HomeSort by relevance Sort by last modified time
    Searched refs:int_shape (Results 1 - 20 of 20) sorted by null

  /external/tensorflow/tensorflow/compiler/xla/tests/
outfeed_in_nested_computation_test.cc 32 Shape int_shape = ShapeUtil::MakeShape(xla::S32, {}); local
34 ShapeUtil::MakeTupleShape({int_shape, state_tuple_array_shape});
38 XlaOp num_iter = Infeed(&b, int_shape);
46 Outfeed(loop_counter, int_shape, "");
90 local_client_->TransferFromOutfeed(&int_shape));
111 local_client_->TransferFromOutfeed(&int_shape));
  /external/tensorflow/tensorflow/python/keras/layers/
wrappers.py 158 def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None):
170 int_shape: an alternative static shape to take as the last part
174 The new int_shape with the first part from init_tuple
175 and the last part from either `int_shape` (if provided)
179 # replace all None in int_shape by K.shape
180 if int_shape is None:
181 int_shape = K.int_shape(tensor)[start_idx:]
182 if not any(not s for s in int_shape):
183 return init_tuple + tuple(int_shape)
    [all...]
lstm_test.py 221 np.zeros(keras.backend.int_shape(layer.states[0])),
223 state_shapes = [keras.backend.int_shape(state) for state in layer.states]
230 np.ones(keras.backend.int_shape(layer.states[0])),
recurrent_v2.py 218 input_shape = K.int_shape(inputs)
353 input_shape = K.int_shape(inputs)
589 input_shape = K.int_shape(inputs)
753 input_shape = K.int_shape(inputs)
    [all...]
convolutional_recurrent.py 312 shape = K.int_shape(state)
319 self.constants_spec = [InputSpec(shape=K.int_shape(constant))
368 timesteps = K.int_shape(inputs)[1]
    [all...]
lstm_v2_test.py 196 np.zeros(keras.backend.int_shape(layer.states[0])),
198 state_shapes = [keras.backend.int_shape(state) for state in layer.states]
205 np.ones(keras.backend.int_shape(layer.states[0])),
    [all...]
recurrent.py 650 InputSpec(shape=K.int_shape(state)) for state in initial_state
656 InputSpec(shape=K.int_shape(constant)) for constant in constants
708 input_shape = K.int_shape(nest.flatten(inputs)[0])
710 input_shape = K.int_shape(inputs)
    [all...]
  /external/tensorflow/tensorflow/python/keras/
optimizers.py 195 shapes = [K.int_shape(p) for p in params]
257 accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
324 shapes = [K.int_shape(p) for p in params]
397 shapes = [K.int_shape(p) for p in params]
494 ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
495 vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
497 vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
583 shapes = [K.int_shape(p) for p in params]
673 shapes = [K.int_shape(p) for p in params]
callbacks_v1.py 187 shape = K.int_shape(w_img)
191 shape = K.int_shape(w_img)
198 shape = K.int_shape(w_img)
207 shape = K.int_shape(w_img)
callbacks.py     [all...]
metrics.py     [all...]
backend.py 720 v._keras_shape = int_shape(value)
932 # To get integer shape (Instead, you can use K.int_shape(x))
942 @keras_export('keras.backend.int_shape')
943 def int_shape(x): function
956 >>> K.int_shape(input)
960 >>> K.int_shape(kvar)
    [all...]
backend_test.py 169 self.assertEqual(keras.backend.int_shape(x), (3, 4))
173 self.assertEqual(keras.backend.int_shape(x), (None, 4))
    [all...]
  /external/tensorflow/tensorflow/python/keras/saving/
hdf5_format.py 458 if K.int_shape(layer.weights[0]) != weights[0].shape:
816 if K.int_shape(symbolic_weights[i]) != weight_values[i].shape:
819 ' has shape {}'.format(K.int_shape(
    [all...]
  /external/tensorflow/tensorflow/contrib/tpu/python/tpu/
keras_tpu_variables.py 337 v._keras_shape = backend.int_shape(value)
  /external/tensorflow/tensorflow/contrib/keras/api/keras/backend/
__init__.py 79 from tensorflow.python.keras.backend import int_shape
  /external/tensorflow/tensorflow/python/keras/engine/
base_layer.py     [all...]
topology_test.py     [all...]
network.py 314 self._feed_input_shapes.append(backend.int_shape(self.inputs[i]))
    [all...]
training.py 391 shape = K.int_shape(self.outputs[i])
    [all...]

Completed in 249 milliseconds