/external/eigen/bench/btl/libs/gmm/ |
gmm_interface.hh | 21 #include <gmm/gmm.h> 24 using namespace gmm; 36 typedef gmm::dense_matrix<real> gene_matrix; 41 return "gmm"; 82 gmm::mult(A,B, X); 86 gmm::mult(gmm::transposed(A),gmm::transposed(B), X); 90 gmm::mult(gmm::transposed(A),A, X) [all...] |
/external/tensorflow/tensorflow/contrib/factorization/python/ops/ |
gmm_test.py | 15 """Tests for ops.gmm.""" 23 from tensorflow.contrib.factorization.python.ops import gmm as gmm_lib 88 gmm = gmm_lib.GMM(self.num_centers, 92 gmm.fit(input_fn=self.input_fn(), steps=0) 93 weights = gmm.weights() 98 gmm = gmm_lib.GMM(self.num_centers, 102 gmm.fit(input_fn=self.input_fn(), steps=0) 103 clusters = gmm.clusters( [all...] |
gmm.py | 15 """Implementation of Gaussian mixture model (GMM) clustering using tf.Learn.""" 69 class GMM(estimator.Estimator): 70 """An estimator for GMM clustering.""" 83 """Creates a model for running GMM training and inference. 93 See gmm_ops.gmm for the possible values. 103 super(GMM, self).__init__( 112 yield result[GMM.ASSIGNMENTS] 127 return np.log(np.sum(np.exp(results[GMM.SCORES]))) 162 is_initialized) = gmm_ops.gmm(self._parse_tensor_or_dict(features), 172 GMM.ASSIGNMENTS: model_predictions[0][0] [all...] |
gmm_ops_test.py | 125 loss_op, scores, assignments, training_op, init_op, _ = gmm_ops.gmm(
|
gmm_ops.py | 155 """Initializes GMM algorithm.""" 462 def gmm(inp, function 468 """Creates the graph for Gaussian mixture model (GMM) clustering. 498 # Implementation of GMM.
|
/external/tensorflow/tensorflow/contrib/factorization/ |
__init__.py | 24 from tensorflow.contrib.factorization.python.ops.gmm import * 34 'GMM', 35 'gmm',
|
/external/eigen/bench/ |
BenchUtil.h | 47 #include <gmm/gmm.h>
|
sparse_transpose.cpp | 78 // GMM++ 84 BENCH(for (int k=0; k<REPEAT; ++k) gmm::copy(gmm::transposed(m1),m3);) 85 std::cout << " GMM:\t\t" << timer.value() << endl;
|
BenchSparseUtil.h | 71 #include "gmm/gmm.h" 72 typedef gmm::csc_matrix<Scalar> GmmSparse; 73 typedef gmm::col_matrix< gmm::wsvector<Scalar> > GmmDynSparse; 80 gmm::copy(tmp, dst);
|
sparse_trisolver.cpp | 134 // GMM++ 137 std::cout << "GMM++ sparse\t" << density*100 << "%\n"; 139 gmm::csr_matrix<Scalar> m2; 141 gmm::copy(m1,m2); 147 BENCH(gmm::upper_tri_solve(m1, gmmX, false);) 152 BENCH(gmm::upper_tri_solve(m2, gmmX, false);)
|
benchEigenSolver.cpp | 95 gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(),covMat.cols()); 96 gmm::dense_matrix<Scalar> eigvect(covMat.rows(),covMat.cols()); 104 gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect); 115 // gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect); 194 std::cout << " GMM++ ";
|
sparse_dense_product.cpp | 115 // GMM++ 118 std::cout << "GMM++ sparse\t" << density*100 << "%\n"; 127 BENCH( asm("#myx"); gmm::mult(m1, gmmV1, gmmV2); asm("#myy"); ) 130 BENCH( gmm::mult(gmm::transposed(m1), gmmV1, gmmV2); ) 152 // BENCH( boost::ublas::prod(gmm::transposed(m1), gmmV1, gmmV2); )
|
spmv.cpp | 188 // GMM++ 198 SPMV_BENCH(gmm::mult(gm, gv, gres)); 199 std::cout << "GMM++ " << t.value()/repeats << "\t"; 201 SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres));
|
sparse_product.cpp | 263 // GMM++ 266 std::cout << "GMM++ sparse\t" << nnzPerCol << "%\n"; 272 BENCH(gmm::mult(m1, m2, gmmT3);); 275 // BENCH(gmm::mult(gmm::transposed(m1), m2, gmmT3);); 280 // BENCH(gmm::mult(gmm::transposed(m1), gmm::transposed(m2), gmmT3);); 283 // BENCH(gmm::mult(m1, gmm::transposed(m2), gmmT3);) [all...] |