/external/tensorflow/tensorflow/contrib/memory_stats/python/kernel_tests/ |
memory_stats_ops_test.py | 59 matrix_shape = tensor_shape.TensorShape([matrix_size, matrix_size]) 61 matrix_size_in_bytes = matrix_shape.num_elements() * dtype.size 62 a = random_ops.random_uniform(matrix_shape, dtype=dtype) 63 b = random_ops.random_uniform(matrix_shape, dtype=dtype) 75 a = random_ops.random_uniform(matrix_shape, dtype=dtype) 79 b = random_ops.random_uniform(matrix_shape, dtype=dtype)
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
matrix_solve_op_test.py | 156 def _GenerateTestData(self, matrix_shape, num_rhs): 157 batch_shape = matrix_shape[:-2] 158 matrix_shape = matrix_shape[-2:] 159 assert matrix_shape[0] == matrix_shape[1] 160 n = matrix_shape[0] 161 matrix = (np.ones(matrix_shape).astype(np.float32) / 173 for matrix_shape in self.matrix_shapes: 174 for num_rhs in 1, 2, matrix_shape[-1] [all...] |
matrix_solve_ls_op_test.py | 45 def _GenerateTestData(matrix_shape, num_rhs): 46 batch_shape = matrix_shape[:-2] 47 matrix_shape = matrix_shape[-2:] 48 m = matrix_shape[-2] 52 size=np.prod(matrix_shape)).reshape(matrix_shape).astype(np.float32) 229 matrix_shape = (127, 127) 232 size=np.prod(matrix_shape)).reshape(matrix_shape).astype(np.float32 [all...] |
tridiagonal_solve_op_test.py | 381 def test_with_matrix_shapes(matrix_shape): 387 diags_shape=matrix_shape, 394 test_with_matrix_shapes(matrix_shape=[4, 4]) 395 test_with_matrix_shapes(matrix_shape=[None, 4]) 396 test_with_matrix_shapes(matrix_shape=[4, None]) 398 test_with_matrix_shapes(matrix_shape=[None, None])
|
/external/tensorflow/tensorflow/python/ops/ |
linalg_ops.py | 68 matrix_shape = array_ops.shape(matrix) 69 batch_shape = matrix_shape[:-2] 71 small_dim = matrix_shape[-1] 73 small_dim = matrix_shape[-2] 254 matrix_shape = tensor_shape[-2:] 258 is_io_bound = batch_shape.num_elements() > np.min(matrix_shape) 280 matrix_shape = matrix.get_shape()[-2:] 281 if matrix_shape.is_fully_defined(): 282 if matrix_shape[-2] >= matrix_shape[-1] [all...] |
linalg_grad.py | 268 matrix_shape = op.inputs[0].get_shape()[-2:] 269 if matrix_shape.is_fully_defined(): 270 if matrix_shape[-2] >= matrix_shape[-1]: 277 matrix_shape = array_ops.shape(op.inputs[0])[-2:] 278 return control_flow_ops.cond(matrix_shape[-2] >= matrix_shape[-1],
|
array_grad.py | 334 matrix_shape = op.inputs[0].get_shape()[-2:] 335 if matrix_shape.is_fully_defined() and matrix_shape[0] == matrix_shape[1]: 347 matrix_shape = input_shape[-2:] 348 if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined(): 349 diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())] 355 matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2]) 356 min_dim = math_ops.reduce_min(matrix_shape) [all...] |
/external/tensorflow/tensorflow/contrib/constrained_optimization/python/ |
swap_regret_optimizer.py | 149 matrix_shape = matrix.get_shape() 150 if matrix_shape.ndims is None: 152 if matrix_shape.ndims != 2: 155 matrix_shape.ndims) 156 if matrix_shape[0] != matrix_shape[1]: 158 (matrix_shape[0], matrix_shape[1])) 159 dimension = matrix_shape.dims[0].value
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
linear_operator_composition.py | 198 matrix_shape = tensor_shape.TensorShape( 209 return batch_shape.concatenate(matrix_shape) 220 matrix_shape = array_ops.stack([ 231 return array_ops.concat((batch_shape, matrix_shape), 0)
|
linear_operator_identity.py | 291 matrix_shape = tensor_shape.TensorShape((self._num_rows_static, 294 return matrix_shape 297 return batch_shape.concatenate(matrix_shape) 300 matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0) 302 return matrix_shape 304 return array_ops.concat((self._batch_shape_arg, matrix_shape), 0) 627 matrix_shape = tensor_shape.TensorShape((self._num_rows_static, 631 return batch_shape.concatenate(matrix_shape) 634 matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0) 637 return array_ops.concat((batch_shape, matrix_shape), 0 [all...] |
linear_operator_zeros.py | 231 matrix_shape = tensor_shape.TensorShape((self._num_rows_static, 234 return matrix_shape 237 return batch_shape.concatenate(matrix_shape) 240 matrix_shape = array_ops.stack((self._num_rows, self._num_columns), axis=0) 242 return matrix_shape 244 return array_ops.concat((self._batch_shape_arg, matrix_shape), 0)
|
linear_operator_block_diag.py | 226 matrix_shape = tensor_shape.TensorShape([domain_dimension, range_dimension]) 235 return batch_shape.concatenate(matrix_shape) 249 matrix_shape = array_ops.stack([domain_dimension, range_dimension]) 257 return array_ops.concat((batch_shape, matrix_shape), 0)
|
linear_operator_kronecker.py | 245 matrix_shape = tensor_shape.TensorShape([ 255 return batch_shape.concatenate(matrix_shape) 266 matrix_shape = [range_dimension, domain_dimension] 275 return array_ops.concat((batch_shape, matrix_shape), 0)
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
xla_hlo_profile_test.cc | 270 Shape matrix_shape = ShapeUtil::MakeShape(F32, {size, size}); local 272 ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S32, {}), matrix_shape}); 302 Parameter(&builder, 0, matrix_shape, "initial_value")}); 305 Parameter(&builder, 1, matrix_shape, "other_value")); 310 ExecuteAndFetchProfile(&profile_output, client, computation, matrix_shape, 311 matrix_shape);
|
tuple_test.cc | 171 auto matrix_shape = builder.GetShape(matrix_element).ConsumeValueOrDie(); local 180 ASSERT_TRUE(ShapeUtil::Equal(matrix_shape,
|
while_test.cc | 1190 auto matrix_shape = ShapeUtil::MakeShape(F32, {2, 2}); local [all...] |
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
math_utils.py | 121 matrix_shape = array_ops.shape(matrix) 122 ret_columns_list.append(matrix_shape[-1]) 127 matrix_shape = array_ops.shape(matrix) 129 current_column += matrix_shape[-1] [all...] |
/external/tensorflow/tensorflow/compiler/xla/service/ |
shape_inference_test.cc | 104 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); local 106 ShapeInference::InferUnaryOpShape(HloOpcode::kNegate, matrix_shape); 108 ASSERT_TRUE(ShapeUtil::Equal(matrix_shape, inferred_status.ValueOrDie())); 303 Shape matrix_shape = ShapeUtil::MakeShape(F32, {8, 8}); local 320 matrix_shape, init_value_shape, window, to_apply); 834 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); local 843 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); local 852 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); local 861 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); local 870 Shape matrix_shape = ShapeUtil::MakeShape(F32, {128, 64}); local [all...] |