/external/tensorflow/tensorflow/compiler/xla/client/ |
padding.cc | 57 int64 window_stride = window_strides[i]; local 59 // output dimension := ceil(input_dimension / window_stride). 123 tensorflow::MathUtil::CeilOfRatio(input_dimension, window_stride); 125 std::max<int64>((output_dimension - 1) * window_stride +
|
padding_test.cc | 29 int64 window_stride, Padding padding) { 30 return MakePadding({input_dimension}, {window_dimension}, {window_stride},
|
/external/tensorflow/tensorflow/core/kernels/data/experimental/ |
sliding_window_dataset_op.cc | 50 int64 window_stride = 0; variable 52 ctx, ParseScalarArgument<int64>(ctx, "window_stride", &window_stride)); 54 ctx, window_stride > 0, 55 errors::InvalidArgument("window_stride must be greater than zero.")); 56 if (window_size == window_shift && window_stride == 1) { 59 << " and window_stride is 1, use `batch` instead."; 61 *output = new Dataset(ctx, window_size, window_shift, window_stride, input); 68 int64 window_stride, const DatasetBase* input) 72 window_stride_(window_stride), 121 Node* window_stride = nullptr; variable 146 const int64 window_stride = dataset()->window_stride_; variable [all...] |
/external/tensorflow/tensorflow/contrib/data/python/ops/ |
sliding.py | 30 def __init__(self, input_dataset, window_size, window_shift, window_stride): 34 window_size, dtype=dtypes.int64, name="window_stride") 36 window_stride, dtype=dtypes.int64, name="window_stride") 46 window_stride=self._window_stride, 59 "stride=window_stride).flat_map(lambda x: x.batch(window_size))` " 64 window_stride=1): 68 is `window_size`, the stride of the input elements is `window_stride`, and the 84 a.apply(sliding_window_batch(window_size=3, window_stride=2)) == 97 window_stride: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing th [all...] |
/external/tensorflow/tensorflow/contrib/data/python/kernel_tests/ |
slide_dataset_op_test.py | 51 def testSlideDataset(self, count, window_size, window_shift, window_stride): 67 # _SlideDataset(window_size, window_shift, window_stride). 74 window_stride=window_stride_t))) 88 window_stride_t: window_stride 91 (window_size - 1) * window_stride + 1)) // window_shift + 1 97 component[(i * window_shift + j * window_stride) % 7]**2, 116 window_stride): 131 # RepeatDataset(count) -> _SlideDataset(window_size, stride, window_stride). 138 window_stride=window_stride_t))) 152 window_stride_t: window_stride [all...] |
/external/tensorflow/tensorflow/core/kernels/data/ |
window_dataset_op.cc | 48 int64 window_stride = 0; variable 50 ParseScalarArgument<int64>(ctx, "stride", &window_stride)); 52 ctx, window_stride > 0, 59 *output = new Dataset(ctx, input, window_size, window_shift, window_stride, 67 int64 window_shift, int64 window_stride, bool drop_remainder) 72 window_stride_(window_stride), 147 const int64 window_stride = dataset()->window_stride_; variable 158 size_t target_size = TargetBufferSize(window_size, window_stride); 183 int num_elements = 1 + (buffer_.size() - 1) / window_stride; 186 status.Update(buffer_[window_stride * i].status) [all...] |
/external/tensorflow/tensorflow/compiler/xla/client/lib/ |
pooling.cc | 40 std::vector<int64> window_stride(num_spatial_dims); 48 window_stride[i] = stride[dim]; 67 window_ksize, window_stride, Padding::kValid);
|