/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
losses_ops.py | 37 def mean_squared_error_regressor(tensor_in, labels, weights, biases, name=None): 40 [tensor_in, labels]): 41 predictions = nn.xw_plus_b(tensor_in, weights, biases) 49 def softmax_classifier(tensor_in, 63 tensor_in: Input tensor, [batch_size, feature_size], features. 76 with ops.name_scope(name, 'softmax_classifier', [tensor_in, labels]): 77 logits = nn.xw_plus_b(tensor_in, weights, biases)
|
embeddings_ops.py | 73 def categorical_variable(tensor_in, n_classes, embedding_size, name): 77 tensor_in: Input tensor with class identifier (can be batch or 92 return embedding_lookup(embeddings, tensor_in)
|
/external/tensorflow/tensorflow/core/kernels/ |
cudnn_pooling_gpu.h | 45 TensorFormat data_format, const Tensor& tensor_in, 62 const Tensor* tensor_in, const Tensor* tensor_out,
|
pooling_ops_common_gpu.h | 46 TensorFormat data_format, const Tensor& tensor_in, 61 TensorFormat data_format, const Tensor* tensor_in,
|
cudnn_pooling_gpu.cc | 40 const Tensor& tensor_in, Tensor* output) { 41 const auto in_shape = tensor_in.shape(); 44 const int64 in_batch = GetTensorDim(tensor_in, data_format, 'N'); 45 const int64 in_features = GetTensorDim(tensor_in, data_format, 'C'); 51 ShapeFromFormat(FORMAT_NCHW, tensor_in.shape(), 55 tensor_in.tensor<T, 5>(), 58 transformed_input = tensor_in; 87 GetTensorDim(tensor_in, data_format, '2' - i)); 124 const Tensor* tensor_in, const Tensor* tensor_out, Tensor* input_backprop) { 126 (tensor_in && tensor_out) [all...] |
quantized_pooling_ops.cc | 56 const Tensor& tensor_in = context->input(0); variable 58 padding_, FORMAT_NHWC, tensor_in.shape()}; 70 OP_REQUIRES(context, tensor_in.dims() == 4, 71 errors::InvalidArgument("tensor_in must be 4-dimensional")); 83 Tensor int32_input(DT_INT32, tensor_in.shape()); 84 int32_input.flat<int32>() = tensor_in.flat<T>().template cast<int32>();
|
pooling_ops_common.cc | 51 // For maxpooling, tensor_in should have 2 spatial dimensions. 158 TensorFormat data_format, const Tensor& tensor_in, 164 if (tensor_in.shape().num_elements() == 0) { 169 padding, data_format, tensor_in.shape()}; 183 ShapeFromFormat(FORMAT_NCHW, tensor_in.shape(), 187 tensor_in.tensor<T, 4>(), 190 transformed_input = tensor_in; 204 auto& transformed_input = tensor_in; 288 Padding padding, TensorFormat data_format, const Tensor* tensor_in, 292 (tensor_in && tensor_out) [all...] |
pooling_ops_3d.cc | 58 // For maxpooling, tensor_in should have 4 dimensions. 60 errors::InvalidArgument("tensor_in must be 4-dimensional")); 102 static void launch(OpKernelContext* context, const Tensor& tensor_in, 109 Eigen::CuboidAvgPooling(tensor_in.tensor<T, 5>(), window[0], window[1], 117 static void launch(OpKernelContext* context, const Tensor& tensor_in, 124 Eigen::CuboidMaxPooling(tensor_in.tensor<T, 5>(), window[0], window[1], 167 const Tensor& tensor_in = context->input(0); variable 169 OP_REQUIRES(context, tensor_in.dims() == 5, 170 errors::InvalidArgument("tensor_in must be 5-dimensional")); 171 const int64 depth = GetTensorDim(tensor_in, data_format_, 'C') 340 const Tensor& tensor_in = context->input(0); variable 684 const Tensor& tensor_in = context->input(0); variable [all...] |
pooling_ops_common.h | 110 const Tensor& tensor_in = context->input(0); variable 112 padding_, FORMAT_NHWC, tensor_in.shape()}; 133 DepthwiseMaxPool(context, output, tensor_in, params); 135 SpatialMaxPool(context, output, tensor_in, params, padding_); 147 const Tensor& tensor_in, const PoolParameters& params) { 149 in_by_pool(tensor_in.flat<T>().data(), params.depth_window, 150 tensor_in.NumElements() / params.depth_window); 157 const Tensor& tensor_in, const PoolParameters& params, 168 tensor_in.tensor<T, 4>(), params.window_rows, params.window_cols, 176 ConstEigenMatrixMap in_mat(tensor_in.flat<T>().data(), params.depth 323 const Tensor& tensor_in = context->input(0); variable [all...] |
maxpooling_op.cc | 60 Tensor* input_backprop, const Tensor& tensor_in, const Tensor& out_backprop, 78 tensor_in.flat<T>().data(), params.depth, 247 const Tensor& tensor_in = context->input(0); variable 251 // For maxpooling, tensor_in should have 4 dimensions. 252 OP_REQUIRES(context, tensor_in.dims() == 4, 253 errors::InvalidArgument("tensor_in must be 4-dimensional")); 260 const TensorShape& output_shape = tensor_in.shape(); 299 padding_, FORMAT_NHWC, tensor_in.shape()}; 309 context, &tensor_out_dup, &tensor_out_arg_max, output, tensor_in, 325 const std::vector<int32>& stride, Padding padding, const Tensor* tensor_in, 379 const Tensor& tensor_in = context->input(0); variable 485 const Tensor& tensor_in = context->input(0); variable 682 const Tensor& tensor_in = context->input(0); variable 781 const Tensor& tensor_in = context->input(0); variable 836 const Tensor& tensor_in = context->input(0); variable 922 const Tensor& tensor_in = context->input(0); variable 1034 const Tensor& tensor_in = context->input(0); variable 1087 const Tensor& tensor_in = context->input(0); variable 1147 const Tensor& tensor_in = context->input(0); variable 1239 const Tensor& tensor_in = context->input(0); variable [all...] |
fractional_max_pool_op.cc | 78 const Tensor& tensor_in = context->input(0); variable 79 OP_REQUIRES(context, tensor_in.dims() == tensor_in_and_out_dims, 80 errors::InvalidArgument("tensor_in must be 4-dimensional")); 85 input_size[i] = tensor_in.dim_size(i); 125 ConstEigenMatrixMap in_mat(tensor_in.flat<T>().data(), input_size[3], 230 const Tensor& tensor_in = context->input(0); variable 241 input_size[i] = tensor_in.dim_size(i); 260 tensor_in.flat<T>().data(), input_size[3], 339 {0}, 0, tensor_in.shape(), &output));
|
pooling_ops_3d_sycl.h | 179 static void launch(OpKernelContext* context, const Tensor& tensor_in, 189 const int batch = GetTensorDim(tensor_in, data_format, 'N'); 190 const int in_planes = GetTensorDim(tensor_in, data_format, '0'); 191 const int in_rows = GetTensorDim(tensor_in, data_format, '1'); 192 const int in_cols = GetTensorDim(tensor_in, data_format, '2'); 193 const int depth = GetTensorDim(tensor_in, data_format, 'C'); 198 device.get_sycl_buffer(tensor_in.template flat<T>().data()); 347 static void launch(OpKernelContext* context, const Tensor& tensor_in, 355 const int batch = GetTensorDim(tensor_in, data_format, 'N'); 356 const int in_planes = GetTensorDim(tensor_in, data_format, '0') [all...] |
avgpooling_op.cc | 77 const Tensor& tensor_in = context->input(0); variable 79 padding_, data_format_, tensor_in.shape()}; 87 // For avgpooling, tensor_in should have 4 dimensions. 88 OP_REQUIRES(context, tensor_in.dims() == 4, 89 errors::InvalidArgument("tensor_in must be 4-dimensional")); 95 SpatialAvgPool<Device, T>(context, output, tensor_in, params, padding_); 142 const Tensor& tensor_in = context->input(0); variable 144 padding_, data_format_, tensor_in.shape()}; 152 // For avgpooling, tensor_in should have 4 dimensions. 153 OP_REQUIRES(context, tensor_in.dims() == 4 [all...] |
mkl_maxpooling_op.cc | 79 const Tensor& tensor_in = MklGetInput(context, 0); variable 87 tensor_in.shape()); 135 const_cast<void*>(static_cast<const void*>(tensor_in.flat<T>().data())); 237 const Tensor& tensor_in = MklGetInput(context, 0); variable 247 mkl_context.params.in_dim = tensor_in.dims(); 254 tensor_in.shape()); 391 const Tensor& tensor_in = MklGetInput(context, 0); local 405 tensor_in.flat<T>().data())), 414 static_cast<const void*>(tensor_in.flat<T>().data())), 420 static_cast<const void*>(tensor_in.flat<T>().data())) [all...] |
fractional_avg_pool_op.cc | 75 const Tensor& tensor_in = context->input(0); variable 76 OP_REQUIRES(context, tensor_in.dims() == tensor_in_and_out_dims, 77 errors::InvalidArgument("tensor_in must be 4-dimensional")); 82 input_size[i] = tensor_in.dim_size(i); 119 ConstEigenMatrixMap in_mat(tensor_in.flat<T>().data(), input_size[3],
|
mkl_avgpooling_op.cc | 70 const Tensor& tensor_in = MklGetInput(context, 0); variable 75 mkl_context.params.in_dim = tensor_in.dims(); 82 tensor_in.shape()); 106 static_cast<void*>(const_cast<T*>(tensor_in.flat<T>().data())), 113 static_cast<void*>(const_cast<T*>(tensor_in.flat<T>().data())), 119 static_cast<void*>(const_cast<T*>(tensor_in.flat<T>().data()));
|
/external/tensorflow/tensorflow/contrib/quantize/python/ |
quantize_test.py | 222 [tensor_in.name for tensor_in in conv_op.inputs])
|