/external/tensorflow/tensorflow/contrib/opt/python/training/ |
nadam_optimizer_test.py | 39 beta2=0.999, 41 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 44 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
adam_gs_optimizer.py | 15 """Adam rewrite to use global step for computing beta1 & beta2 accumulation.""" 44 beta2=0.999, 51 global step for computing beta1 and beta2 accumulators, instead of having 52 optimizer keep its own independent beta1 and beta2 accumulators as non-slot 92 beta2: A float value or a constant float tensor. The exponential decay 100 enabled, `learning_rate`, `beta1`, `beta2`, and `epsilon` can each be a 108 self._beta2 = beta2 132 beta2 = self._call_if_callable(self._beta2) 137 self._beta2_t = ops.convert_to_tensor(beta2, name="beta2") [all...] |
weight_decay_optimizers_test.py | 38 beta2=0.999, epsilon=1e-8): 39 lr_t = lr * np.sqrt(1 - beta2**t) / (1 - beta1**t) 42 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
adam_gs_optimizer_test.py | 45 beta2=0.999, 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 50 v_t = beta2 * v + (1 - beta2) * g_t * g_t 193 beta2 = lambda: 0.999 198 beta2 = beta2()
|
lazy_adam_gs_optimizer_test.py | 45 beta2=0.999, 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 50 v_t = beta2 * v + (1 - beta2) * g_t * g_t 212 beta2 = lambda: 0.999 217 beta2 = beta2()
|
lazy_adam_optimizer_test.py | 45 beta2=0.999, 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 50 v_t = beta2 * v + (1 - beta2) * g_t * g_t 188 beta2 = lambda: 0.999 193 beta2 = beta2()
|
weight_decay_optimizers.py | 359 def __init__(self, weight_decay, learning_rate=0.001, beta1=0.9, beta2=0.999, 370 beta2: A float value or a constant float tensor. 380 weight_decay, learning_rate=learning_rate, beta1=beta1, beta2=beta2,
|
adamax.py | 40 def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, 59 v_t <- max(beta2 * v_{t-1}, abs(g)) 79 beta2: A float value or a constant float tensor. 86 super(AdaMaxOptimizer, self).__init__(learning_rate, beta1, beta2, 151 # u_t = max(beta2 * u, abs(g_t))
|
adamax_test.py | 44 beta2=0.999, 47 v_t = np.maximum(beta2 * v, np.abs(g_t)) 60 beta2=0.999, 64 v_t_slice = np.maximum(beta2 * v[indices], np.abs(g_t))
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
adam_test.py | 45 beta2=0.999, 47 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 50 v_t = beta2 * v + (1 - beta2) * g_t * g_t 64 beta2=0.999, 66 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 69 v_t = beta2 * v + (1 - beta2) * g_t * g_t 85 beta2=0.999, 89 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1) [all...] |
nadam_test.py | 57 beta2=0.999, 65 v_t = beta2 * v + (1 - beta2) * g_t * g_t 68 v_prime_t = v_t / (1 - beta2**(t + 1))
|
adamax_test.py | 43 beta2=0.999, 46 v_t = np.maximum(beta2 * v, np.abs(g_t)) 59 beta2=0.999, 63 v_t_slice = np.maximum(beta2 * v[indices], np.abs(g_t))
|
/external/tensorflow/tensorflow/python/training/ |
training_ops_test.py | 277 beta2 = np.array(0.999, dtype=var.dtype) 279 beta2_power = beta2**t 283 beta2_t = constant_op.constant(beta2, self._toType(var.dtype), []) 292 beta2, epsilon) 300 def _adamUpdateNumpy(self, param, g_t, t, m, v, alpha, beta1, beta2, epsilon): 301 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 304 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
adam.py | 42 beta2=0.999, 84 beta2: A float value or a constant float tensor. The exponential decay 92 enabled, `learning_rate`, `beta1`, `beta2`, and `epsilon` can each be a 100 self._beta2 = beta2 119 # Create the beta1 and beta2 accumulators on the same device as the first 137 beta2 = self._call_if_callable(self._beta2) 142 self._beta2_t = ops.convert_to_tensor(beta2, name="beta2") 194 # v_t = beta2 * v + (1 - beta2) * (g_t * g_t [all...] |
adam_test.py | 44 beta2=0.999, 46 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 49 v_t = beta2 * v + (1 - beta2) * g_t * g_t 184 beta2 = lambda: 0.999 189 beta2 = beta2()
|
/external/speex/libspeexdsp/ |
scal.c | 156 float beta, beta2; local 186 beta2 = beta; 205 if (max_alpha > .98/(1.+beta2)) 206 max_alpha = .98/(1.+beta2);
|
/external/tensorflow/tensorflow/compiler/tests/ |
adam_test.py | 41 beta2=0.999, 43 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 46 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
adamax_test.py | 40 beta2=0.999, 43 v_t = np.maximum(beta2 * v, np.abs(g_t))
|
/external/tensorflow/tensorflow/contrib/optimizer_v2/ |
adam.py | 37 def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, 81 beta2: A float hyperparameter. The exponential decay rate for the 2nd 94 self._set_hyper("beta2", beta2) 108 initial_value=lambda: state.get_hyper("beta2"), name="beta2_power") 127 state.get_hyper("beta2", var.dtype.base_dtype), 144 state.get_hyper("beta2", grad.dtype.base_dtype), 155 beta2_t = state.get_hyper("beta2", var.dtype.base_dtype) 164 # v_t = beta2 * v + (1 - beta2) * (g_t * g_t [all...] |
adam_test.py | 44 beta2=0.999, 46 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 49 v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
/external/tensorflow/tensorflow/core/kernels/ |
training_ops_gpu.cu.cc | 133 typename TTypes<T>::ConstScalar beta2, 144 v + (beta2.constant(one) - beta2).reshape(single).broadcast(bcast) * 177 typename TTypes<T>::ConstScalar beta2, 188 v + (beta2.constant(one) - beta2).reshape(single).broadcast(bcast) * 208 typename TTypes<T>::ConstScalar beta2, 219 (beta2.reshape(single).broadcast(bcast) * v).cwiseMax(grad.abs());
|
training_ops.h | 146 typename TTypes<T>::ConstScalar beta2, 160 typename TTypes<T>::ConstScalar beta2, 172 typename TTypes<T>::ConstScalar beta2,
|
training_ops_test.cc | 176 auto beta2 = Scalar(g, 0.99); local 181 {var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad});
|
training_ops.cc | 310 typename TTypes<T>::ConstScalar beta2, 316 // beta2 == ? 321 v.device(d) += (grad.square() - v) * (T(1) - beta2()); 336 T beta1_power, T beta2_power, T lr, T beta1, T beta2, 341 v.device(d) += (grad.square() - v) * (T(1) - beta2); 359 typename TTypes<T>::ConstScalar beta2, 366 v.device(d) += (grad.square() - v) * (T(1) - beta2()); 379 typename TTypes<T>::ConstScalar beta2, 384 v.device(d) = (beta2() * v).cwiseMax(grad.abs()); 2840 const Tensor& beta2 = ctx->input(7); variable 2938 T beta2 = 0; variable 3109 const Tensor& beta2 = ctx->input(8); variable 3243 const Tensor& beta2 = ctx->input(6); variable [all...] |
/external/tensorflow/tensorflow/python/tpu/ |
tpu_embedding.py | 154 beta2=0.999, 165 beta2: A float value. 181 if beta2 < 0. or beta2 >= 1.: 182 raise ValueError('beta2 must be between 0. and 1; got {}.'.format(beta2)) 190 self.beta2 = beta2 [all...] |