/external/tensorflow/tensorflow/python/ops/ |
image_grad_test.py | 39 out_shape = [1, 4, 6, 1] 47 out_shape[1:3]) 48 self.assertEqual(out_shape, list(resize_out.get_shape())) 51 self.assertEqual(out_shape, list(resize_out.shape)) 56 out_shape = [1, 4, 6, 1] 64 out_shape[1:3]) 66 input_tensor, in_shape, resize_out, out_shape, x_init_value=x) 72 out_shape = [1, 2, 3, 1] 80 out_shape[1:3]) 82 input_tensor, in_shape, resize_out, out_shape, x_init_value=x [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
decode_raw_op.cc | 52 TensorShape out_shape = input.shape(); variable 54 out_shape.AddDim(0); 56 OP_REQUIRES_OK(context, context->allocate_output("output", out_shape, 66 out_shape.AddDim(added_dim); 69 context, context->allocate_output("output", out_shape, &output_tensor));
|
diag_op.cc | 53 TensorShape out_shape; variable 55 out_shape.AddDim(diagonal.dim_size(i)); 58 out_shape.AddDim(diagonal.dim_size(i)); 62 context->allocate_output(0, out_shape, &output_tensor)); 93 TensorShape out_shape; variable 95 out_shape.AddDim(tensor.dim_size(i)); 99 OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output)); 101 Status s = diagPartFunc(context, out_shape.num_elements(),
|
nth_element_op.cc | 67 TensorShape out_shape; variable 69 out_shape.AddDim(input_in.dim_size(i)); 73 context->allocate_output(0, out_shape, &output_tensor));
|
determinant_op.cc | 149 TensorShape out_shape; variable 151 out_shape.AddDim(input.dim_size(dim)); 153 out_shape.AppendShape(TensorShape({})); 155 OP_REQUIRES_OK_ASYNC(context, context->allocate_output(0, out_shape, &out), 289 TensorShape out_shape; variable 291 out_shape.AddDim(input.dim_size(dim)); 293 out_shape.AppendShape(TensorShape({})); 295 OP_REQUIRES_OK_ASYNC(context, context->allocate_output(0, out_shape, &sign), 299 context, context->allocate_output(1, out_shape, &log_abs_det), done);
|
extract_image_patches_op.cc | 97 TensorShape out_shape(out_sizes); 100 OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output)); 103 if (out_shape.num_elements() == 0) {
|
extract_volume_patches_op.cc | 124 TensorShape out_shape(out_sizes); 127 OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output)); 130 if (out_shape.num_elements() == 0) {
|
mkl_batch_matmul_op.cc | 68 TensorShape out_shape; variable 75 out_shape.AddDim(lhs.dim_size(i)); 77 auto batch_size = (ndims == 2) ? 1 : out_shape.num_elements(); 89 out_shape.AddDim(lhs_rows); 90 out_shape.AddDim(rhs_cols); 92 OP_REQUIRES_OK(ctx, ctx->allocate_output(0, out_shape, &out));
|
reduction_ops_common.h | 89 // out = tmp_out.reshape(out_shape) 95 TensorShape out_shape() const; 164 if (!out.CopyFrom(data, helper.out_shape())) { 239 if (!out.CopyFrom(tmp_out, helper.out_shape())) {
|
cudnn_pooling_gpu.cc | 42 const auto out_shape = output->shape(); local 65 ShapeFromFormat(FORMAT_NCHW, out_shape, data_format), 89 GetTensorDim(out_shape, data_format, '2' - i));
|
depthwise_conv_op.cc | 355 TensorShape out_shape = variable 360 FastBoundsCheck(out_shape.num_elements(), 365 OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output)); 368 if (out_shape.num_elements() == 0) {
|
mkl_matmul_op.cc | 72 TensorShape out_shape( 75 OP_REQUIRES_OK(ctx, ctx->allocate_output(0, out_shape, &out));
|
quantized_matmul_op.cc | 117 TensorShape out_shape( 120 OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &c));
|
maxpooling_op.cc | 1155 TensorShape out_shape = variable 1273 TensorShape out_shape = variable [all...] |
/external/tensorflow/tensorflow/python/profiler/internal/ |
flops_registry.py | 142 out_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name) 143 out_shape.assert_is_fully_defined() 144 return ops.OpStats("flops", out_shape.num_elements() * ops_per_element) 245 out_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name) 246 out_shape.assert_is_fully_defined() 248 + out_shape.num_elements() * (finalize_flops - reduce_flops)) 317 out_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name) 318 out_shape.assert_is_fully_defined() 321 return ops.OpStats("flops", kernel_area * out_shape.num_elements()) 397 # out_shape = [batch_size, image_y_dim, image_x_dim, input_depth [all...] |
/external/tensorflow/tensorflow/core/ops/ |
batch_ops.cc | 84 shape_inference::ShapeHandle out_shape; 86 c->ReplaceDim(c->input(0), 0, c->UnknownDim(), &out_shape)); 87 c->set_output(0, out_shape);
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
gather_op.cc | 73 TensorShape out_shape; local 74 out_shape.AppendShape(input_shape_pre_axis); 75 out_shape.AppendShape(indices_shape_no_index_vectors); 76 out_shape.AppendShape(input_shape_post_axis); 79 xla::Broadcast(XlaHelpers::Zero(builder, dtype), out_shape.dim_sizes());
|
/external/tensorflow/tensorflow/core/kernels/neon/ |
neon_depthwise_conv_op.cc | 97 TensorShape out_shape({batch, out_rows, out_cols, out_depth}); 100 FastBoundsCheck(out_shape.num_elements(), 107 OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &output)); 118 if (out_shape.num_elements() == 0) { 138 output_ptr, ToNeonDims(out_shape));
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
cudnn_determinism_test.py | 63 out_shape = conv_op.get_shape() 64 out_op = self._random_data_op(out_shape)
|
extract_image_patches_grad_test.py | 99 out_shape = out_val.get_shape().as_list() 102 out_val, out_shape)
|
extract_volume_patches_grad_test.py | 76 out_shape = out_val.get_shape().as_list() 79 out_val, out_shape)
|
unstack_op_test.py | 97 out_shape = list(shape) 98 del out_shape[1] 104 out_shape)
|
morphological_ops_test.py | 220 out_shape = self.evaluate(out_tensor).shape 226 out_shape, [image_init, kernel_init], 496 out_shape = self.evaluate(out_tensor).shape 502 out_shape, [image_init, kernel_init],
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
merge_reshape_into_preceding_transpose.cc | 67 std::vector<int> out_shape = output_array.shape().dims(); local 86 for (const auto val : out_shape) {
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/ |
data_feeder.py | 71 def out_el_shape(out_shape, num_classes): 72 out_shape = list(out_shape[1:]) if len(out_shape) > 1 else [] 74 if out_shape and out_shape[0] == 1: 75 out_shape = out_shape[1:] 77 return [batch_size] + out_shape + [num_classes] 79 return [batch_size] + out_shape [all...] |