stream.Emit((unsigned)'C', 8);
   4063   Stream.Emit(0x0, 4);
   4064   Stream.Emit(0xC, 4);
   4065   Stream.Emit(0xE, 4);
   4066   Stream.Emit(0xD, 4);
   4067 }
   4068 
   4069 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
   4070     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
   4071   writeBitcodeHeader(*Stream);
   4072 }
   4073 
   4074 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
   4075 
   4076 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
   4077   Stream->EnterSubblock(Block, 3);
   4078 
   4079   auto Abbv = std::make_shared<BitCodeAbbrev>();
   4080   Abbv->Add(BitCodeAbbrevOp(Record));
   4081   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
   4082   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
   4083 
   4084   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
   4085 
   4086   Stream->ExitBlock();
   4087 }
   4088 
   4089 void BitcodeWriter::writeSymtab() {
   4090   assert(!WroteStrtab && !WroteSymtab);
   4091 
   4092   // If any module has module-level inline asm, we will require a registered asm
   4093   // parser for the target so that we can create an accurate symbol table for
   4094   // the module.
   4095   for (Module *M : Mods) {
   4096     if (M->getModuleInlineAsm().empty())
   4097       continue;
   4098 
   4099     std::string Err;
   4100     const Triple TT(M->getTargetTriple());
   4101     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
   4102     if (!T || !T->hasMCAsmParser())
   4103       return;
   4104   }
   4105 
   4106   WroteSymtab = true;
   4107   SmallVector<char, 0> Symtab;
   4108   // The irsymtab::build function may be unable to create a symbol table if the
   4109   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
   4110   // table is not required for correctness, but we still want to be able to
   4111   // write malformed modules to bitcode files, so swallow the error.
   4112   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
   4113     consumeError(std::move(E));
   4114     return;
   4115   }
   4116 
   4117   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
   4118             {Symtab.data(), Symtab.size()});
   4119 }
   4120 
   4121 void BitcodeWriter::writeStrtab() {
   4122   assert(!WroteStrtab);
   4123 
   4124   std::vector<char> Strtab;
   4125   StrtabBuilder.finalizeInOrder();
   4126   Strtab.resize(StrtabBuilder.getSize());
   4127   StrtabBuilder.write((uint8_t *)Strtab.data());
   4128 
   4129   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
   4130             {Strtab.data(), Strtab.size()});
   4131 
   4132   WroteStrtab = true;
   4133 }
   4134 
   4135 void BitcodeWriter::copyStrtab(StringRef Strtab) {
   4136   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
   4137   WroteStrtab = true;
   4138 }
   4139 
   4140 void BitcodeWriter::writeModule(const Module &M,
   4141                                 bool ShouldPreserveUseListOrder,
   4142                                 const ModuleSummaryIndex *Index,
   4143                                 bool GenerateHash, ModuleHash *ModHash) {
   4144   assert(!WroteStrtab);
   4145 
   4146   // The Mods vector is used by irsymtab::build, which requires non-const
   4147   // Modules in case it needs to materialize metadata. But the bitcode writer
   4148   // requires that the module is materialized, so we can cast to non-const here,
   4149   // after checking that it is in fact materialized.
   4150   assert(M.isMaterialized());
   4151   Mods.push_back(const_cast<Module *>(&M));
   4152 
   4153   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
   4154                                    ShouldPreserveUseListOrder, Index,
   4155                                    GenerateHash, ModHash);
   4156   ModuleWriter.write();
   4157 }
   4158 
   4159 void BitcodeWriter::writeIndex(
   4160     const ModuleSummaryIndex *Index,
   4161     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
   4162   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
   4163                                  ModuleToSummariesForIndex);
   4164   IndexWriter.write();
   4165 }
   4166 
   4167 /// Write the specified module to the specified output stream.
   4168 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
   4169                               bool ShouldPreserveUseListOrder,
   4170                               const ModuleSummaryIndex *Index,
   4171                               bool GenerateHash, ModuleHash *ModHash) {
   4172   SmallVector<char, 0> Buffer;
   4173   Buffer.reserve(256*1024);
   4174 
   4175   // If this is darwin or another generic macho target, reserve space for the
   4176   // header.
   4177   Triple TT(M.getTargetTriple());
   4178   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
   4179     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
   4180 
   4181   BitcodeWriter Writer(Buffer);
   4182   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
   4183                      ModHash);
   4184   Writer.writeSymtab();
   4185   Writer.writeStrtab();
   4186 
   4187   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
   4188     emitDarwinBCHeaderAndTrailer(Buffer, TT);
   4189 
   4190   // Write the generated bitstream to "Out".
   4191   Out.write((char*)&Buffer.front(), Buffer.size());
   4192 }
   4193 
   4194 void IndexBitcodeWriter::write() {
   4195   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   4196 
   4197   writeModuleVersion();
   4198 
   4199   // Write the module paths in the combined index.
   4200   writeModStrings();
   4201 
   4202   // Write the summary combined index records.
   4203   writeCombinedGlobalValueSummary();
   4204 
   4205   Stream.ExitBlock();
   4206 }
   4207 
   4208 // Write the specified module summary index to the given raw output stream,
   4209 // where it will be written in a new bitcode block. This is used when
   4210 // writing the combined index file for ThinLTO. When writing a subset of the
   4211 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
   4212 void llvm::WriteIndexToFile(
   4213     const ModuleSummaryIndex &Index, raw_ostream &Out,
   4214     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
   4215   SmallVector<char, 0> Buffer;
   4216   Buffer.reserve(256 * 1024);
   4217 
   4218   BitcodeWriter Writer(Buffer);
   4219   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
   4220   Writer.writeStrtab();
   4221 
   4222   Out.write((char *)&Buffer.front(), Buffer.size());
   4223 }
   4224 
   4225 namespace {
   4226 
   4227 /// Class to manage the bitcode writing for a thin link bitcode file.
   4228 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
   4229   /// ModHash is for use in ThinLTO incremental build, generated while writing
   4230   /// the module bitcode file.
   4231   const ModuleHash *ModHash;
   4232 
   4233 public:
   4234   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
   4235                         BitstreamWriter &Stream,
   4236                         const ModuleSummaryIndex &Index,
   4237                         const ModuleHash &ModHash)
   4238       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
   4239                                 /*ShouldPreserveUseListOrder=*/false, &Index),
   4240         ModHash(&ModHash) {}
   4241 
   4242   void write();
   4243 
   4244 private:
   4245   void writeSimplifiedModuleInfo();
   4246 };
   4247 
   4248 } // end anonymous namespace
   4249 
   4250 // This function writes a simpilified module info for thin link bitcode file.
   4251 // It only contains the source file name along with the name(the offset and
   4252 // size in strtab) and linkage for global values. For the global value info
   4253 // entry, in order to keep linkage at offset 5, there are three zeros used
   4254 // as padding.
   4255 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
   4256   SmallVector<unsigned, 64> Vals;
   4257   // Emit the module's source file name.
   4258   {
   4259     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
   4260     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
   4261     if (Bits == SE_Char6)
   4262       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
   4263     else if (Bits == SE_Fixed7)
   4264       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
   4265 
   4266     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
   4267     auto Abbv = std::make_shared<BitCodeAbbrev>();
   4268     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
   4269     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   4270     Abbv->Add(AbbrevOpToUse);
   4271     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
   4272 
   4273     for (const auto P : M.getSourceFileName())
   4274       Vals.push_back((unsigned char)P);
   4275 
   4276     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
   4277     Vals.clear();
   4278   }
   4279 
   4280   // Emit the global variable information.
   4281   for (const GlobalVariable &GV : M.globals()) {
   4282     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
   4283     Vals.push_back(StrtabBuilder.add(GV.getName()));
   4284     Vals.push_back(GV.getName().size());
   4285     Vals.push_back(0);
   4286     Vals.push_back(0);
   4287     Vals.push_back(0);
   4288     Vals.push_back(getEncodedLinkage(GV));
   4289 
   4290     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
   4291     Vals.clear();
   4292   }
   4293 
   4294   // Emit the function proto information.
   4295   for (const Function &F : M) {
   4296     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
   4297     Vals.push_back(StrtabBuilder.add(F.getName()));
   4298     Vals.push_back(F.getName().size());
   4299     Vals.push_back(0);
   4300     Vals.push_back(0);
   4301     Vals.push_back(0);
   4302     Vals.push_back(getEncodedLinkage(F));
   4303 
   4304     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
   4305     Vals.clear();
   4306   }
   4307 
   4308   // Emit the alias information.
   4309   for (const GlobalAlias &A : M.aliases()) {
   4310     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
   4311     Vals.push_back(StrtabBuilder.add(A.getName()));
   4312     Vals.push_back(A.getName().size());
   4313     Vals.push_back(0);
   4314     Vals.push_back(0);
   4315     Vals.push_back(0);
   4316     Vals.push_back(getEncodedLinkage(A));
   4317 
   4318     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
   4319     Vals.clear();
   4320   }
   4321 
   4322   // Emit the ifunc information.
   4323   for (const GlobalIFunc &I : M.ifuncs()) {
   4324     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
   4325     Vals.push_back(StrtabBuilder.add(I.getName()));
   4326     Vals.push_back(I.getName().size());
   4327     Vals.push_back(0);
   4328     Vals.push_back(0);
   4329     Vals.push_back(0);
   4330     Vals.push_back(getEncodedLinkage(I));
   4331 
   4332     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
   4333     Vals.clear();
   4334   }
   4335 }
   4336 
   4337 void ThinLinkBitcodeWriter::write() {
   4338   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   4339 
   4340   writeModuleVersion();
   4341 
   4342   writeSimplifiedModuleInfo();
   4343 
   4344   writePerModuleGlobalValueSummary();
   4345 
   4346   // Write module hash.
   4347   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
   4348 
   4349   Stream.ExitBlock();
   4350 }
   4351 
   4352 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
   4353                                          const ModuleSummaryIndex &Index,
   4354                                          const ModuleHash &ModHash) {
   4355   assert(!WroteStrtab);
   4356 
   4357   // The Mods vector is used by irsymtab::build, which requires non-const
   4358   // Modules in case it needs to materialize metadata. But the bitcode writer
   4359   // requires that the module is materialized, so we can cast to non-const here,
   4360   // after checking that it is in fact materialized.
   4361   assert(M.isMaterialized());
   4362   Mods.push_back(const_cast<Module *>(&M));
   4363 
   4364   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
   4365                                        ModHash);
   4366   ThinLinkWriter.write();
   4367 }
   4368 
   4369 // Write the specified thin link bitcode file to the given raw output stream,
   4370 // where it will be written in a new bitcode block. This is used when
   4371 // writing the per-module index file for ThinLTO.
   4372 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
   4373                                       const ModuleSummaryIndex &Index,
   4374                                       const ModuleHash &ModHash) {
   4375   SmallVector<char, 0> Buffer;
   4376   Buffer.reserve(256 * 1024);
   4377 
   4378   BitcodeWriter Writer(Buffer);
   4379   Writer.writeThinLinkBitcode(M, Index, ModHash);
   4380   Writer.writeSymtab();
   4381   Writer.writeStrtab();
   4382 
   4383   Out.write((char *)&Buffer.front(), Buffer.size());
   4384 }
   4385