HomeSort by relevance Sort by last modified time
    Searched refs:grad_ys (Results 1 - 22 of 22) sorted by null

  /external/tensorflow/tensorflow/contrib/nn/python/ops/
fwd_gradients.py 57 dydxs = gradients(ys, xs, grad_ys=us)
74 dysdx = gradients(dydxs, us, grad_ys=grad_xs)
  /external/tensorflow/tensorflow/python/ops/
gradients_impl.py 46 grad_ys=None,
55 `ys` and `xs` are each a `Tensor` or a list of tensors. `grad_ys`
63 `grad_ys` is a list of tensors of the same length as `ys` that holds
64 the initial gradients for each y in `ys`. When `grad_ys` is None,
66 user can provide their own initial `grad_ys` to compute the
123 grad_ys: Optional. A `Tensor` or list of tensors the same size as
156 ys, xs, grad_ys, name, colocate_gradients_with_ops,
165 grad_ys=None,
173 `ys` and `xs` are each a `Tensor` or a list of tensors. `grad_ys`
181 `grad_ys` is a list of tensors of the same length as `ys` that hold
    [all...]
gradients_util.py 191 def _DefaultGradYs(grad_ys,
195 """Fill in default values for grad_ys.
198 grad_ys: List of gradients, can contain None.
213 if len(grad_ys) != len(ys):
214 raise ValueError("Passed %d grad_ys for %d ys" % (len(grad_ys), len(ys)))
215 grad_ys = ops.convert_n_to_tensor_or_indexed_slices(grad_ys, name="grad_y")
217 for i in xrange(len(grad_ys)):
218 grad_y = grad_ys[i
    [all...]
cond_v2.py 280 grad_ys = []
285 grad_ys.append(grad_y)
292 ys, func_graph.inputs, grad_ys=grad_ys,
while_v2.py 494 grad_ys = args[3:]
502 ys, xs, grad_ys=grad_ys, src_graph=func_graph,
    [all...]
gradients_test.py 240 dx, = gradients.gradients(y, x, grad_ys=dy)
832 r"Gradients of complex tensors must set grad_ys "
    [all...]
  /external/tensorflow/tensorflow/compiler/tests/
tensor_array_ops_test.py 463 ys=[r0], xs=[value_0], grad_ys=[c([[2.0, 3.0]])])
470 grad_ys=[c([[2.0, 3.0]]), c([[1.0, -1.0]])])
475 ys=[r1], xs=[value_1], grad_ys=[c([[-2.0, -4.0]])])
483 grad_ys=[c([[2.0, 3.0]]), c([[1.0, -1.0]]), c([[-2.0, -10.0]])])
517 grad_ys=[
566 grad_ys=[[2.0, 3.0], [-1.5, 1.5], [4.0, 5.0]])
591 grad_ys=[[[2.0, -2.0], [20.0, -20.0], [200.0, -200.0],
905 grad_r0 = gradients_impl.gradients(ys=[r0], xs=[x], grad_ys=[1.0])
    [all...]
fft_test.py 101 grad_ys=array_ops.ones_like(out))
  /external/tensorflow/tensorflow/python/kernel_tests/
tensor_array_ops_test.py 722 ys=[r0], xs=[value_0], grad_ys=[c([[2.0, 3.0]])])
729 grad_ys=[c([[2.0, 3.0]]), c([[1.0, -1.0]])])
734 ys=[r1], xs=[value_1], grad_ys=[c(-2.0)])
742 grad_ys=[c([[2.0, 3.0]]), c([[1.0, -1.0]]), c(-2.0)])
775 grad_ys=[
838 grad_ys=[[2.0, 3.0], [-1.5, 1.5], [4.0, 5.0]])
    [all...]
nth_element_op_test.py 169 values, inputs, grad_ys=[[-1., 2., 5.]]),
topk_op_test.py 213 values, inputs, grad_ys=[[[1., 2., 3.], [4., 5., 6.]]]),
diag_op_test.py 202 grads = gradients_impl.gradients(output, [mat, v], grad_ys=grad_input)
array_ops_test.py     [all...]
control_flow_ops_py_test.py     [all...]
cwise_ops_test.py     [all...]
  /external/tensorflow/tensorflow/contrib/layers/python/layers/
rev_block_lib.py 90 def _rev_layer_backward(ys, grad_ys, f, g, f_vars, f_side_input, g_vars,
94 grad_y1, grad_y2 = grad_ys
246 def _efficient_grad_fn(*grad_ys, **kwargs):
298 ys, grad_ys, f_ret, g_ret = _rev_layer_backward(
299 ys, grad_ys, f[i], g[i], f_vars[i], self.f_side_input, g_vars[i],
331 grad_x1, grad_x2 = grad_ys
  /external/tensorflow/tensorflow/contrib/recurrent/python/ops/
recurrent.py 636 grad_ys = _Flatten([dstate1])
637 grads = gradients_impl.gradients(ys=ys, xs=xs, grad_ys=grad_ys)
  /external/tensorflow/tensorflow/contrib/recurrent/python/kernel_tests/
recurrent_test.py 120 ys=[xw], xs=[h0, x, w], grad_ys=[dxw])
  /external/tensorflow/tensorflow/contrib/optimizer_v2/
optimizer_v2.py 821 grad_ys=grad_loss
    [all...]
  /external/tensorflow/tensorflow/python/training/
optimizer.py 499 loss, var_refs, grad_ys=grad_loss,
    [all...]
  /external/tensorflow/tensorflow/python/eager/
function.py 777 grad_ys=gradients_wrt_outputs,
    [all...]
  /external/tensorflow/tensorflow/python/framework/
function_test.py 368 dx, dy = gradients_impl.gradients([z], [x, y], grad_ys=[1.0])
380 # Tests for constant folding of grad_ys
    [all...]

Completed in 2232 milliseconds