/external/tensorflow/tensorflow/core/kernels/ |
quantization_utils.cc | 20 void GetOutputMinAndMaxForQuantizedAdd(float input_min, float input_max, 36 std::max(input_max, std::max(-input_min, std::max(smaller_input_max,
|
quantized_activation_ops_test.cc | 45 const float input_min = -128.0f; local 52 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 58 AddInputFromArray<float>(TensorShape({1}), {input_min}); 76 const float input_min = -128.0f; local 83 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 89 AddInputFromArray<float>(TensorShape({1}), {input_min});
|
quantized_pooling_ops_test.cc | 51 const float input_min = 0.0f; local 62 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 72 AddInputFromArray<float>(TensorShape({1}), {input_min}); 96 const float input_min = 0.0f; local 107 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 117 AddInputFromArray<float>(TensorShape({1}), {input_min});
|
quantized_bias_add_op_test.cc | 51 const float input_min = 0.0f; local 59 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 77 AddInputFromArray<float>(TensorShape({1}), {input_min}); 101 const float input_min = -2164.25f; local 119 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 159 AddInputFromArray<float>(TensorShape({1}), {input_min});
|
mkl_requantization_range_per_channel_op.cc | 46 const Tensor& input_min = ctx->input(kInputMinIndex); variable 51 ctx, input_min.dim_size(0) == depth, 52 errors::InvalidArgument("input_min has incorrect size, expected ", 53 depth, " was ", input_min.dim_size(0))); 59 const float* input_min_data = input_min.flat<float>().data();
|
quantized_bias_add_op.cc | 41 const float input_min = context->input(2).flat<float>()(0); variable 71 GetOutputMinAndMaxForQuantizedAdd(input_min, input_max, bias_min, 75 bias_ui8_array.size(), input_min, input_max, 80 context->template eigen_device<CPUDevice>(), input, input_min,
|
quantization_utils_test.cc | 34 void TestRequantizeMany(Eigen::ThreadPoolDevice* eigen_device, float input_min, 43 QuantizedToFloat(values_quantized[value_index], input_min, input_max), 54 RequantizeManyInNewRange(input_array.data(), input_array.size(), input_min, 59 *eigen_device, i_tensor, input_min, input_max, output_min, output_max, 70 << "]=" << values_quantized[value_index] << ", input_min=" << input_min 76 void TestRequantizeMany8To32Bit(float input_min, float input_max, 85 QuantizedToFloat(values_quantized[value_index], input_min, input_max), 95 RequantizeManyInNewRange(input_array.data(), input_array.size(), input_min, 106 << "]=" << values_quantized[value_index] << ", input_min=" << input_mi 230 const float input_min = ranges[range_index][0]; local 282 const float input_min = -100.0f; local 525 const float input_min = ranges[range_index][0]; local 547 const float input_min = -0.739539f; local 582 const float input_min = ranges[range_index][0]; local 625 const float input_min = 0.0f; local 655 const float input_min = 0.0f; local 678 const float input_min = -128.0f; local [all...] |
meta_support.h | 75 // Take an array of numbers from the range [input_min, input_max] quantized 80 float input_min, float input_max, float output_min, 94 // [input_min, input_max], and [bias_min, bias_max] accordingly, as uint8 100 float input_min, float input_max, float bias_min,
|
mkl_quantized_pooling_ops_test.cc | 81 const float input_min = 0.0f; local 92 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 110 AddInputFromArray<float>(TensorShape({1}), {input_min}); 150 const float input_min = 0.0f; local 161 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 178 AddInputFromArray<float>(TensorShape({1}), {input_min});
|
quantized_batch_norm_op.cc | 31 void ReferenceBatchNorm(const Tensor& input, const float input_min, 57 QuantizedToFloat(input_flat(input_index), input_min, input_max); 94 void FixedPointBatchNorm(const Tensor& input, const float input_min, 150 RequantizeInNewRange<T1, T2>(input_flat(input_index), input_min, 176 const float input_min = context->input(1).flat<float>()(0); variable 212 FixedPointBatchNorm<T1, T2>(input, input_min, input_max, mean, mean_min,
|
quantized_batch_norm_op_test.cc | 61 const float input_min = -128.0f; local 72 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 100 AddInputFromArray<float>(TensorShape({1}), {input_min}); 158 const float input_min = -128.0f; local 169 FloatTensorToQuantized<quint8>(input_float, input_min, input_max); 197 AddInputFromArray<float>(TensorShape({1}), {input_min});
|
quantized_concat_op.cc | 41 const float input_min = (*input_min_and_max)[input_index].first; local 43 if (input_min == output_min && input_max == output_max) { 52 QuantizedToFloatStruct<T> q2f(input_min, input_max); 87 const float input_min = input_mins[i].flat<float>()(0); local 89 input_mins_and_maxes->emplace_back(input_min, input_max); 90 overall_min = std::min(overall_min, input_min);
|
meta_support.cc | 257 float input_min, float input_max, float output_min, 269 params.kernel.input_range_min = input_min; 272 CalculateRangeScale<int32_t>(input_min, input_max); 348 float input_min, float input_max, float bias_min, 363 params.kernel.input_range_min = input_min; 366 CalculateRangeScale<uint8_t>(input_min, input_max);
|
quantize_and_dequantize_op.h | 114 auto input_min = input_min_tensor->scalar<T>(); local 117 input_min.device(d) = input.minimum(); 119 d.memcpyDeviceToHost(&min_range, input_min.data(), sizeof(T));
|
quantized_instance_norm.cc | 277 float input_min = context->input(1).flat<float>()(0); variable 279 float input_scale = (input_max - input_min) / 255.0f; 281 OP_REQUIRES(context, input_min < input_max, 283 "input_min must be less than input_max : ", input_min,
|
quantization_utils.h | [all...] |
mkl_concat_op.cc | 249 float input_min = input_mins[0].flat<float>()(0); local 256 if (fabs(input_min - min) > eps || fabs(input_max - max) > eps) {
|
/external/tensorflow/tensorflow/lite/experimental/micro/kernels/ |
fully_connected_test.cc | 103 std::initializer_list<uint8_t> input_data, float input_min, float input_max, 121 CreateQuantizedTensor(input_data, input_dims, "input_tensor", input_min, 266 const float input_min = -63.5f; local 280 F2Q(1, input_min, input_max), F2Q(2, input_min, input_max), 281 F2Q(3, input_min, input_max), F2Q(4, input_min, input_max), 282 F2Q(5, input_min, input_max), F2Q(6, input_min, input_max), 283 F2Q(7, input_min, input_max), F2Q(8, input_min, input_max) 337 const float input_min = -63.5f; local 408 const float input_min = -127.0f; local 505 const float input_min = -63.5f; local 576 const float input_min = -127.0f; local [all...] |
depthwise_conv_test.cc | 110 std::initializer_list<uint8_t> input_data, float input_min, float input_max, 128 CreateQuantizedTensor(input_data, input_dims, "input_tensor", input_min, 228 const float input_min = -63.5f; local 243 F2Q(1, input_min, input_max), 244 F2Q(2, input_min, input_max), 245 F2Q(7, input_min, input_max), 246 F2Q(8, input_min, input_max), 247 F2Q(3, input_min, input_max), 248 F2Q(4, input_min, input_max), 249 F2Q(9, input_min, input_max) 336 const float input_min = -63.5f; local 415 const float input_min = 0; local [all...] |
softmax_test.cc | 91 float input_min, float input_max, 104 CreateQuantizedTensor(input_data, input_dims, "input_tensor", input_min, 191 const float input_min = -63.5f; local 200 F2Q(1.0, input_min, input_max), 201 F2Q(2.0, input_min, input_max), 202 F2Q(3.0, input_min, input_max), 203 F2Q(4.0, input_min, input_max), 204 F2Q(5.0, input_min, input_max), 206 input_min, input_max, // Input quantized range.
|
/external/tensorflow/tensorflow/core/graph/ |
quantize_training.cc | 54 float input_min; member in struct:tensorflow::__anon45051::EdgeToConvert 63 input_min(min), 80 bool* range_given, float* input_min, float* input_max) { 95 *input_min = 0; 100 *input_min = 0; 105 *input_min = -1; 113 FindType(graph, edge->src(), signed_input, range_given, input_min, 123 FindType(graph, edge->src(), signed_input, range_given, input_min, 504 std::vector<Node*>* added_variables, Node** input_min, 507 // Make constant nodes for the input_min and input_max if the range i 540 Node* input_min; local 634 float input_min = 0; local [all...] |
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
fake_quantize_ops.cc | 100 float input_min, input_max; local 101 OP_REQUIRES_OK(ctx, ctx->GetAttr("min", &input_min)); 103 CpuNudge(input_min, input_max, quant_min_, quant_max_, &nudged_input_min_, 148 float input_min, input_max, scale; local 149 OP_REQUIRES_OK(ctx, ctx->GetAttr("min", &input_min)); 151 CpuNudge(input_min, input_max, quant_min, quant_max, &nudged_input_min_, 202 xla::XlaOp input_min = ctx->Input(1); variable 207 XlaNudge(b, data_type, input_min, input_max, quant_min_, quant_max_, 245 xla::XlaOp input_min = ctx->Input(2); variable 250 XlaNudge(b, data_type, input_min, input_max, quant_min_, quant_max_ [all...] |
/external/tensorflow/tensorflow/compiler/tests/ |
fake_quant_ops_test.py | 82 def _TestOp(self, input_min, input_max, num_bits, narrow_range, 116 min=input_min, 180 def _TestOp(self, input_min, input_max, num_bits, narrow_range, 210 min=input_min, 281 def _TestOp(self, input_min, input_max, num_bits, narrow_range, 324 min_placeholder: input_min, 386 def _TestOp(self, input_min, input_max, num_bits, narrow_range, 428 min_placeholder: input_min,
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
reduce_test.cc | 609 auto input_min = FLT_MAX; local 611 [&](int64, int64, float* v) { input_min = std::min(input_min, *v); }); 612 ComputeAndCompareR0<float>(&builder, input_min, {}, ErrorSpec(0.0001)); [all...] |
/external/tensorflow/tensorflow/tools/graph_transforms/ |
quantize_nodes.cc | 308 // If the user has passed in the input_min and input_max args, then we need to 314 float input_min; local 317 TF_RETURN_IF_ERROR(ExtractRangeFromParams(context, "input_min", "input_max", 318 &input_min, &input_max, 344 min_tensor.flat<float>()(0) = input_min; 656 // If input_min and input max have been passed in, then we convert all float [all...] |