/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/rank/ |
Median.java | 23 * Returns the median of the available values. This is the same as the 50th percentile. 33 public class Median extends Percentile implements Serializable { 41 public Median() { 46 * Copy constructor, creates a new {@code Median} identical 49 * @param original the {@code Median} instance to copy 51 public Median(Median original) {
|
/external/google-benchmark/test/ |
statistics_gtest.cc | 15 TEST(StatisticsTest, Median) {
|
/external/libcxx/utils/google-benchmark/test/ |
statistics_gtest.cc | 15 TEST(StatisticsTest, Median) {
|
/external/swiftshader/third_party/llvm-7.0/llvm/tools/llvm-xray/ |
xray-graph.h | 46 double Median; 170 return {A.Count + B.Count, A.Min + B.Min, A.Median + B.Median, 179 return {A.Count - B.Count, A.Min - B.Min, A.Median - B.Median, 190 A.Median / B, 202 A.Median * B, 218 return {A.Count * B.Count, A.Min * B.Min, A.Median * B.Median, 226 return {A.Count / B.Count, A.Min / B.Min, A.Median / B.Median [all...] |
xray-account.cpp | 85 clEnumValN(SortField::MED, "med", "median function durations"), 224 double Median; 244 R.Median = Timings[MedianOff]; 271 Row.Median /= CycleFrequency; 326 return LR.Median < RR.Median; 328 return LR.Median > RR.Median; 384 // - min, median, 90pct, 99pct, max: double precision, but we want to keep 401 OS << llvm::formatv(StatsFormat, FuncId, Count, Row.Min, Row.Median, [all...] |
xray-graph.cpp | 74 "median function durations"), 99 "median function durations"), 124 "median function durations"), 149 "median function durations"), 259 S.Median = *(begin + MedianOff); 272 M.Median = std::max(M.Median, S.Median); 334 double TimeStat::*DoubleStatPtrs[] = {&TimeStat::Min, &TimeStat::Median, 356 double TimeStat::*DoubleStatPtrs[] = {&TimeStat::Min, &TimeStat::Median, [all...] |
/external/tensorflow/tensorflow/core/lib/histogram/ |
histogram.h | 63 // Return the median of the values in the histogram 64 double Median() const; 79 // Min: -3.0000 Median: 5.0000 Max: 1000.0000 125 double Median() const;
|
histogram_test.cc | 69 TEST(Histogram, Median) { 74 double median = h.Median(); local 75 EXPECT_EQ(median, -0.5); 145 EXPECT_EQ(h.Median(), tsh.Median());
|
histogram.cc | 116 double Histogram::Median() const { return Percentile(50.0); } 176 snprintf(buf, sizeof(buf), "Min: %.4f Median: %.4f Max: %.4f\n", 177 (num_ == 0.0 ? 0.0 : min_), Median(), max_); 253 double ThreadSafeHistogram::Median() const { 255 return histogram_.Median();
|
/cts/apps/CtsVerifier/src/com/android/cts/verifier/audio/ |
Util.java | 6 import org.apache.commons.math.stat.descriptive.rank.Median; 38 * Calculate median of data. 40 public static double median(double[] data) { method in class:Util 41 Median median = new Median(); local 42 median.setData(data); 43 return median.evaluate();
|
/external/tensorflow/tensorflow/core/grappler/costs/ |
robust_stats.cc | 24 // Given a sorted vector of values, calculate the median. 36 // Given a vector of values (sorted or not), calculate the median. 37 static double Median(std::vector<double> &&values) { 59 // Given a set of values, calculates the scaled Median Absolute Deviation (a 61 // median of the absolute deviations from the median, scaled by 1.4826. Its 63 // outlier values. Returns a pair<median, mad>. 66 double median = SortedMedian(sorted_values); local 68 // Next, we calculate the absolute deviations from the median, 69 // find the median of the resulting data, and scale by 1.4826 [all...] |
/external/syzkaller/vendor/golang.org/x/net/trace/ |
histogram.go | 164 // Median returns the estimated median of the observed values. 165 func (h *histogram) median() int64 { func 263 Count, Median int64 316 Median: h.median(), 343 <td style="padding:0.25em">Median: {{.Median}}</td>
|
/external/walt/docs/ |
ScreenLatency.md | 21 Median screen response latencies (N=100):
|
/external/walt/pywalt/pywalt/ |
walt.py | 146 Prints out stats (min, median, max). 159 median = numpy.median(times) 160 stats = (times.min() / MS, median / MS, times.max() / MS, N) 161 self.median_latency = median 163 log('min=%.2fms, median=%.2fms, max=%.2fms N=%d' % stats) 164 if (median > 2): 165 print('ERROR: the median round trip is too high: %.2f ms' % (median / MS) ) 488 print('Median tap-to-audio latency: %0.1f ms' % numpy.median(deltas) [all...] |