/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
ops_test.py | 33 x = tf.random_normal(shape=[batch_size, 32, 32, 3]) 45 x = tf.random_normal(shape=[batch_size, 32, 32, 3]) 50 dy = tf.random_normal(shape=[batch_size, 3, 32, 32]) 56 x = tf.random_normal(shape=[batch_size, 3, 32, 32]) 68 x = tf.random_normal(shape=[batch_size, 3, 32, 32]) 73 dy = tf.random_normal(shape=[batch_size, 3, 32, 32])
|
blocks_test.py | 59 x = tf.random_normal(shape=data_shape) 100 x = tf.random_normal(shape=data_shape) 134 x = tf.random_normal(shape=data_shape, dtype=tf.float64) 135 dy = tf.random_normal(shape=data_shape, dtype=tf.float64) 163 x = tf.random_normal(shape=data_shape, dtype=tf.float64) 164 dy = tf.random_normal(shape=(16, 128, 4, 4), dtype=tf.float64) 197 x = tf.random_normal(shape=data_shape, dtype=tf.float64) 198 dy = tf.random_normal(shape=data_shape, dtype=tf.float64) 237 x_true = tf.random_normal(shape=data_shape, dtype=tf.float64) 238 dy = tf.random_normal(shape=data_shape, dtype=tf.float64 [all...] |
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/ |
sliced_wasserstein_test.py | 80 d2 = random_ops.random_normal([256, 32, 32, 3]) 96 d2 = random_ops.random_normal([256, 32, 32, 3]) 112 d2 = random_ops.random_normal([256, 32, 31, 3]) 113 d3 = random_ops.random_normal([256, 31, 32, 3]) 114 d4 = random_ops.random_normal([255, 32, 32, 3]) 125 d2 = random_ops.random_normal([256, 32, 32, 1])
|
/external/tensorflow/tensorflow/contrib/model_pruning/python/layers/ |
rnn_cells_test.py | 42 random_ops.random_normal([self.batch_size, self.dim])) 44 random_ops.random_normal([self.batch_size, self.dim])) 46 random_ops.random_normal([self.batch_size, self.dim])) 66 random_ops.random_normal([self.batch_size, self.dim])) 68 random_ops.random_normal([self.batch_size, self.dim])) 70 random_ops.random_normal([self.batch_size, self.dim]))
|
/external/tensorflow/tensorflow/python/ops/ |
initializers_ns.py | 29 random_normal = init_ops.random_normal_initializer variable
|
/external/tensorflow/tensorflow/python/kernel_tests/signal/ |
mfcc_ops_test.py | 53 signal = random_ops.random_normal((2, 3, 5)) 62 random_ops.random_normal((2, 3, 5)), tensor_shape.TensorShape(None))
|
/external/tensorflow/tensorflow/contrib/gan/python/features/python/ |
virtual_batchnorm_test.py | 56 tensors = random_ops.random_normal([4, 5, 7, 3]) 74 partial_batch = random_ops.random_normal([4, 5, 7, 3]) 75 single_example = random_ops.random_normal([1, 5, 7, 3]) 107 batch = random_ops.random_normal([6, 5, 7, 3, 3]) 131 examples = [random_ops.random_normal([5, 7, 3]) for _ in 177 examples = [random_ops.random_normal([7, 3]) for _ in
|
/external/tensorflow/tensorflow/python/client/ |
session_benchmark.py | 84 v = variables.Variable(random_ops.random_normal([size])) 112 v = variables.Variable(random_ops.random_normal([size])) 139 v = variables.Variable(random_ops.random_normal([])) 165 v = variables.Variable(random_ops.random_normal([]))
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/gan/ |
mnist_test.py | 58 burn_images = [tf.random_normal([batch_size, 784]) 61 measure_images = [tf.random_normal([batch_size, 784])
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/linear_regression/ |
linear_regression.py | 113 x = tf.random_normal([batch_size, num_features]) 114 y = tf.matmul(x, w) + b + noise_level * tf.random_normal([])
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/spinn/ |
spinn_test.py | 172 left_in.append(tf.random_normal((1, size * 2))) 173 right_in.append(tf.random_normal((1, size * 2))) 174 tracking.append(tf.random_normal((1, tracker_size * 2))) 214 buf.append(tf.random_normal((batch_size, size * 2))) 223 stack.append(tf.random_normal((batch_size, size * 2))) 255 buffers = tf.random_normal((sequence_length, 1, config.d_proj)) 278 embed = tf.random_normal((vocab_size, d_embed)) 450 embed = tf.random_normal((vocab_size, d_embed))
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/state_space_models/ |
test_utils.py | 70 raw=random_ops.random_normal( 74 random_ops.random_normal(
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
matrix_square_root_op_test.py | 109 matrix1 = random_ops.random_normal([5, 5], seed=42) 110 matrix2 = random_ops.random_normal([5, 5], seed=42)
|
matrix_solve_op_test.py | 128 lhs1 = random_ops.random_normal([3, 3], seed=42) 129 lhs2 = random_ops.random_normal([3, 3], seed=42) 130 rhs1 = random_ops.random_normal([3, 3], seed=42) 131 rhs2 = random_ops.random_normal([3, 3], seed=42)
|
matmul_op_test.py | 150 a = variables.Variable(random_ops.random_normal([25, 16])) 151 b = variables.Variable(random_ops.random_normal([16, 9])) 161 a = variables.Variable(random_ops.random_normal([16, 25])) 162 b = variables.Variable(random_ops.random_normal([16, 9]))
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/l2hmc/ |
l2hmc_test.py | 66 samples = tf.random_normal( 110 samples = tf.random_normal(shape=[hparams.n_samples, hparams.x_dim]) 154 x = tf.random_normal([hparams.n_samples, hparams.x_dim], 221 samples = tf.random_normal(
|
main.py | 78 samples = tf.random_normal(shape=[n_samples, x_dim]) 111 samples = tf.random_normal(shape=[n_samples, x_dim])
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/rnn_colorbot/ |
rnn_colorbot_test.py | 43 labels = tf.random_normal([batch_size, LABEL_DIMENSION])
|