/frameworks/base/apct-tests/perftests/utils/src/android/perftests/utils/ |
Stats.java | 87 private static long getPercentile(List<Long> values, int percentile) { 88 if (percentile < 0 || percentile > 100) { 90 "invalid percentile " + percentile + ", should be 0-100"); 92 int idx = (values.size() - 1) * percentile / 100;
|
/external/grpc-grpc/tools/run_tests/performance/ |
massage_qps_stats.py | 327 "core_call_initial_size_50p"] = massage_qps_stats_helpers.percentile( 330 "core_call_initial_size_95p"] = massage_qps_stats_helpers.percentile( 333 "core_call_initial_size_99p"] = massage_qps_stats_helpers.percentile( 342 "core_poll_events_returned_50p"] = massage_qps_stats_helpers.percentile( 345 "core_poll_events_returned_95p"] = massage_qps_stats_helpers.percentile( 348 "core_poll_events_returned_99p"] = massage_qps_stats_helpers.percentile( 356 "core_tcp_write_size_50p"] = massage_qps_stats_helpers.percentile( 359 "core_tcp_write_size_95p"] = massage_qps_stats_helpers.percentile( 362 "core_tcp_write_size_99p"] = massage_qps_stats_helpers.percentile( 371 "core_tcp_write_iov_size_50p"] = massage_qps_stats_helpers.percentile( [all...] |
massage_qps_stats_helpers.py | 40 def percentile(buckets, pctl, boundaries): function
|
/external/autotest/client/bin/ |
fio_util.py | 59 h_title = { True: 'Percentile', False: 'Time (s)' } 76 def _parse_log_file(cls, file_name, pass_index, pass_count, percentile): 88 @param percentile: flag to use percentile as key instead of timestamp 102 # Sort & calculate percentile 103 if percentile: 120 def _gen_data_col(cls, pass_list, percentile): 128 @param percentile: flag to use percentile as key instead of timestamp 132 if percentile [all...] |
/external/chromium-trace/catapult/common/lab/ |
commits.py | 35 def Percentile(data, percentile): 36 """Find a percentile of a list of values. 40 percentile: The percentile to look up, from 0.0 to 1.0. 43 The percentile. 51 k = (len(data) - 1) * percentile 97 percentile = Percentile(commit_durations, p) 98 print '%3d%% commit duration:' % (p * 100), '%6.1fm' % percentile [all...] |
/external/opencensus-java/api/src/main/java/io/opencensus/metrics/export/ |
Summary.java | 137 * Represents the value at a given percentile of a distribution. 145 * Returns the percentile in this {@code ValueAtPercentile}. 149 * @return the percentile in this {@code ValueAtPercentile}. 165 * @param percentile the percentile in this {@code ValueAtPercentile}. 170 public static ValueAtPercentile create(double percentile, double value) { 172 0 < percentile && percentile <= 100.0, 173 "percentile must be in the interval (0.0, 100.0]"); 175 return new AutoValue_Summary_Snapshot_ValueAtPercentile(percentile, value) [all...] |
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
sinh_arcsinh_test.py | 131 np.percentile(norm_samps, 0.1, axis=0), 132 np.percentile(sasnorm_samps, 0.1, axis=0)) 134 np.percentile(sasnorm_samps, 99.9, axis=0), 135 np.percentile(norm_samps, 99.9, axis=0)) 139 np.percentile(sasnorm_samps, q, axis=0), 140 np.percentile(norm_samps, q, axis=0), 143 np.percentile(sasnorm_samps, 100 - q, axis=0), 144 np.percentile(norm_samps, 100 - q, axis=0), 173 np.percentile(sasnorm_samps, 0.1, axis=0), 174 np.percentile(norm_samps, 0.1, axis=0) [all...] |
vector_sinh_arcsinh_diag_test.py | 123 np.percentile(norm_samps, 0.1, axis=0), 124 np.percentile(sasnorm_samps, 0.1, axis=0)) 126 np.percentile(sasnorm_samps, 99.9, axis=0), 127 np.percentile(norm_samps, 99.9, axis=0)) 131 np.percentile(sasnorm_samps, q, axis=0), 132 np.percentile(norm_samps, q, axis=0), 135 np.percentile(sasnorm_samps, 100 - q, axis=0), 136 np.percentile(norm_samps, 100 - q, axis=0), 168 np.percentile(sasnorm_samps, 0.1, axis=0), 169 np.percentile(norm_samps, 0.1, axis=0) [all...] |
sample_stats_test.py | 272 expected_percentile = np.percentile( 275 pct = sample_stats.percentile( 283 expected_percentile = np.percentile( 286 pct = sample_stats.percentile(x, q=q, interpolation=self._interpolation) 293 expected_percentile = np.percentile( 297 pct_neg_index = sample_stats.percentile( 299 pct_pos_index = sample_stats.percentile( 309 expected_percentile = np.percentile( 312 pct = sample_stats.percentile( 320 expected_percentile = np.percentile( [all...] |
/external/tensorflow/tensorflow/lite/kernels/internal/ |
test_util.cc | 82 int ExponentialRandomPositiveInt(float percentile, int percentile_val, 85 -std::log(1.f - percentile) / static_cast<float>(percentile_val); 94 float ExponentialRandomPositiveFloat(float percentile, float percentile_val, 97 -std::log(1.f - percentile) / static_cast<float>(percentile_val);
|
test_util.h | 52 int ExponentialRandomPositiveInt(float percentile, int percentile_val, 56 float ExponentialRandomPositiveFloat(float percentile, float percentile_val,
|
/external/grpc-grpc/src/core/lib/debug/ |
stats.h | 64 double percentile);
|
stats.cc | 133 double percentile) { 140 static_cast<double>(count) * percentile / 100.0);
|
/external/grpc-grpc/test/core/util/ |
histogram.h | 41 double grpc_histogram_percentile(grpc_histogram* histogram, double percentile);
|
histogram_test.cc | 28 static void expect_percentile(grpc_histogram* h, double percentile, 30 double got = grpc_histogram_percentile(h, percentile); 31 gpr_log(GPR_INFO, "@%f%%, expect %f <= %f <= %f", percentile, min_expect, got,
|
histogram.cc | 196 double grpc_histogram_percentile(grpc_histogram* h, double percentile) { 197 return threshold_for_count_below(h, h->count * percentile / 100.0);
|
/external/caliper/caliper/src/main/java/com/google/caliper/runner/ |
ConsoleOutput.java | 37 import org.apache.commons.math.stat.descriptive.rank.Percentile; 119 Percentile percentile = new Percentile(); local 120 percentile.setData(weightedValues); 126 descriptiveStatistics.getMin(), percentile.evaluate(25), 127 percentile.evaluate(50), descriptiveStatistics.getMean(), 128 percentile.evaluate(75), descriptiveStatistics.getMax());
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
test_data.py | 33 quantiles = np.percentile(
|
/external/v8/tools/ |
eval_gc_nvp.py | 109 for percentile in self.percentiles: 110 index = int(ceil((len(self.values) - 1) * percentile / 100)) 111 ret.append(" {0}%: {1}".format(percentile, sorted_values[index])) 191 for percentile in args.percentiles.split(','): 193 percentiles.append(float(percentile))
|
/external/grpc-grpc/tools/profiling/latency_profile/ |
profile_analyzer.py | 185 def percentile(N, percent, key=lambda x: x): function 187 Find the percentile of an already sorted list of values. 193 @return - the percentile of the values 214 return '%.1f/%.1f/%.1f' % (1e6 * percentile(values, 0.5), 215 1e6 * percentile(values, 0.9), 216 1e6 * percentile(values, 0.99))
|
/external/tensorflow/tensorflow/core/kernels/data/experimental/ |
choose_fastest_dataset_op.cc | 323 // of the completed threads. The input with the best 90th percentile 328 VLOG(2) << "90.0 percentile iteration time:"; 329 double best_percentile = histograms_[0].Percentile(kPercentile); 333 double percentile = histograms_[i].Percentile(kPercentile); local 334 VLOG(2) << "Branch " << i << ": " << percentile; local 335 if (percentile <= best_percentile) { 336 best_percentile = percentile;
|
choose_fastest_branch_dataset_op.cc | 450 // of the completed iterations. The input with the best 90th percentile 455 VLOG(2) << "90.0 percentile iteration time:"; 456 double best_percentile = histograms_[0].Percentile(kPercentile); 460 double percentile = histograms_[i].Percentile(kPercentile); local 461 VLOG(2) << "Branch " << i << ": " << percentile; local 462 if (percentile <= best_percentile) { 463 best_percentile = percentile;
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/ |
StatUtils.java | 28 import org.apache.commons.math.stat.descriptive.rank.Percentile; 66 /** percentile */ 67 private static final Percentile PERCENTILE = new Percentile(); 498 * Returns an estimate of the <code>p</code>th percentile of the values 511 * See {@link org.apache.commons.math.stat.descriptive.rank.Percentile} for 512 * a description of the percentile estimation algorithm used.</p> 515 * @param p the percentile value to compute 516 * @return the percentile value or Double.NaN if the array is empt 520 public static double percentile(final double[] values, final double p) { method in class:StatUtils 551 public static double percentile(final double[] values, final int begin, method in class:StatUtils [all...] |
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
sample_stats.py | 37 "percentile", 216 # TODO(langmore) To make equivalent to numpy.percentile: 219 def percentile(x, function 226 """Compute the `q`-th percentile of `x`. 228 Given a vector `x`, the `q`-th percentile of `x` is the value `q / 100` of the 232 `interpolation` parameter will determine the percentile if the normalized 240 # Get 30th percentile with default ('nearest') interpolation. 242 percentile(x, q=30.) 245 # Get 30th percentile with 'lower' interpolation 247 percentile(x, q=30., interpolation='lower' [all...] |
/external/syzkaller/vendor/golang.org/x/net/trace/ |
histogram.go | 120 func (h *histogram) percentileBoundary(percentile float64) int64 { 130 percentOfTotal := round(float64(total) * percentile)
|