/external/eigen/doc/snippets/ |
TopicAliasing_mult1.cpp | 1 MatrixXf matA(2,2); 2 matA << 2, 0, 0, 2; 3 matA = matA * matA; 4 cout << matA;
|
TopicAliasing_mult3.cpp | 1 MatrixXf matA(2,2); 2 matA << 2, 0, 0, 2; 3 matA.noalias() = matA * matA; 4 cout << matA;
|
TopicAliasing_mult2.cpp | 1 MatrixXf matA(2,2), matB(2,2); 2 matA << 2, 0, 0, 2; 5 matB = matA * matA; 9 matB.noalias() = matA * matA;
|
Tutorial_AdvancedInitialization_Block.cpp | 1 MatrixXf matA(2, 2); 2 matA << 1, 2, 3, 4; 4 matB << matA, matA/10, matA/10, matA;
|
/external/eigen/Eigen/src/Eigenvalues/ |
GeneralizedSelfAdjointEigenSolver.h | 82 * \param[in] matA Selfadjoint matrix in matrix pencil. 91 * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the 106 GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, 108 : Base(matA.cols()) 110 compute(matA, matB, options); 115 * \param[in] matA Selfadjoint matrix in matrix pencil. 129 * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite 153 GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, 163 compute(const MatrixType& matA, const MatrixType& matB, int options) 165 eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows()) [all...] |
HessenbergDecomposition.h | 272 static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp); 282 * Performs a tridiagonal decomposition of \a matA in place. 284 * \param matA the input selfadjoint matrix 287 * The result is written in the lower triangular part of \a matA. 294 void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp) 296 eigen_assert(matA.rows()==matA.cols()); 297 Index n = matA.rows(); 305 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); 306 matA.col(i).coeffRef(i+1) = beta [all...] |
Tridiagonalization.h | 28 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); 324 * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. 326 * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. 332 * and lower sub-diagonal of the matrix \a matA. 340 * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. 347 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) 352 Index n = matA.rows(); 353 eigen_assert(n==matA.cols()); 361 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta) [all...] |
/external/neven/Embedded/common/src/b_TensorEm/ |
Int32Mat.h | 106 * matA: the square matrix, array of size ( matWidthA * matWidthA ) 111 * tmpMatA: matrix of same size as matA 115 const int32* matA, 123 /** same as _solve(), but matA gets overwritten, and tmpMatA is not needed: 124 * saves memory when matA is large; 129 int32* matA,
|
Int32Mat.c | 210 const int32* matA, 218 bbs_memcpy32( tmpMatA, matA, ( matWidthA * matWidthA ) * bbs_SIZEOF32( int32 ) ); 232 int32* matA, 246 int32* matL = matA;
|
/cts/tests/tests/rsblas/src/android/renderscript/cts/ |
IntrinsicBLAS.java | 239 for (Allocation matA : mMatrix) { 248 Element elemA = matA.getType().getElement(); 249 if (validateGEMV(elemA, trans, matA, vecX, incX, vecY, incY)) { 252 mBLAS.SGEMV(trans, alphaS, matA, vecX, incX, betaS, vecY, incY); 254 mBLAS.DGEMV(trans, alphaD, matA, vecX, incX, betaD, vecY, incY); 256 mBLAS.CGEMV(trans, alphaC, matA, vecX, incX, betaC, vecY, incY); 258 mBLAS.ZGEMV(trans, alphaZ, matA, vecX, incX, betaZ, vecY, incY); 265 mBLAS.SGEMV(trans, alphaS, matA, vecX, incX, betaS, vecY, incY); 270 mBLAS.DGEMV(trans, alphaD, matA, vecX, incX, betaD, vecY, incY); 275 mBLAS.CGEMV(trans, alphaC, matA, vecX, incX, betaC, vecY, incY) [all...] |
/external/skia/src/effects/ |
SkColorMatrix.cpp | 132 void SkColorMatrix::setConcat(const SkColorMatrix& matA, const SkColorMatrix& matB) { 133 SetConcat(fMat, matA.fMat, matB.fMat);
|
/external/skqp/src/effects/ |
SkColorMatrix.cpp | 132 void SkColorMatrix::setConcat(const SkColorMatrix& matA, const SkColorMatrix& matB) { 133 SetConcat(fMat, matA.fMat, matB.fMat);
|
/external/eigen/test/ |
cholesky.cpp | 353 MatrixType matA; 354 matA << 1, 1, 1, 1; 357 VectorType vecX = matA.ldlt().solve(vecB); 358 VERIFY_IS_APPROX(matA * vecX, vecB);
|
/external/eigen/blas/ |
level3_impl.h | 322 Matrix<Scalar,Dynamic,Dynamic,ColMajor> matA(size,size); 325 matA.triangularView<Upper>() = matrix(a,size,size,*lda); 326 matA.triangularView<Lower>() = matrix(a,size,size,*lda).transpose(); 330 matA.triangularView<Lower>() = matrix(a,size,size,*lda); 331 matA.triangularView<Upper>() = matrix(a,size,size,*lda).transpose(); 334 matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb); 336 matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA; [all...] |