HomeSort by relevance Sort by last modified time
    Searched refs:grad_data (Results 1 - 6 of 6) sorted by null

  /external/tensorflow/tensorflow/contrib/resampler/kernels/
resampler_ops.h 45 const T* __restrict__ grad_output, T* __restrict__ grad_data,
resampler_ops_gpu.cu.cc 139 atomicAdd(grad_data + (batch_id * data_batch_stride + \
146 const T* __restrict__ grad_output, T* __restrict__ grad_data,
245 const T* __restrict__ grad_output, T* __restrict__ grad_data,
264 grad_data_size, grad_data));
271 warp, grad_output, grad_data, grad_warp,
resampler_ops.cc 208 const T* __restrict__ grad_output, T* __restrict__ grad_data,
219 memset(grad_data, 0, sizeof(T) * grad_data_size);
248 grad_data[batch_id * data_batch_stride +
375 ::tensorflow::Tensor* grad_data = nullptr; variable
377 OP_REQUIRES_OK(ctx, ctx->allocate_output(0, data.shape(), &grad_data));
384 grad_data->flat<T>().data(), grad_warp->flat<T>().data(), batch_size,
  /external/tensorflow/tensorflow/compiler/tf2xla/kernels/
resampler_ops.cc 164 // Scatter 'updates' tensor to 'grad_data' based on 'indices'. Returns the
167 XlaOp ScatterToGradData(XlaOpKernelContext* ctx, XlaOp grad_data, XlaOp indices,
187 return xla::Scatter(grad_data, indices, updates,
241 // scatter-add to each 2x2 grad_data neighbor:
242 // grad_data[fx, fy, chan] += output_grad * dx * dy
243 // grad_data[cx, fy, chan] += output_grad * (1 - dx) * dy
244 // grad_data[fx, cy, chan] += output_grad * dx * (1 - dy)
245 // grad_data[cx, cy, chan] += output_grad * (1 - dx) * (1 - dy)
247 // contribution is 0 to 'grad_data'.
301 auto grad_data = xla::ConstantLiteral local
658 auto grad_data = CalculateGradData( variable
    [all...]
  /external/tensorflow/tensorflow/contrib/resampler/xla/
resampler_ops_xla_test.py 49 grad_data, grad_warp = gen_resampler_ops.resampler_grad(
52 grad_data_tf, grad_warp_tf = sess.run([grad_data, grad_warp], {
205 # -0.1 is *inbound* for grad_warp and grad_data, 2.1 is out of bound.
  /external/tensorflow/tensorflow/python/kernel_tests/
cholesky_op_test.py 258 grad_data = np.random.randn(*data.shape).astype(np.float32)
263 composite_grad = gradients_impl.gradients(chol, x, grad_data)[0]
264 specialized_grad = SpecializedGrad(chol, grad_data)

Completed in 6573 milliseconds