Home | History | Annotate | Download | only in zfs
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  *
      4  * ZFS filesystem ported to u-boot by
      5  * Jorgen Lundman <lundman at lundman.net>
      6  *
      7  *	GRUB  --  GRand Unified Bootloader
      8  *	Copyright (C) 1999,2000,2001,2002,2003,2004
      9  *	Free Software Foundation, Inc.
     10  *	Copyright 2004	Sun Microsystems, Inc.
     11  */
     12 
     13 #include <common.h>
     14 #include <malloc.h>
     15 #include <linux/stat.h>
     16 #include <linux/time.h>
     17 #include <linux/ctype.h>
     18 #include <asm/byteorder.h>
     19 #include "zfs_common.h"
     20 #include "div64.h"
     21 
     22 struct blk_desc *zfs_dev_desc;
     23 
     24 /*
     25  * The zfs plug-in routines for GRUB are:
     26  *
     27  * zfs_mount() - locates a valid uberblock of the root pool and reads
     28  *		in its MOS at the memory address MOS.
     29  *
     30  * zfs_open() - locates a plain file object by following the MOS
     31  *		and places its dnode at the memory address DNODE.
     32  *
     33  * zfs_read() - read in the data blocks pointed by the DNODE.
     34  *
     35  */
     36 
     37 #include <zfs/zfs.h>
     38 #include <zfs/zio.h>
     39 #include <zfs/dnode.h>
     40 #include <zfs/uberblock_impl.h>
     41 #include <zfs/vdev_impl.h>
     42 #include <zfs/zio_checksum.h>
     43 #include <zfs/zap_impl.h>
     44 #include <zfs/zap_leaf.h>
     45 #include <zfs/zfs_znode.h>
     46 #include <zfs/dmu.h>
     47 #include <zfs/dmu_objset.h>
     48 #include <zfs/sa_impl.h>
     49 #include <zfs/dsl_dir.h>
     50 #include <zfs/dsl_dataset.h>
     51 
     52 
     53 #define	ZPOOL_PROP_BOOTFS		"bootfs"
     54 
     55 
     56 /*
     57  * For nvlist manipulation. (from nvpair.h)
     58  */
     59 #define	NV_ENCODE_NATIVE	0
     60 #define	NV_ENCODE_XDR		1
     61 #define	NV_BIG_ENDIAN			0
     62 #define	NV_LITTLE_ENDIAN	1
     63 #define	DATA_TYPE_UINT64	8
     64 #define	DATA_TYPE_STRING	9
     65 #define	DATA_TYPE_NVLIST	19
     66 #define	DATA_TYPE_NVLIST_ARRAY	20
     67 
     68 
     69 /*
     70  * Macros to get fields in a bp or DVA.
     71  */
     72 #define	P2PHASE(x, align)		((x) & ((align) - 1))
     73 #define	DVA_OFFSET_TO_PHYS_SECTOR(offset)					\
     74 	((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
     75 
     76 /*
     77  * return x rounded down to an align boundary
     78  * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
     79  * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
     80  * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
     81  * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
     82  */
     83 #define	P2ALIGN(x, align)		((x) & -(align))
     84 
     85 /*
     86  * FAT ZAP data structures
     87  */
     88 #define	ZFS_CRC64_POLY 0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
     89 #define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
     90 #define	CHAIN_END	0xffff	/* end of the chunk chain */
     91 
     92 /*
     93  * The amount of space within the chunk available for the array is:
     94  * chunk size - space for type (1) - space for next pointer (2)
     95  */
     96 #define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
     97 
     98 #define	ZAP_LEAF_HASH_SHIFT(bs)	(bs - 5)
     99 #define	ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
    100 #define	LEAF_HASH(bs, h)												\
    101 	((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) &									\
    102 	 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
    103 
    104 /*
    105  * The amount of space available for chunks is:
    106  * block size shift - hash entry size (2) * number of hash
    107  * entries - header space (2*chunksize)
    108  */
    109 #define	ZAP_LEAF_NUMCHUNKS(bs)						\
    110 	(((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) /	\
    111 	 ZAP_LEAF_CHUNKSIZE - 2)
    112 
    113 /*
    114  * The chunks start immediately after the hash table.  The end of the
    115  * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
    116  * chunk_t.
    117  */
    118 #define	ZAP_LEAF_CHUNK(l, bs, idx)										\
    119 	((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
    120 #define	ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
    121 
    122 
    123 /*
    124  * Decompression Entry - lzjb
    125  */
    126 #ifndef	NBBY
    127 #define	NBBY	8
    128 #endif
    129 
    130 
    131 
    132 typedef int zfs_decomp_func_t(void *s_start, void *d_start,
    133 							  uint32_t s_len, uint32_t d_len);
    134 typedef struct decomp_entry {
    135 	char *name;
    136 	zfs_decomp_func_t *decomp_func;
    137 } decomp_entry_t;
    138 
    139 typedef struct dnode_end {
    140 	dnode_phys_t dn;
    141 	zfs_endian_t endian;
    142 } dnode_end_t;
    143 
    144 struct zfs_data {
    145 	/* cache for a file block of the currently zfs_open()-ed file */
    146 	char *file_buf;
    147 	uint64_t file_start;
    148 	uint64_t file_end;
    149 
    150 	/* XXX: ashift is per vdev, not per pool.  We currently only ever touch
    151 	 * a single vdev, but when/if raid-z or stripes are supported, this
    152 	 * may need revision.
    153 	 */
    154 	uint64_t vdev_ashift;
    155 	uint64_t label_txg;
    156 	uint64_t pool_guid;
    157 
    158 	/* cache for a dnode block */
    159 	dnode_phys_t *dnode_buf;
    160 	dnode_phys_t *dnode_mdn;
    161 	uint64_t dnode_start;
    162 	uint64_t dnode_end;
    163 	zfs_endian_t dnode_endian;
    164 
    165 	uberblock_t current_uberblock;
    166 
    167 	dnode_end_t mos;
    168 	dnode_end_t mdn;
    169 	dnode_end_t dnode;
    170 
    171 	uint64_t vdev_phys_sector;
    172 
    173 	int (*userhook)(const char *, const struct zfs_dirhook_info *);
    174 	struct zfs_dirhook_info *dirinfo;
    175 
    176 };
    177 
    178 
    179 
    180 
    181 static int
    182 zlib_decompress(void *s, void *d,
    183 				uint32_t slen, uint32_t dlen)
    184 {
    185 	if (zlib_decompress(s, d, slen, dlen) < 0)
    186 		return ZFS_ERR_BAD_FS;
    187 	return ZFS_ERR_NONE;
    188 }
    189 
    190 static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
    191 	{"inherit", NULL},		/* ZIO_COMPRESS_INHERIT */
    192 	{"on", lzjb_decompress},	/* ZIO_COMPRESS_ON */
    193 	{"off", NULL},		/* ZIO_COMPRESS_OFF */
    194 	{"lzjb", lzjb_decompress},	/* ZIO_COMPRESS_LZJB */
    195 	{"empty", NULL},		/* ZIO_COMPRESS_EMPTY */
    196 	{"gzip-1", zlib_decompress},  /* ZIO_COMPRESS_GZIP1 */
    197 	{"gzip-2", zlib_decompress},  /* ZIO_COMPRESS_GZIP2 */
    198 	{"gzip-3", zlib_decompress},  /* ZIO_COMPRESS_GZIP3 */
    199 	{"gzip-4", zlib_decompress},  /* ZIO_COMPRESS_GZIP4 */
    200 	{"gzip-5", zlib_decompress},  /* ZIO_COMPRESS_GZIP5 */
    201 	{"gzip-6", zlib_decompress},  /* ZIO_COMPRESS_GZIP6 */
    202 	{"gzip-7", zlib_decompress},  /* ZIO_COMPRESS_GZIP7 */
    203 	{"gzip-8", zlib_decompress},  /* ZIO_COMPRESS_GZIP8 */
    204 	{"gzip-9", zlib_decompress},  /* ZIO_COMPRESS_GZIP9 */
    205 };
    206 
    207 
    208 
    209 static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
    210 						 void *buf, struct zfs_data *data);
    211 
    212 static int
    213 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
    214 		 size_t *size, struct zfs_data *data);
    215 
    216 /*
    217  * Our own version of log2().  Same thing as highbit()-1.
    218  */
    219 static int
    220 zfs_log2(uint64_t num)
    221 {
    222 	int i = 0;
    223 
    224 	while (num > 1) {
    225 		i++;
    226 		num = num >> 1;
    227 	}
    228 
    229 	return i;
    230 }
    231 
    232 
    233 /* Checksum Functions */
    234 static void
    235 zio_checksum_off(const void *buf __attribute__ ((unused)),
    236 				 uint64_t size __attribute__ ((unused)),
    237 				 zfs_endian_t endian __attribute__ ((unused)),
    238 				 zio_cksum_t *zcp)
    239 {
    240 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
    241 }
    242 
    243 /* Checksum Table and Values */
    244 static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
    245 	{NULL, 0, 0, "inherit"},
    246 	{NULL, 0, 0, "on"},
    247 	{zio_checksum_off, 0, 0, "off"},
    248 	{zio_checksum_SHA256, 1, 1, "label"},
    249 	{zio_checksum_SHA256, 1, 1, "gang_header"},
    250 	{NULL, 0, 0, "zilog"},
    251 	{fletcher_2_endian, 0, 0, "fletcher2"},
    252 	{fletcher_4_endian, 1, 0, "fletcher4"},
    253 	{zio_checksum_SHA256, 1, 0, "SHA256"},
    254 	{NULL, 0, 0, "zilog2"},
    255 };
    256 
    257 /*
    258  * zio_checksum_verify: Provides support for checksum verification.
    259  *
    260  * Fletcher2, Fletcher4, and SHA256 are supported.
    261  *
    262  */
    263 static int
    264 zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
    265 					zfs_endian_t endian, char *buf, int size)
    266 {
    267 	zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
    268 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
    269 	zio_cksum_t actual_cksum, expected_cksum;
    270 
    271 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
    272 		printf("zfs unknown checksum function %d\n", checksum);
    273 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
    274 	}
    275 
    276 	if (ci->ci_eck) {
    277 		expected_cksum = zec->zec_cksum;
    278 		zec->zec_cksum = zc;
    279 		ci->ci_func(buf, size, endian, &actual_cksum);
    280 		zec->zec_cksum = expected_cksum;
    281 		zc = expected_cksum;
    282 	} else {
    283 		ci->ci_func(buf, size, endian, &actual_cksum);
    284 	}
    285 
    286 	if ((actual_cksum.zc_word[0] != zc.zc_word[0])
    287 		|| (actual_cksum.zc_word[1] != zc.zc_word[1])
    288 		|| (actual_cksum.zc_word[2] != zc.zc_word[2])
    289 		|| (actual_cksum.zc_word[3] != zc.zc_word[3])) {
    290 		return ZFS_ERR_BAD_FS;
    291 	}
    292 
    293 	return ZFS_ERR_NONE;
    294 }
    295 
    296 /*
    297  * vdev_uberblock_compare takes two uberblock structures and returns an integer
    298  * indicating the more recent of the two.
    299  *	Return Value = 1 if ub2 is more recent
    300  *	Return Value = -1 if ub1 is more recent
    301  * The most recent uberblock is determined using its transaction number and
    302  * timestamp.  The uberblock with the highest transaction number is
    303  * considered "newer".	If the transaction numbers of the two blocks match, the
    304  * timestamps are compared to determine the "newer" of the two.
    305  */
    306 static int
    307 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
    308 {
    309 	zfs_endian_t ub1_endian, ub2_endian;
    310 	if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
    311 		ub1_endian = LITTLE_ENDIAN;
    312 	else
    313 		ub1_endian = BIG_ENDIAN;
    314 	if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
    315 		ub2_endian = LITTLE_ENDIAN;
    316 	else
    317 		ub2_endian = BIG_ENDIAN;
    318 
    319 	if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
    320 		< zfs_to_cpu64(ub2->ub_txg, ub2_endian))
    321 		return -1;
    322 	if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
    323 		> zfs_to_cpu64(ub2->ub_txg, ub2_endian))
    324 		return 1;
    325 
    326 	if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
    327 		< zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
    328 		return -1;
    329 	if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
    330 		> zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
    331 		return 1;
    332 
    333 	return 0;
    334 }
    335 
    336 /*
    337  * Three pieces of information are needed to verify an uberblock: the magic
    338  * number, the version number, and the checksum.
    339  *
    340  * Currently Implemented: version number, magic number, label txg
    341  * Need to Implement: checksum
    342  *
    343  */
    344 static int
    345 uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
    346 {
    347 	int err;
    348 	zfs_endian_t endian = UNKNOWN_ENDIAN;
    349 	zio_cksum_t zc;
    350 
    351 	if (uber->ub_txg < data->label_txg) {
    352 		debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
    353 			  uber->ub_txg, data->label_txg);
    354 		return ZFS_ERR_BAD_FS;
    355 	}
    356 
    357 	if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
    358 		&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
    359 		&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
    360 		endian = LITTLE_ENDIAN;
    361 
    362 	if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
    363 		&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
    364 		&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
    365 		endian = BIG_ENDIAN;
    366 
    367 	if (endian == UNKNOWN_ENDIAN) {
    368 		printf("invalid uberblock magic\n");
    369 		return ZFS_ERR_BAD_FS;
    370 	}
    371 
    372 	memset(&zc, 0, sizeof(zc));
    373 	zc.zc_word[0] = cpu_to_zfs64(offset, endian);
    374 	err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
    375 							  (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
    376 
    377 	if (!err) {
    378 		/* Check that the data pointed by the rootbp is usable. */
    379 		void *osp = NULL;
    380 		size_t ospsize;
    381 		err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
    382 		free(osp);
    383 
    384 		if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
    385 			printf("uberblock rootbp points to invalid data\n");
    386 			return ZFS_ERR_BAD_FS;
    387 		}
    388 	}
    389 
    390 	return err;
    391 }
    392 
    393 /*
    394  * Find the best uberblock.
    395  * Return:
    396  *	  Success - Pointer to the best uberblock.
    397  *	  Failure - NULL
    398  */
    399 static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
    400 {
    401 	const uint64_t sector = data->vdev_phys_sector;
    402 	uberblock_t *ubbest = NULL;
    403 	uberblock_t *ubnext;
    404 	unsigned int i, offset, pickedub = 0;
    405 	int err = ZFS_ERR_NONE;
    406 
    407 	const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
    408 	const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
    409 
    410 	for (i = 0; i < UBCOUNT; i++) {
    411 		ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
    412 		offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
    413 
    414 		err = uberblock_verify(ubnext, offset, data);
    415 		if (err)
    416 			continue;
    417 
    418 		if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
    419 			ubbest = ubnext;
    420 			pickedub = i;
    421 		}
    422 	}
    423 
    424 	if (ubbest)
    425 		debug("zfs Found best uberblock at idx %d, txg %llu\n",
    426 			  pickedub, (unsigned long long) ubbest->ub_txg);
    427 
    428 	return ubbest;
    429 }
    430 
    431 static inline size_t
    432 get_psize(blkptr_t *bp, zfs_endian_t endian)
    433 {
    434 	return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
    435 			<< SPA_MINBLOCKSHIFT;
    436 }
    437 
    438 static uint64_t
    439 dva_get_offset(dva_t *dva, zfs_endian_t endian)
    440 {
    441 	return zfs_to_cpu64((dva)->dva_word[1],
    442 							 endian) << SPA_MINBLOCKSHIFT;
    443 }
    444 
    445 /*
    446  * Read a block of data based on the gang block address dva,
    447  * and put its data in buf.
    448  *
    449  */
    450 static int
    451 zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
    452 			  struct zfs_data *data)
    453 {
    454 	zio_gbh_phys_t *zio_gb;
    455 	uint64_t offset, sector;
    456 	unsigned i;
    457 	int err;
    458 	zio_cksum_t zc;
    459 
    460 	memset(&zc, 0, sizeof(zc));
    461 
    462 	zio_gb = malloc(SPA_GANGBLOCKSIZE);
    463 	if (!zio_gb)
    464 		return ZFS_ERR_OUT_OF_MEMORY;
    465 
    466 	offset = dva_get_offset(dva, endian);
    467 	sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
    468 
    469 	/* read in the gang block header */
    470 	err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
    471 
    472 	if (err) {
    473 		free(zio_gb);
    474 		return err;
    475 	}
    476 
    477 	/* XXX */
    478 	/* self checksuming the gang block header */
    479 	ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
    480 					 dva_get_offset(dva, endian), bp->blk_birth, 0);
    481 	err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
    482 							  (char *) zio_gb, SPA_GANGBLOCKSIZE);
    483 	if (err) {
    484 		free(zio_gb);
    485 		return err;
    486 	}
    487 
    488 	endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
    489 
    490 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
    491 		if (zio_gb->zg_blkptr[i].blk_birth == 0)
    492 			continue;
    493 
    494 		err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
    495 		if (err) {
    496 			free(zio_gb);
    497 			return err;
    498 		}
    499 		buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
    500 	}
    501 	free(zio_gb);
    502 	return ZFS_ERR_NONE;
    503 }
    504 
    505 /*
    506  * Read in a block of raw data to buf.
    507  */
    508 static int
    509 zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
    510 			  struct zfs_data *data)
    511 {
    512 	int i, psize;
    513 	int err = ZFS_ERR_NONE;
    514 
    515 	psize = get_psize(bp, endian);
    516 
    517 	/* pick a good dva from the block pointer */
    518 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
    519 		uint64_t offset, sector;
    520 
    521 		if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
    522 			continue;
    523 
    524 		if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
    525 			err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
    526 		} else {
    527 			/* read in a data block */
    528 			offset = dva_get_offset(&bp->blk_dva[i], endian);
    529 			sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
    530 
    531 			err = zfs_devread(sector, 0, psize, buf);
    532 		}
    533 
    534 		if (!err) {
    535 			/*Check the underlying checksum before we rule this DVA as "good"*/
    536 			uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
    537 
    538 			err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
    539 			if (!err)
    540 				return ZFS_ERR_NONE;
    541 		}
    542 
    543 		/* If read failed or checksum bad, reset the error.	 Hopefully we've got some more DVA's to try.*/
    544 	}
    545 
    546 	if (!err) {
    547 		printf("couldn't find a valid DVA\n");
    548 		err = ZFS_ERR_BAD_FS;
    549 	}
    550 
    551 	return err;
    552 }
    553 
    554 /*
    555  * Read in a block of data, verify its checksum, decompress if needed,
    556  * and put the uncompressed data in buf.
    557  */
    558 static int
    559 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
    560 		 size_t *size, struct zfs_data *data)
    561 {
    562 	size_t lsize, psize;
    563 	unsigned int comp;
    564 	char *compbuf = NULL;
    565 	int err;
    566 
    567 	*buf = NULL;
    568 
    569 	comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
    570 	lsize = (BP_IS_HOLE(bp) ? 0 :
    571 			 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
    572 			  << SPA_MINBLOCKSHIFT));
    573 	psize = get_psize(bp, endian);
    574 
    575 	if (size)
    576 		*size = lsize;
    577 
    578 	if (comp >= ZIO_COMPRESS_FUNCTIONS) {
    579 		printf("compression algorithm %u not supported\n", (unsigned int) comp);
    580 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
    581 	}
    582 
    583 	if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
    584 		printf("compression algorithm %s not supported\n", decomp_table[comp].name);
    585 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
    586 	}
    587 
    588 	if (comp != ZIO_COMPRESS_OFF) {
    589 		compbuf = malloc(psize);
    590 		if (!compbuf)
    591 			return ZFS_ERR_OUT_OF_MEMORY;
    592 	} else {
    593 		compbuf = *buf = malloc(lsize);
    594 	}
    595 
    596 	err = zio_read_data(bp, endian, compbuf, data);
    597 	if (err) {
    598 		free(compbuf);
    599 		*buf = NULL;
    600 		return err;
    601 	}
    602 
    603 	if (comp != ZIO_COMPRESS_OFF) {
    604 		*buf = malloc(lsize);
    605 		if (!*buf) {
    606 			free(compbuf);
    607 			return ZFS_ERR_OUT_OF_MEMORY;
    608 		}
    609 
    610 		err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
    611 		free(compbuf);
    612 		if (err) {
    613 			free(*buf);
    614 			*buf = NULL;
    615 			return err;
    616 		}
    617 	}
    618 
    619 	return ZFS_ERR_NONE;
    620 }
    621 
    622 /*
    623  * Get the block from a block id.
    624  * push the block onto the stack.
    625  *
    626  */
    627 static int
    628 dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
    629 		 zfs_endian_t *endian_out, struct zfs_data *data)
    630 {
    631 	int idx, level;
    632 	blkptr_t *bp_array = dn->dn.dn_blkptr;
    633 	int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
    634 	blkptr_t *bp;
    635 	void *tmpbuf = 0;
    636 	zfs_endian_t endian;
    637 	int err = ZFS_ERR_NONE;
    638 
    639 	bp = malloc(sizeof(blkptr_t));
    640 	if (!bp)
    641 		return ZFS_ERR_OUT_OF_MEMORY;
    642 
    643 	endian = dn->endian;
    644 	for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
    645 		idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
    646 		*bp = bp_array[idx];
    647 		if (bp_array != dn->dn.dn_blkptr) {
    648 			free(bp_array);
    649 			bp_array = 0;
    650 		}
    651 
    652 		if (BP_IS_HOLE(bp)) {
    653 			size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
    654 											dn->endian)
    655 				<< SPA_MINBLOCKSHIFT;
    656 			*buf = malloc(size);
    657 			if (*buf) {
    658 				err = ZFS_ERR_OUT_OF_MEMORY;
    659 				break;
    660 			}
    661 			memset(*buf, 0, size);
    662 			endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
    663 			break;
    664 		}
    665 		if (level == 0) {
    666 			err = zio_read(bp, endian, buf, 0, data);
    667 			endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
    668 			break;
    669 		}
    670 		err = zio_read(bp, endian, &tmpbuf, 0, data);
    671 		endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
    672 		if (err)
    673 			break;
    674 		bp_array = tmpbuf;
    675 	}
    676 	if (bp_array != dn->dn.dn_blkptr)
    677 		free(bp_array);
    678 	if (endian_out)
    679 		*endian_out = endian;
    680 
    681 	free(bp);
    682 	return err;
    683 }
    684 
    685 /*
    686  * mzap_lookup: Looks up property described by "name" and returns the value
    687  * in "value".
    688  */
    689 static int
    690 mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
    691 			int objsize, char *name, uint64_t * value)
    692 {
    693 	int i, chunks;
    694 	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
    695 
    696 	chunks = objsize / MZAP_ENT_LEN - 1;
    697 	for (i = 0; i < chunks; i++) {
    698 		if (strcmp(mzap_ent[i].mze_name, name) == 0) {
    699 			*value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
    700 			return ZFS_ERR_NONE;
    701 		}
    702 	}
    703 
    704 	printf("couldn't find '%s'\n", name);
    705 	return ZFS_ERR_FILE_NOT_FOUND;
    706 }
    707 
    708 static int
    709 mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
    710 			 int (*hook)(const char *name,
    711 						 uint64_t val,
    712 						 struct zfs_data *data),
    713 			 struct zfs_data *data)
    714 {
    715 	int i, chunks;
    716 	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
    717 
    718 	chunks = objsize / MZAP_ENT_LEN - 1;
    719 	for (i = 0; i < chunks; i++) {
    720 		if (hook(mzap_ent[i].mze_name,
    721 				 zfs_to_cpu64(mzap_ent[i].mze_value, endian),
    722 				 data))
    723 			return 1;
    724 	}
    725 
    726 	return 0;
    727 }
    728 
    729 static uint64_t
    730 zap_hash(uint64_t salt, const char *name)
    731 {
    732 	static uint64_t table[256];
    733 	const uint8_t *cp;
    734 	uint8_t c;
    735 	uint64_t crc = salt;
    736 
    737 	if (table[128] == 0) {
    738 		uint64_t *ct = NULL;
    739 		int i, j;
    740 		for (i = 0; i < 256; i++) {
    741 			for (ct = table + i, *ct = i, j = 8; j > 0; j--)
    742 				*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
    743 		}
    744 	}
    745 
    746 	for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
    747 		crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
    748 
    749 	/*
    750 	 * Only use 28 bits, since we need 4 bits in the cookie for the
    751 	 * collision differentiator.  We MUST use the high bits, since
    752 	 * those are the onces that we first pay attention to when
    753 	 * chosing the bucket.
    754 	 */
    755 	crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
    756 
    757 	return crc;
    758 }
    759 
    760 /*
    761  * Only to be used on 8-bit arrays.
    762  * array_len is actual len in bytes (not encoded le_value_length).
    763  * buf is null-terminated.
    764  */
    765 /* XXX */
    766 static int
    767 zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
    768 					 int blksft, int chunk, int array_len, const char *buf)
    769 {
    770 	int bseen = 0;
    771 
    772 	while (bseen < array_len) {
    773 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
    774 		int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
    775 
    776 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
    777 			return 0;
    778 
    779 		if (memcmp(la->la_array, buf + bseen, toread) != 0)
    780 			break;
    781 		chunk = zfs_to_cpu16(la->la_next, endian);
    782 		bseen += toread;
    783 	}
    784 	return (bseen == array_len);
    785 }
    786 
    787 /* XXX */
    788 static int
    789 zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
    790 				   int chunk, int array_len, char *buf)
    791 {
    792 	int bseen = 0;
    793 
    794 	while (bseen < array_len) {
    795 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
    796 		int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
    797 
    798 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
    799 			/* Don't use errno because this error is to be ignored.  */
    800 			return ZFS_ERR_BAD_FS;
    801 
    802 		memcpy(buf + bseen, la->la_array,  toread);
    803 		chunk = zfs_to_cpu16(la->la_next, endian);
    804 		bseen += toread;
    805 	}
    806 	return ZFS_ERR_NONE;
    807 }
    808 
    809 
    810 /*
    811  * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
    812  * value for the property "name".
    813  *
    814  */
    815 /* XXX */
    816 static int
    817 zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
    818 				int blksft, uint64_t h,
    819 				const char *name, uint64_t *value)
    820 {
    821 	uint16_t chunk;
    822 	struct zap_leaf_entry *le;
    823 
    824 	/* Verify if this is a valid leaf block */
    825 	if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
    826 		printf("invalid leaf type\n");
    827 		return ZFS_ERR_BAD_FS;
    828 	}
    829 	if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
    830 		printf("invalid leaf magic\n");
    831 		return ZFS_ERR_BAD_FS;
    832 	}
    833 
    834 	for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
    835 		 chunk != CHAIN_END; chunk = le->le_next) {
    836 
    837 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
    838 			printf("invalid chunk number\n");
    839 			return ZFS_ERR_BAD_FS;
    840 		}
    841 
    842 		le = ZAP_LEAF_ENTRY(l, blksft, chunk);
    843 
    844 		/* Verify the chunk entry */
    845 		if (le->le_type != ZAP_CHUNK_ENTRY) {
    846 			printf("invalid chunk entry\n");
    847 			return ZFS_ERR_BAD_FS;
    848 		}
    849 
    850 		if (zfs_to_cpu64(le->le_hash, endian) != h)
    851 			continue;
    852 
    853 		if (zap_leaf_array_equal(l, endian, blksft,
    854 								 zfs_to_cpu16(le->le_name_chunk, endian),
    855 								 zfs_to_cpu16(le->le_name_length, endian),
    856 								 name)) {
    857 			struct zap_leaf_array *la;
    858 
    859 			if (le->le_int_size != 8 || le->le_value_length != 1) {
    860 				printf("invalid leaf chunk entry\n");
    861 				return ZFS_ERR_BAD_FS;
    862 			}
    863 			/* get the uint64_t property value */
    864 			la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
    865 
    866 			*value = be64_to_cpu(la->la_array64);
    867 
    868 			return ZFS_ERR_NONE;
    869 		}
    870 	}
    871 
    872 	printf("couldn't find '%s'\n", name);
    873 	return ZFS_ERR_FILE_NOT_FOUND;
    874 }
    875 
    876 
    877 /* Verify if this is a fat zap header block */
    878 static int
    879 zap_verify(zap_phys_t *zap)
    880 {
    881 	if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
    882 		printf("bad ZAP magic\n");
    883 		return ZFS_ERR_BAD_FS;
    884 	}
    885 
    886 	if (zap->zap_flags != 0) {
    887 		printf("bad ZAP flags\n");
    888 		return ZFS_ERR_BAD_FS;
    889 	}
    890 
    891 	if (zap->zap_salt == 0) {
    892 		printf("bad ZAP salt\n");
    893 		return ZFS_ERR_BAD_FS;
    894 	}
    895 
    896 	return ZFS_ERR_NONE;
    897 }
    898 
    899 /*
    900  * Fat ZAP lookup
    901  *
    902  */
    903 /* XXX */
    904 static int
    905 fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
    906 			char *name, uint64_t *value, struct zfs_data *data)
    907 {
    908 	void *l;
    909 	uint64_t hash, idx, blkid;
    910 	int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
    911 											zap_dnode->endian) << DNODE_SHIFT);
    912 	int err;
    913 	zfs_endian_t leafendian;
    914 
    915 	err = zap_verify(zap);
    916 	if (err)
    917 		return err;
    918 
    919 	hash = zap_hash(zap->zap_salt, name);
    920 
    921 	/* get block id from index */
    922 	if (zap->zap_ptrtbl.zt_numblks != 0) {
    923 		printf("external pointer tables not supported\n");
    924 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
    925 	}
    926 	idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
    927 	blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
    928 
    929 	/* Get the leaf block */
    930 	if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
    931 		printf("ZAP leaf is too small\n");
    932 		return ZFS_ERR_BAD_FS;
    933 	}
    934 	err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
    935 	if (err)
    936 		return err;
    937 
    938 	err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
    939 	free(l);
    940 	return err;
    941 }
    942 
    943 /* XXX */
    944 static int
    945 fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
    946 			 int (*hook)(const char *name,
    947 						 uint64_t val,
    948 						 struct zfs_data *data),
    949 			 struct zfs_data *data)
    950 {
    951 	zap_leaf_phys_t *l;
    952 	void *l_in;
    953 	uint64_t idx, blkid;
    954 	uint16_t chunk;
    955 	int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
    956 											zap_dnode->endian) << DNODE_SHIFT);
    957 	int err;
    958 	zfs_endian_t endian;
    959 
    960 	if (zap_verify(zap))
    961 		return 0;
    962 
    963 	/* get block id from index */
    964 	if (zap->zap_ptrtbl.zt_numblks != 0) {
    965 		printf("external pointer tables not supported\n");
    966 		return 0;
    967 	}
    968 	/* Get the leaf block */
    969 	if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
    970 		printf("ZAP leaf is too small\n");
    971 		return 0;
    972 	}
    973 	for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
    974 		blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
    975 
    976 		err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
    977 		l = l_in;
    978 		if (err)
    979 			continue;
    980 
    981 		/* Verify if this is a valid leaf block */
    982 		if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
    983 			free(l);
    984 			continue;
    985 		}
    986 		if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
    987 			free(l);
    988 			continue;
    989 		}
    990 
    991 		for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
    992 			char *buf;
    993 			struct zap_leaf_array *la;
    994 			struct zap_leaf_entry *le;
    995 			uint64_t val;
    996 			le = ZAP_LEAF_ENTRY(l, blksft, chunk);
    997 
    998 			/* Verify the chunk entry */
    999 			if (le->le_type != ZAP_CHUNK_ENTRY)
   1000 				continue;
   1001 
   1002 			buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
   1003 						 + 1);
   1004 			if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
   1005 								   le->le_name_length, buf)) {
   1006 				free(buf);
   1007 				continue;
   1008 			}
   1009 			buf[le->le_name_length] = 0;
   1010 
   1011 			if (le->le_int_size != 8
   1012 				|| zfs_to_cpu16(le->le_value_length, endian) != 1)
   1013 				continue;
   1014 
   1015 			/* get the uint64_t property value */
   1016 			la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
   1017 			val = be64_to_cpu(la->la_array64);
   1018 			if (hook(buf, val, data))
   1019 				return 1;
   1020 			free(buf);
   1021 		}
   1022 	}
   1023 	return 0;
   1024 }
   1025 
   1026 
   1027 /*
   1028  * Read in the data of a zap object and find the value for a matching
   1029  * property name.
   1030  *
   1031  */
   1032 static int
   1033 zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
   1034 		   struct zfs_data *data)
   1035 {
   1036 	uint64_t block_type;
   1037 	int size;
   1038 	void *zapbuf;
   1039 	int err;
   1040 	zfs_endian_t endian;
   1041 
   1042 	/* Read in the first block of the zap object data. */
   1043 	size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
   1044 							 zap_dnode->endian) << SPA_MINBLOCKSHIFT;
   1045 	err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
   1046 	if (err)
   1047 		return err;
   1048 	block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
   1049 
   1050 	if (block_type == ZBT_MICRO) {
   1051 		err = (mzap_lookup(zapbuf, endian, size, name, val));
   1052 		free(zapbuf);
   1053 		return err;
   1054 	} else if (block_type == ZBT_HEADER) {
   1055 		/* this is a fat zap */
   1056 		err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
   1057 		free(zapbuf);
   1058 		return err;
   1059 	}
   1060 
   1061 	printf("unknown ZAP type\n");
   1062 	free(zapbuf);
   1063 	return ZFS_ERR_BAD_FS;
   1064 }
   1065 
   1066 static int
   1067 zap_iterate(dnode_end_t *zap_dnode,
   1068 			int (*hook)(const char *name, uint64_t val,
   1069 						struct zfs_data *data),
   1070 			struct zfs_data *data)
   1071 {
   1072 	uint64_t block_type;
   1073 	int size;
   1074 	void *zapbuf;
   1075 	int err;
   1076 	int ret;
   1077 	zfs_endian_t endian;
   1078 
   1079 	/* Read in the first block of the zap object data. */
   1080 	size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
   1081 	err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
   1082 	if (err)
   1083 		return 0;
   1084 	block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
   1085 
   1086 	if (block_type == ZBT_MICRO) {
   1087 		ret = mzap_iterate(zapbuf, endian, size, hook, data);
   1088 		free(zapbuf);
   1089 		return ret;
   1090 	} else if (block_type == ZBT_HEADER) {
   1091 		/* this is a fat zap */
   1092 		ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
   1093 		free(zapbuf);
   1094 		return ret;
   1095 	}
   1096 	printf("unknown ZAP type\n");
   1097 	free(zapbuf);
   1098 	return 0;
   1099 }
   1100 
   1101 
   1102 /*
   1103  * Get the dnode of an object number from the metadnode of an object set.
   1104  *
   1105  * Input
   1106  *	mdn - metadnode to get the object dnode
   1107  *	objnum - object number for the object dnode
   1108  *	buf - data buffer that holds the returning dnode
   1109  */
   1110 static int
   1111 dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
   1112 		  dnode_end_t *buf, struct zfs_data *data)
   1113 {
   1114 	uint64_t blkid, blksz;	/* the block id this object dnode is in */
   1115 	int epbs;			/* shift of number of dnodes in a block */
   1116 	int idx;			/* index within a block */
   1117 	void *dnbuf;
   1118 	int err;
   1119 	zfs_endian_t endian;
   1120 
   1121 	blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
   1122 							  mdn->endian) << SPA_MINBLOCKSHIFT;
   1123 
   1124 	epbs = zfs_log2(blksz) - DNODE_SHIFT;
   1125 	blkid = objnum >> epbs;
   1126 	idx = objnum & ((1 << epbs) - 1);
   1127 
   1128 	if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
   1129 										  sizeof(*mdn)) == 0
   1130 		&& objnum >= data->dnode_start && objnum < data->dnode_end) {
   1131 		memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
   1132 		buf->endian = data->dnode_endian;
   1133 		if (type && buf->dn.dn_type != type)  {
   1134 			printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
   1135 			return ZFS_ERR_BAD_FS;
   1136 		}
   1137 		return ZFS_ERR_NONE;
   1138 	}
   1139 
   1140 	err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
   1141 	if (err)
   1142 		return err;
   1143 
   1144 	free(data->dnode_buf);
   1145 	free(data->dnode_mdn);
   1146 	data->dnode_mdn = malloc(sizeof(*mdn));
   1147 	if (!data->dnode_mdn) {
   1148 		data->dnode_buf = 0;
   1149 	} else {
   1150 		memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
   1151 		data->dnode_buf = dnbuf;
   1152 		data->dnode_start = blkid << epbs;
   1153 		data->dnode_end = (blkid + 1) << epbs;
   1154 		data->dnode_endian = endian;
   1155 	}
   1156 
   1157 	memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
   1158 	buf->endian = endian;
   1159 	if (type && buf->dn.dn_type != type) {
   1160 		printf("incorrect dnode type\n");
   1161 		return ZFS_ERR_BAD_FS;
   1162 	}
   1163 
   1164 	return ZFS_ERR_NONE;
   1165 }
   1166 
   1167 /*
   1168  * Get the file dnode for a given file name where mdn is the meta dnode
   1169  * for this ZFS object set. When found, place the file dnode in dn.
   1170  * The 'path' argument will be mangled.
   1171  *
   1172  */
   1173 static int
   1174 dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
   1175 			   struct zfs_data *data)
   1176 {
   1177 	uint64_t objnum, version;
   1178 	char *cname, ch;
   1179 	int err = ZFS_ERR_NONE;
   1180 	char *path, *path_buf;
   1181 	struct dnode_chain {
   1182 		struct dnode_chain *next;
   1183 		dnode_end_t dn;
   1184 	};
   1185 	struct dnode_chain *dnode_path = 0, *dn_new, *root;
   1186 
   1187 	dn_new = malloc(sizeof(*dn_new));
   1188 	if (!dn_new)
   1189 		return ZFS_ERR_OUT_OF_MEMORY;
   1190 	dn_new->next = 0;
   1191 	dnode_path = root = dn_new;
   1192 
   1193 	err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
   1194 					&(dnode_path->dn), data);
   1195 	if (err) {
   1196 		free(dn_new);
   1197 		return err;
   1198 	}
   1199 
   1200 	err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
   1201 	if (err) {
   1202 		free(dn_new);
   1203 		return err;
   1204 	}
   1205 	if (version > ZPL_VERSION) {
   1206 		free(dn_new);
   1207 		printf("too new ZPL version\n");
   1208 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
   1209 	}
   1210 
   1211 	err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
   1212 	if (err) {
   1213 		free(dn_new);
   1214 		return err;
   1215 	}
   1216 
   1217 	err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
   1218 	if (err) {
   1219 		free(dn_new);
   1220 		return err;
   1221 	}
   1222 
   1223 	path = path_buf = strdup(path_in);
   1224 	if (!path_buf) {
   1225 		free(dn_new);
   1226 		return ZFS_ERR_OUT_OF_MEMORY;
   1227 	}
   1228 
   1229 	while (1) {
   1230 		/* skip leading slashes */
   1231 		while (*path == '/')
   1232 			path++;
   1233 		if (!*path)
   1234 			break;
   1235 		/* get the next component name */
   1236 		cname = path;
   1237 		while (*path && *path != '/')
   1238 			path++;
   1239 		/* Skip dot.  */
   1240 		if (cname + 1 == path && cname[0] == '.')
   1241 			continue;
   1242 		/* Handle double dot.  */
   1243 		if (cname + 2 == path && cname[0] == '.' && cname[1] == '.')  {
   1244 			if (dn_new->next) {
   1245 				dn_new = dnode_path;
   1246 				dnode_path = dn_new->next;
   1247 				free(dn_new);
   1248 			} else {
   1249 				printf("can't resolve ..\n");
   1250 				err = ZFS_ERR_FILE_NOT_FOUND;
   1251 				break;
   1252 			}
   1253 			continue;
   1254 		}
   1255 
   1256 		ch = *path;
   1257 		*path = 0;		/* ensure null termination */
   1258 
   1259 		if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
   1260 			free(path_buf);
   1261 			printf("not a directory\n");
   1262 			return ZFS_ERR_BAD_FILE_TYPE;
   1263 		}
   1264 		err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
   1265 		if (err)
   1266 			break;
   1267 
   1268 		dn_new = malloc(sizeof(*dn_new));
   1269 		if (!dn_new) {
   1270 			err = ZFS_ERR_OUT_OF_MEMORY;
   1271 			break;
   1272 		}
   1273 		dn_new->next = dnode_path;
   1274 		dnode_path = dn_new;
   1275 
   1276 		objnum = ZFS_DIRENT_OBJ(objnum);
   1277 		err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
   1278 		if (err)
   1279 			break;
   1280 
   1281 		*path = ch;
   1282 	}
   1283 
   1284 	if (!err)
   1285 		memcpy(dn, &(dnode_path->dn), sizeof(*dn));
   1286 
   1287 	while (dnode_path) {
   1288 		dn_new = dnode_path->next;
   1289 		free(dnode_path);
   1290 		dnode_path = dn_new;
   1291 	}
   1292 	free(path_buf);
   1293 	return err;
   1294 }
   1295 
   1296 
   1297 /*
   1298  * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
   1299  * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
   1300  * of pool/rootfs.
   1301  *
   1302  * If no fsname and no obj are given, return the DSL_DIR metadnode.
   1303  * If fsname is given, return its metadnode and its matching object number.
   1304  * If only obj is given, return the metadnode for this object number.
   1305  *
   1306  */
   1307 static int
   1308 get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
   1309 					 dnode_end_t *mdn, struct zfs_data *data)
   1310 {
   1311 	uint64_t objnum;
   1312 	int err;
   1313 
   1314 	err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
   1315 					DMU_OT_OBJECT_DIRECTORY, mdn, data);
   1316 	if (err)
   1317 		return err;
   1318 
   1319 	err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
   1320 	if (err)
   1321 		return err;
   1322 
   1323 	err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
   1324 	if (err)
   1325 		return err;
   1326 
   1327 	while (*fsname) {
   1328 		uint64_t childobj;
   1329 		char *cname, ch;
   1330 
   1331 		while (*fsname == '/')
   1332 			fsname++;
   1333 
   1334 		if (!*fsname || *fsname == '@')
   1335 			break;
   1336 
   1337 		cname = fsname;
   1338 		while (*fsname && !isspace(*fsname) && *fsname != '/')
   1339 			fsname++;
   1340 		ch = *fsname;
   1341 		*fsname = 0;
   1342 
   1343 		childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
   1344 		err = dnode_get(mosmdn, childobj,
   1345 						DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
   1346 		if (err)
   1347 			return err;
   1348 
   1349 		err = zap_lookup(mdn, cname, &objnum, data);
   1350 		if (err)
   1351 			return err;
   1352 
   1353 		err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
   1354 		if (err)
   1355 			return err;
   1356 
   1357 		*fsname = ch;
   1358 	}
   1359 	return ZFS_ERR_NONE;
   1360 }
   1361 
   1362 static int
   1363 make_mdn(dnode_end_t *mdn, struct zfs_data *data)
   1364 {
   1365 	void *osp;
   1366 	blkptr_t *bp;
   1367 	size_t ospsize;
   1368 	int err;
   1369 
   1370 	bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
   1371 	err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
   1372 	if (err)
   1373 		return err;
   1374 	if (ospsize < OBJSET_PHYS_SIZE_V14) {
   1375 		free(osp);
   1376 		printf("too small osp\n");
   1377 		return ZFS_ERR_BAD_FS;
   1378 	}
   1379 
   1380 	mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
   1381 	memmove((char *) &(mdn->dn),
   1382 			(char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
   1383 	free(osp);
   1384 	return ZFS_ERR_NONE;
   1385 }
   1386 
   1387 static int
   1388 dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
   1389 				   uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
   1390 				   struct zfs_data *data)
   1391 {
   1392 	char *fsname, *snapname;
   1393 	const char *ptr_at, *filename;
   1394 	uint64_t headobj;
   1395 	int err;
   1396 
   1397 	ptr_at = strchr(fullpath, '@');
   1398 	if (!ptr_at) {
   1399 		*isfs = 1;
   1400 		filename = 0;
   1401 		snapname = 0;
   1402 		fsname = strdup(fullpath);
   1403 	} else {
   1404 		const char *ptr_slash = strchr(ptr_at, '/');
   1405 
   1406 		*isfs = 0;
   1407 		fsname = malloc(ptr_at - fullpath + 1);
   1408 		if (!fsname)
   1409 			return ZFS_ERR_OUT_OF_MEMORY;
   1410 		memcpy(fsname, fullpath, ptr_at - fullpath);
   1411 		fsname[ptr_at - fullpath] = 0;
   1412 		if (ptr_at[1] && ptr_at[1] != '/') {
   1413 			snapname = malloc(ptr_slash - ptr_at);
   1414 			if (!snapname) {
   1415 				free(fsname);
   1416 				return ZFS_ERR_OUT_OF_MEMORY;
   1417 			}
   1418 			memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
   1419 			snapname[ptr_slash - ptr_at - 1] = 0;
   1420 		} else {
   1421 			snapname = 0;
   1422 		}
   1423 		if (ptr_slash)
   1424 			filename = ptr_slash;
   1425 		else
   1426 			filename = "/";
   1427 		printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
   1428 			   fsname, snapname, filename);
   1429 	}
   1430 
   1431 
   1432 	err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
   1433 
   1434 	if (err) {
   1435 		free(fsname);
   1436 		free(snapname);
   1437 		return err;
   1438 	}
   1439 
   1440 	headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
   1441 
   1442 	err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
   1443 	if (err) {
   1444 		free(fsname);
   1445 		free(snapname);
   1446 		return err;
   1447 	}
   1448 
   1449 	if (snapname) {
   1450 		uint64_t snapobj;
   1451 
   1452 		snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
   1453 
   1454 		err = dnode_get(&(data->mos), snapobj,
   1455 						DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
   1456 		if (!err)
   1457 			err = zap_lookup(mdn, snapname, &headobj, data);
   1458 		if (!err)
   1459 			err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
   1460 		if (err) {
   1461 			free(fsname);
   1462 			free(snapname);
   1463 			return err;
   1464 		}
   1465 	}
   1466 
   1467 	if (mdnobj)
   1468 		*mdnobj = headobj;
   1469 
   1470 	make_mdn(mdn, data);
   1471 
   1472 	if (*isfs) {
   1473 		free(fsname);
   1474 		free(snapname);
   1475 		return ZFS_ERR_NONE;
   1476 	}
   1477 	err = dnode_get_path(mdn, filename, dn, data);
   1478 	free(fsname);
   1479 	free(snapname);
   1480 	return err;
   1481 }
   1482 
   1483 /*
   1484  * For a given XDR packed nvlist, verify the first 4 bytes and move on.
   1485  *
   1486  * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
   1487  *
   1488  *		encoding method/host endian		(4 bytes)
   1489  *		nvl_version						(4 bytes)
   1490  *		nvl_nvflag						(4 bytes)
   1491  *	encoded nvpairs:
   1492  *		encoded size of the nvpair		(4 bytes)
   1493  *		decoded size of the nvpair		(4 bytes)
   1494  *		name string size				(4 bytes)
   1495  *		name string data				(sizeof(NV_ALIGN4(string))
   1496  *		data type						(4 bytes)
   1497  *		# of elements in the nvpair		(4 bytes)
   1498  *		data
   1499  *		2 zero's for the last nvpair
   1500  *		(end of the entire list)	(8 bytes)
   1501  *
   1502  */
   1503 
   1504 static int
   1505 nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
   1506 				  size_t *size_out, size_t *nelm_out)
   1507 {
   1508 	int name_len, type, encode_size;
   1509 	char *nvpair, *nvp_name;
   1510 
   1511 	/* Verify if the 1st and 2nd byte in the nvlist are valid. */
   1512 	/* NOTE: independently of what endianness header announces all
   1513 	   subsequent values are big-endian.  */
   1514 	if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
   1515 									   && nvlist[1] != NV_BIG_ENDIAN)) {
   1516 		printf("zfs incorrect nvlist header\n");
   1517 		return ZFS_ERR_BAD_FS;
   1518 	}
   1519 
   1520 	/* skip the header, nvl_version, and nvl_nvflag */
   1521 	nvlist = nvlist + 4 * 3;
   1522 	/*
   1523 	 * Loop thru the nvpair list
   1524 	 * The XDR representation of an integer is in big-endian byte order.
   1525 	 */
   1526 	while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
   1527 		int nelm;
   1528 
   1529 		nvpair = nvlist + 4 * 2;	/* skip the encode/decode size */
   1530 
   1531 		name_len = be32_to_cpu(*(uint32_t *) nvpair);
   1532 		nvpair += 4;
   1533 
   1534 		nvp_name = nvpair;
   1535 		nvpair = nvpair + ((name_len + 3) & ~3);	/* align */
   1536 
   1537 		type = be32_to_cpu(*(uint32_t *) nvpair);
   1538 		nvpair += 4;
   1539 
   1540 		nelm = be32_to_cpu(*(uint32_t *) nvpair);
   1541 		if (nelm < 1) {
   1542 			printf("empty nvpair\n");
   1543 			return ZFS_ERR_BAD_FS;
   1544 		}
   1545 
   1546 		nvpair += 4;
   1547 
   1548 		if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
   1549 			*val = nvpair;
   1550 			*size_out = encode_size;
   1551 			if (nelm_out)
   1552 				*nelm_out = nelm;
   1553 			return 1;
   1554 		}
   1555 
   1556 		nvlist += encode_size;	/* goto the next nvpair */
   1557 	}
   1558 	return 0;
   1559 }
   1560 
   1561 int
   1562 zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
   1563 {
   1564 	char *nvpair;
   1565 	size_t size;
   1566 	int found;
   1567 
   1568 	found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
   1569 	if (!found)
   1570 		return 0;
   1571 	if (size < sizeof(uint64_t)) {
   1572 		printf("invalid uint64\n");
   1573 		return ZFS_ERR_BAD_FS;
   1574 	}
   1575 
   1576 	*out = be64_to_cpu(*(uint64_t *) nvpair);
   1577 	return 1;
   1578 }
   1579 
   1580 char *
   1581 zfs_nvlist_lookup_string(char *nvlist, char *name)
   1582 {
   1583 	char *nvpair;
   1584 	char *ret;
   1585 	size_t slen;
   1586 	size_t size;
   1587 	int found;
   1588 
   1589 	found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
   1590 	if (!found)
   1591 		return 0;
   1592 	if (size < 4) {
   1593 		printf("invalid string\n");
   1594 		return 0;
   1595 	}
   1596 	slen = be32_to_cpu(*(uint32_t *) nvpair);
   1597 	if (slen > size - 4)
   1598 		slen = size - 4;
   1599 	ret = malloc(slen + 1);
   1600 	if (!ret)
   1601 		return 0;
   1602 	memcpy(ret, nvpair + 4, slen);
   1603 	ret[slen] = 0;
   1604 	return ret;
   1605 }
   1606 
   1607 char *
   1608 zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
   1609 {
   1610 	char *nvpair;
   1611 	char *ret;
   1612 	size_t size;
   1613 	int found;
   1614 
   1615 	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
   1616 							  &size, 0);
   1617 	if (!found)
   1618 		return 0;
   1619 	ret = calloc(1, size + 3 * sizeof(uint32_t));
   1620 	if (!ret)
   1621 		return 0;
   1622 	memcpy(ret, nvlist, sizeof(uint32_t));
   1623 
   1624 	memcpy(ret + sizeof(uint32_t), nvpair, size);
   1625 	return ret;
   1626 }
   1627 
   1628 int
   1629 zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
   1630 {
   1631 	char *nvpair;
   1632 	size_t nelm, size;
   1633 	int found;
   1634 
   1635 	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
   1636 							  &size, &nelm);
   1637 	if (!found)
   1638 		return -1;
   1639 	return nelm;
   1640 }
   1641 
   1642 char *
   1643 zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
   1644 									size_t index)
   1645 {
   1646 	char *nvpair, *nvpairptr;
   1647 	int found;
   1648 	char *ret;
   1649 	size_t size;
   1650 	unsigned i;
   1651 	size_t nelm;
   1652 
   1653 	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
   1654 							  &size, &nelm);
   1655 	if (!found)
   1656 		return 0;
   1657 	if (index >= nelm) {
   1658 		printf("trying to lookup past nvlist array\n");
   1659 		return 0;
   1660 	}
   1661 
   1662 	nvpairptr = nvpair;
   1663 
   1664 	for (i = 0; i < index; i++) {
   1665 		uint32_t encode_size;
   1666 
   1667 		/* skip the header, nvl_version, and nvl_nvflag */
   1668 		nvpairptr = nvpairptr + 4 * 2;
   1669 
   1670 		while (nvpairptr < nvpair + size
   1671 			   && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
   1672 			nvlist += encode_size;	/* goto the next nvpair */
   1673 
   1674 		nvlist = nvlist + 4 * 2;	/* skip the ending 2 zeros - 8 bytes */
   1675 	}
   1676 
   1677 	if (nvpairptr >= nvpair + size
   1678 		|| nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
   1679 		>= nvpair + size) {
   1680 		printf("incorrect nvlist array\n");
   1681 		return 0;
   1682 	}
   1683 
   1684 	ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
   1685 				 + 3 * sizeof(uint32_t));
   1686 	if (!ret)
   1687 		return 0;
   1688 	memcpy(ret, nvlist, sizeof(uint32_t));
   1689 
   1690 	memcpy(ret + sizeof(uint32_t), nvpairptr, size);
   1691 	return ret;
   1692 }
   1693 
   1694 static int
   1695 int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
   1696 {
   1697 	int err;
   1698 
   1699 	*nvlist = malloc(VDEV_PHYS_SIZE);
   1700 	/* Read in the vdev name-value pair list (112K). */
   1701 	err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
   1702 	if (err) {
   1703 		free(*nvlist);
   1704 		*nvlist = 0;
   1705 		return err;
   1706 	}
   1707 	return ZFS_ERR_NONE;
   1708 }
   1709 
   1710 /*
   1711  * Check the disk label information and retrieve needed vdev name-value pairs.
   1712  *
   1713  */
   1714 static int
   1715 check_pool_label(struct zfs_data *data)
   1716 {
   1717 	uint64_t pool_state;
   1718 	char *nvlist;			/* for the pool */
   1719 	char *vdevnvlist;		/* for the vdev */
   1720 	uint64_t diskguid;
   1721 	uint64_t version;
   1722 	int found;
   1723 	int err;
   1724 
   1725 	err = int_zfs_fetch_nvlist(data, &nvlist);
   1726 	if (err)
   1727 		return err;
   1728 
   1729 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
   1730 										  &pool_state);
   1731 	if (!found) {
   1732 		free(nvlist);
   1733 		printf("zfs pool state not found\n");
   1734 		return ZFS_ERR_BAD_FS;
   1735 	}
   1736 
   1737 	if (pool_state == POOL_STATE_DESTROYED) {
   1738 		free(nvlist);
   1739 		printf("zpool is marked as destroyed\n");
   1740 		return ZFS_ERR_BAD_FS;
   1741 	}
   1742 
   1743 	data->label_txg = 0;
   1744 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
   1745 										  &data->label_txg);
   1746 	if (!found) {
   1747 		free(nvlist);
   1748 		printf("zfs pool txg not found\n");
   1749 		return ZFS_ERR_BAD_FS;
   1750 	}
   1751 
   1752 	/* not an active device */
   1753 	if (data->label_txg == 0) {
   1754 		free(nvlist);
   1755 		printf("zpool is not active\n");
   1756 		return ZFS_ERR_BAD_FS;
   1757 	}
   1758 
   1759 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
   1760 										  &version);
   1761 	if (!found) {
   1762 		free(nvlist);
   1763 		printf("zpool config version not found\n");
   1764 		return ZFS_ERR_BAD_FS;
   1765 	}
   1766 
   1767 	if (version > SPA_VERSION) {
   1768 		free(nvlist);
   1769 		printf("SPA version too new %llu > %llu\n",
   1770 			   (unsigned long long) version,
   1771 			   (unsigned long long) SPA_VERSION);
   1772 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
   1773 	}
   1774 
   1775 	vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
   1776 	if (!vdevnvlist) {
   1777 		free(nvlist);
   1778 		printf("ZFS config vdev tree not found\n");
   1779 		return ZFS_ERR_BAD_FS;
   1780 	}
   1781 
   1782 	found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
   1783 										  &data->vdev_ashift);
   1784 	free(vdevnvlist);
   1785 	if (!found) {
   1786 		free(nvlist);
   1787 		printf("ZPOOL config ashift not found\n");
   1788 		return ZFS_ERR_BAD_FS;
   1789 	}
   1790 
   1791 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
   1792 	if (!found) {
   1793 		free(nvlist);
   1794 		printf("ZPOOL config guid not found\n");
   1795 		return ZFS_ERR_BAD_FS;
   1796 	}
   1797 
   1798 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
   1799 	if (!found) {
   1800 		free(nvlist);
   1801 		printf("ZPOOL config pool guid not found\n");
   1802 		return ZFS_ERR_BAD_FS;
   1803 	}
   1804 
   1805 	free(nvlist);
   1806 
   1807 	printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
   1808 		   (unsigned long long) data->pool_guid,
   1809 		   (unsigned long long) data->pool_guid,
   1810 		   (unsigned long long) diskguid,
   1811 		   (unsigned long long) diskguid,
   1812 		   (unsigned long long) data->label_txg,
   1813 		   (unsigned long long) version,
   1814 		   (unsigned long long) data->vdev_ashift);
   1815 
   1816 	return ZFS_ERR_NONE;
   1817 }
   1818 
   1819 /*
   1820  * vdev_label_start returns the physical disk offset (in bytes) of
   1821  * label "l".
   1822  */
   1823 static uint64_t vdev_label_start(uint64_t psize, int l)
   1824 {
   1825 	return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
   1826 										0 : psize -
   1827 										VDEV_LABELS * sizeof(vdev_label_t)));
   1828 }
   1829 
   1830 void
   1831 zfs_unmount(struct zfs_data *data)
   1832 {
   1833 	free(data->dnode_buf);
   1834 	free(data->dnode_mdn);
   1835 	free(data->file_buf);
   1836 	free(data);
   1837 }
   1838 
   1839 /*
   1840  * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
   1841  * to the memory address MOS.
   1842  *
   1843  */
   1844 struct zfs_data *
   1845 zfs_mount(device_t dev)
   1846 {
   1847 	struct zfs_data *data = 0;
   1848 	int label = 0, bestlabel = -1;
   1849 	char *ub_array;
   1850 	uberblock_t *ubbest;
   1851 	uberblock_t *ubcur = NULL;
   1852 	void *osp = 0;
   1853 	size_t ospsize;
   1854 	int err;
   1855 
   1856 	data = malloc(sizeof(*data));
   1857 	if (!data)
   1858 		return 0;
   1859 	memset(data, 0, sizeof(*data));
   1860 
   1861 	ub_array = malloc(VDEV_UBERBLOCK_RING);
   1862 	if (!ub_array) {
   1863 		zfs_unmount(data);
   1864 		return 0;
   1865 	}
   1866 
   1867 	ubbest = malloc(sizeof(*ubbest));
   1868 	if (!ubbest) {
   1869 		free(ub_array);
   1870 		zfs_unmount(data);
   1871 		return 0;
   1872 	}
   1873 	memset(ubbest, 0, sizeof(*ubbest));
   1874 
   1875 	/*
   1876 	 * some eltorito stacks don't give us a size and
   1877 	 * we end up setting the size to MAXUINT, further
   1878 	 * some of these devices stop working once a single
   1879 	 * read past the end has been issued. Checking
   1880 	 * for a maximum part_length and skipping the backup
   1881 	 * labels at the end of the slice/partition/device
   1882 	 * avoids breaking down on such devices.
   1883 	 */
   1884 	const int vdevnum =
   1885 		dev->part_length == 0 ?
   1886 		VDEV_LABELS / 2 : VDEV_LABELS;
   1887 
   1888 	/* Size in bytes of the device (disk or partition) aligned to label size*/
   1889 	uint64_t device_size =
   1890 		dev->part_length << SECTOR_BITS;
   1891 
   1892 	const uint64_t alignedbytes =
   1893 		P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
   1894 
   1895 	for (label = 0; label < vdevnum; label++) {
   1896 		uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
   1897 		uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
   1898 
   1899 		debug("zfs reading label %d at sector %llu (byte %llu)\n",
   1900 			  label, (unsigned long long) labelstart,
   1901 			  (unsigned long long) labelstartbytes);
   1902 
   1903 		data->vdev_phys_sector = labelstart +
   1904 			((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
   1905 
   1906 		err = check_pool_label(data);
   1907 		if (err) {
   1908 			printf("zfs error checking label %d\n", label);
   1909 			continue;
   1910 		}
   1911 
   1912 		/* Read in the uberblock ring (128K). */
   1913 		err = zfs_devread(data->vdev_phys_sector  +
   1914 						  (VDEV_PHYS_SIZE >> SECTOR_BITS),
   1915 						  0, VDEV_UBERBLOCK_RING, ub_array);
   1916 		if (err) {
   1917 			printf("zfs error reading uberblock ring for label %d\n", label);
   1918 			continue;
   1919 		}
   1920 
   1921 		ubcur = find_bestub(ub_array, data);
   1922 		if (!ubcur) {
   1923 			printf("zfs No good uberblocks found in label %d\n", label);
   1924 			continue;
   1925 		}
   1926 
   1927 		if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
   1928 			/* Looks like the block is good, so use it.*/
   1929 			memcpy(ubbest, ubcur, sizeof(*ubbest));
   1930 			bestlabel = label;
   1931 			debug("zfs Current best uberblock found in label %d\n", label);
   1932 		}
   1933 	}
   1934 	free(ub_array);
   1935 
   1936 	/* We zero'd the structure to begin with.  If we never assigned to it,
   1937 	   magic will still be zero. */
   1938 	if (!ubbest->ub_magic) {
   1939 		printf("couldn't find a valid ZFS label\n");
   1940 		zfs_unmount(data);
   1941 		free(ubbest);
   1942 		return 0;
   1943 	}
   1944 
   1945 	debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
   1946 
   1947 	zfs_endian_t ub_endian =
   1948 		zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
   1949 		? LITTLE_ENDIAN : BIG_ENDIAN;
   1950 
   1951 	debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
   1952 
   1953 	err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
   1954 
   1955 	if (err) {
   1956 		printf("couldn't zio_read object directory\n");
   1957 		zfs_unmount(data);
   1958 		free(osp);
   1959 		free(ubbest);
   1960 		return 0;
   1961 	}
   1962 
   1963 	if (ospsize < OBJSET_PHYS_SIZE_V14) {
   1964 		printf("osp too small\n");
   1965 		zfs_unmount(data);
   1966 		free(osp);
   1967 		free(ubbest);
   1968 		return 0;
   1969 	}
   1970 
   1971 	/* Got the MOS. Save it at the memory addr MOS. */
   1972 	memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
   1973 	data->mos.endian =
   1974 		(zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
   1975 	memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
   1976 
   1977 	free(osp);
   1978 	free(ubbest);
   1979 
   1980 	return data;
   1981 }
   1982 
   1983 int
   1984 zfs_fetch_nvlist(device_t dev, char **nvlist)
   1985 {
   1986 	struct zfs_data *zfs;
   1987 	int err;
   1988 
   1989 	zfs = zfs_mount(dev);
   1990 	if (!zfs)
   1991 		return ZFS_ERR_BAD_FS;
   1992 	err = int_zfs_fetch_nvlist(zfs, nvlist);
   1993 	zfs_unmount(zfs);
   1994 	return err;
   1995 }
   1996 
   1997 /*
   1998  * zfs_open() locates a file in the rootpool by following the
   1999  * MOS and places the dnode of the file in the memory address DNODE.
   2000  */
   2001 int
   2002 zfs_open(struct zfs_file *file, const char *fsfilename)
   2003 {
   2004 	struct zfs_data *data;
   2005 	int err;
   2006 	int isfs;
   2007 
   2008 	data = zfs_mount(file->device);
   2009 	if (!data)
   2010 		return ZFS_ERR_BAD_FS;
   2011 
   2012 	err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
   2013 							 &(data->dnode), &isfs, data);
   2014 	if (err) {
   2015 		zfs_unmount(data);
   2016 		return err;
   2017 	}
   2018 
   2019 	if (isfs) {
   2020 		zfs_unmount(data);
   2021 		printf("Missing @ or / separator\n");
   2022 		return ZFS_ERR_FILE_NOT_FOUND;
   2023 	}
   2024 
   2025 	/* We found the dnode for this file. Verify if it is a plain file. */
   2026 	if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
   2027 		zfs_unmount(data);
   2028 		printf("not a file\n");
   2029 		return ZFS_ERR_BAD_FILE_TYPE;
   2030 	}
   2031 
   2032 	/* get the file size and set the file position to 0 */
   2033 
   2034 	/*
   2035 	 * For DMU_OT_SA we will need to locate the SIZE attribute
   2036 	 * attribute, which could be either in the bonus buffer
   2037 	 * or the "spill" block.
   2038 	 */
   2039 	if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
   2040 		void *sahdrp;
   2041 		int hdrsize;
   2042 
   2043 		if (data->dnode.dn.dn_bonuslen != 0) {
   2044 			sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
   2045 		} else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
   2046 			blkptr_t *bp = &data->dnode.dn.dn_spill;
   2047 
   2048 			err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
   2049 			if (err)
   2050 				return err;
   2051 		} else {
   2052 			printf("filesystem is corrupt :(\n");
   2053 			return ZFS_ERR_BAD_FS;
   2054 		}
   2055 
   2056 		hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
   2057 		file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
   2058 		if ((data->dnode.dn.dn_bonuslen == 0) &&
   2059 			(data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR))
   2060 			free(sahdrp);
   2061 	} else {
   2062 		file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
   2063 	}
   2064 
   2065 	file->data = data;
   2066 	file->offset = 0;
   2067 
   2068 	return ZFS_ERR_NONE;
   2069 }
   2070 
   2071 uint64_t
   2072 zfs_read(zfs_file_t file, char *buf, uint64_t len)
   2073 {
   2074 	struct zfs_data *data = (struct zfs_data *) file->data;
   2075 	int blksz, movesize;
   2076 	uint64_t length;
   2077 	int64_t red;
   2078 	int err;
   2079 
   2080 	if (data->file_buf == NULL) {
   2081 		data->file_buf = malloc(SPA_MAXBLOCKSIZE);
   2082 		if (!data->file_buf)
   2083 			return -1;
   2084 		data->file_start = data->file_end = 0;
   2085 	}
   2086 
   2087 	/*
   2088 	 * If offset is in memory, move it into the buffer provided and return.
   2089 	 */
   2090 	if (file->offset >= data->file_start
   2091 		&& file->offset + len <= data->file_end) {
   2092 		memmove(buf, data->file_buf + file->offset - data->file_start,
   2093 				len);
   2094 		return len;
   2095 	}
   2096 
   2097 	blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
   2098 							  data->dnode.endian) << SPA_MINBLOCKSHIFT;
   2099 
   2100 	/*
   2101 	 * Entire Dnode is too big to fit into the space available.	 We
   2102 	 * will need to read it in chunks.	This could be optimized to
   2103 	 * read in as large a chunk as there is space available, but for
   2104 	 * now, this only reads in one data block at a time.
   2105 	 */
   2106 	length = len;
   2107 	red = 0;
   2108 	while (length) {
   2109 		void *t;
   2110 		/*
   2111 		 * Find requested blkid and the offset within that block.
   2112 		 */
   2113 		uint64_t blkid = file->offset + red;
   2114 		blkid = do_div(blkid, blksz);
   2115 		free(data->file_buf);
   2116 		data->file_buf = 0;
   2117 
   2118 		err = dmu_read(&(data->dnode), blkid, &t,
   2119 					   0, data);
   2120 		data->file_buf = t;
   2121 		if (err)
   2122 			return -1;
   2123 
   2124 		data->file_start = blkid * blksz;
   2125 		data->file_end = data->file_start + blksz;
   2126 
   2127 		movesize = min(length, data->file_end - (int)file->offset - red);
   2128 
   2129 		memmove(buf, data->file_buf + file->offset + red
   2130 				- data->file_start, movesize);
   2131 		buf += movesize;
   2132 		length -= movesize;
   2133 		red += movesize;
   2134 	}
   2135 
   2136 	return len;
   2137 }
   2138 
   2139 int
   2140 zfs_close(zfs_file_t file)
   2141 {
   2142 	zfs_unmount((struct zfs_data *) file->data);
   2143 	return ZFS_ERR_NONE;
   2144 }
   2145 
   2146 int
   2147 zfs_getmdnobj(device_t dev, const char *fsfilename,
   2148 				   uint64_t *mdnobj)
   2149 {
   2150 	struct zfs_data *data;
   2151 	int err;
   2152 	int isfs;
   2153 
   2154 	data = zfs_mount(dev);
   2155 	if (!data)
   2156 		return ZFS_ERR_BAD_FS;
   2157 
   2158 	err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
   2159 							 &(data->dnode), &isfs, data);
   2160 	zfs_unmount(data);
   2161 	return err;
   2162 }
   2163 
   2164 static void
   2165 fill_fs_info(struct zfs_dirhook_info *info,
   2166 			 dnode_end_t mdn, struct zfs_data *data)
   2167 {
   2168 	int err;
   2169 	dnode_end_t dn;
   2170 	uint64_t objnum;
   2171 	uint64_t headobj;
   2172 
   2173 	memset(info, 0, sizeof(*info));
   2174 
   2175 	info->dir = 1;
   2176 
   2177 	if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
   2178 		headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
   2179 
   2180 		err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
   2181 		if (err) {
   2182 			printf("zfs failed here 1\n");
   2183 			return;
   2184 		}
   2185 	}
   2186 	make_mdn(&mdn, data);
   2187 	err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
   2188 					&dn, data);
   2189 	if (err) {
   2190 		printf("zfs failed here 2\n");
   2191 		return;
   2192 	}
   2193 
   2194 	err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
   2195 	if (err) {
   2196 		printf("zfs failed here 3\n");
   2197 		return;
   2198 	}
   2199 
   2200 	err = dnode_get(&mdn, objnum, 0, &dn, data);
   2201 	if (err) {
   2202 		printf("zfs failed here 4\n");
   2203 		return;
   2204 	}
   2205 
   2206 	info->mtimeset = 1;
   2207 	info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
   2208 
   2209 	return;
   2210 }
   2211 
   2212 static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
   2213 {
   2214 	struct zfs_dirhook_info info;
   2215 	dnode_end_t dn;
   2216 
   2217 	memset(&info, 0, sizeof(info));
   2218 
   2219 	dnode_get(&(data->mdn), val, 0, &dn, data);
   2220 	info.mtimeset = 1;
   2221 	info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
   2222 	info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
   2223 	debug("zfs type=%d, name=%s\n",
   2224 		  (int)dn.dn.dn_type, (char *)name);
   2225 	if (!data->userhook)
   2226 		return 0;
   2227 	return data->userhook(name, &info);
   2228 }
   2229 
   2230 static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
   2231 {
   2232 	struct zfs_dirhook_info info;
   2233 	dnode_end_t mdn;
   2234 	int err;
   2235 	err = dnode_get(&(data->mos), val, 0, &mdn, data);
   2236 	if (err)
   2237 		return 0;
   2238 	if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
   2239 		return 0;
   2240 
   2241 	fill_fs_info(&info, mdn, data);
   2242 
   2243 	if (!data->userhook)
   2244 		return 0;
   2245 	return data->userhook(name, &info);
   2246 }
   2247 
   2248 static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
   2249 {
   2250 	struct zfs_dirhook_info info;
   2251 	char *name2;
   2252 	int ret = 0;
   2253 	dnode_end_t mdn;
   2254 	int err;
   2255 
   2256 	err = dnode_get(&(data->mos), val, 0, &mdn, data);
   2257 	if (err)
   2258 		return 0;
   2259 
   2260 	if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
   2261 		return 0;
   2262 
   2263 	fill_fs_info(&info, mdn, data);
   2264 
   2265 	name2 = malloc(strlen(name) + 2);
   2266 	name2[0] = '@';
   2267 	memcpy(name2 + 1, name, strlen(name) + 1);
   2268 	if (data->userhook)
   2269 		ret = data->userhook(name2, &info);
   2270 	free(name2);
   2271 	return ret;
   2272 }
   2273 
   2274 int
   2275 zfs_ls(device_t device, const char *path,
   2276 	   int (*hook)(const char *, const struct zfs_dirhook_info *))
   2277 {
   2278 	struct zfs_data *data;
   2279 	int err;
   2280 	int isfs;
   2281 
   2282 	data = zfs_mount(device);
   2283 	if (!data)
   2284 		return ZFS_ERR_BAD_FS;
   2285 
   2286 	data->userhook = hook;
   2287 
   2288 	err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
   2289 	if (err) {
   2290 		zfs_unmount(data);
   2291 		return err;
   2292 	}
   2293 	if (isfs) {
   2294 		uint64_t childobj, headobj;
   2295 		uint64_t snapobj;
   2296 		dnode_end_t dn;
   2297 		struct zfs_dirhook_info info;
   2298 
   2299 		fill_fs_info(&info, data->dnode, data);
   2300 		hook("@", &info);
   2301 
   2302 		childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
   2303 		headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
   2304 		err = dnode_get(&(data->mos), childobj,
   2305 						DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
   2306 		if (err) {
   2307 			zfs_unmount(data);
   2308 			return err;
   2309 		}
   2310 
   2311 
   2312 		zap_iterate(&dn, iterate_zap_fs, data);
   2313 
   2314 		err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
   2315 		if (err) {
   2316 			zfs_unmount(data);
   2317 			return err;
   2318 		}
   2319 
   2320 		snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
   2321 
   2322 		err = dnode_get(&(data->mos), snapobj,
   2323 						DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
   2324 		if (err) {
   2325 			zfs_unmount(data);
   2326 			return err;
   2327 		}
   2328 
   2329 		zap_iterate(&dn, iterate_zap_snap, data);
   2330 	} else {
   2331 		if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
   2332 			zfs_unmount(data);
   2333 			printf("not a directory\n");
   2334 			return ZFS_ERR_BAD_FILE_TYPE;
   2335 		}
   2336 		zap_iterate(&(data->dnode), iterate_zap, data);
   2337 	}
   2338 	zfs_unmount(data);
   2339 	return ZFS_ERR_NONE;
   2340 }
   2341