/external/tensorflow/tensorflow/compiler/xla/tests/ |
outfeed_in_nested_computation_test.cc | 32 Shape int_shape = ShapeUtil::MakeShape(xla::S32, {}); local 34 ShapeUtil::MakeTupleShape({int_shape, state_tuple_array_shape}); 38 XlaOp num_iter = Infeed(&b, int_shape); 46 Outfeed(loop_counter, int_shape, ""); 90 local_client_->TransferFromOutfeed(&int_shape)); 111 local_client_->TransferFromOutfeed(&int_shape));
|
/external/tensorflow/tensorflow/python/keras/layers/ |
wrappers.py | 158 def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None): 170 int_shape: an alternative static shape to take as the last part 174 The new int_shape with the first part from init_tuple 175 and the last part from either `int_shape` (if provided) 179 # replace all None in int_shape by K.shape 180 if int_shape is None: 181 int_shape = K.int_shape(tensor)[start_idx:] 182 if not any(not s for s in int_shape): 183 return init_tuple + tuple(int_shape) [all...] |
lstm_test.py | 221 np.zeros(keras.backend.int_shape(layer.states[0])), 223 state_shapes = [keras.backend.int_shape(state) for state in layer.states] 230 np.ones(keras.backend.int_shape(layer.states[0])),
|
recurrent_v2.py | 218 input_shape = K.int_shape(inputs) 353 input_shape = K.int_shape(inputs) 589 input_shape = K.int_shape(inputs) 753 input_shape = K.int_shape(inputs) [all...] |
convolutional_recurrent.py | 312 shape = K.int_shape(state) 319 self.constants_spec = [InputSpec(shape=K.int_shape(constant)) 368 timesteps = K.int_shape(inputs)[1] [all...] |
lstm_v2_test.py | 196 np.zeros(keras.backend.int_shape(layer.states[0])), 198 state_shapes = [keras.backend.int_shape(state) for state in layer.states] 205 np.ones(keras.backend.int_shape(layer.states[0])), [all...] |
recurrent.py | 650 InputSpec(shape=K.int_shape(state)) for state in initial_state 656 InputSpec(shape=K.int_shape(constant)) for constant in constants 708 input_shape = K.int_shape(nest.flatten(inputs)[0]) 710 input_shape = K.int_shape(inputs) [all...] |
/external/tensorflow/tensorflow/python/keras/ |
optimizers.py | 195 shapes = [K.int_shape(p) for p in params] 257 accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 324 shapes = [K.int_shape(p) for p in params] 397 shapes = [K.int_shape(p) for p in params] 494 ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 495 vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 497 vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] 583 shapes = [K.int_shape(p) for p in params] 673 shapes = [K.int_shape(p) for p in params]
|
callbacks_v1.py | 187 shape = K.int_shape(w_img) 191 shape = K.int_shape(w_img) 198 shape = K.int_shape(w_img) 207 shape = K.int_shape(w_img)
|
callbacks.py | [all...] |
metrics.py | [all...] |
backend.py | 720 v._keras_shape = int_shape(value) 932 # To get integer shape (Instead, you can use K.int_shape(x)) 942 @keras_export('keras.backend.int_shape') 943 def int_shape(x): function 956 >>> K.int_shape(input) 960 >>> K.int_shape(kvar) [all...] |
backend_test.py | 169 self.assertEqual(keras.backend.int_shape(x), (3, 4)) 173 self.assertEqual(keras.backend.int_shape(x), (None, 4)) [all...] |
/external/tensorflow/tensorflow/python/keras/saving/ |
hdf5_format.py | 458 if K.int_shape(layer.weights[0]) != weights[0].shape: 816 if K.int_shape(symbolic_weights[i]) != weight_values[i].shape: 819 ' has shape {}'.format(K.int_shape( [all...] |
/external/tensorflow/tensorflow/contrib/tpu/python/tpu/ |
keras_tpu_variables.py | 337 v._keras_shape = backend.int_shape(value)
|
/external/tensorflow/tensorflow/contrib/keras/api/keras/backend/ |
__init__.py | 79 from tensorflow.python.keras.backend import int_shape
|
/external/tensorflow/tensorflow/python/keras/engine/ |
base_layer.py | [all...] |
topology_test.py | [all...] |
network.py | 314 self._feed_input_shapes.append(backend.int_shape(self.inputs[i])) [all...] |
training.py | 391 shape = K.int_shape(self.outputs[i]) [all...] |