/external/tensorflow/tensorflow/compiler/jit/ |
encapsulate_subgraphs_pass_test.cc | 526 for (Node* n : graph_out->nodes()) { 565 // If there are no marked nodes, funcification should be a no-op. 583 // If there are no marked nodes, funcification should be a no-op. 599 // Give nodes 'c' and 'd' names that collide after lowercasing. 702 // If there are no marked nodes, funcification should be a no-op. 709 std::vector<string> nodes; local 710 for (const auto& node : graph.nodes()) { 712 nodes.push_back(node->name()); 715 std::sort(nodes.begin(), nodes.end()) [all...] |
extract_outside_compilation_pass.cc | 40 // used as input for XlaRecvAtHost/XlaSendFromHost nodes. 63 // Returns nodes with given type. 66 for (Node* n : g.nodes()) { 118 // Builds XlaRecvAtHost node, and replaces all _Arg nodes with it. 122 // TODO(b/77601805): use out nodes for source node, instead of traversing all 123 // nodes. 149 // Rewrite dst nodes because their input changed. 234 // Builds XlaSendFromHost node, and replaces all _Retval nodes with it. 238 // TODO(b/77601805): use in nodes for sink node, instead of traversing all 239 // nodes 728 std::vector<Node*> nodes; local [all...] |
/external/tensorflow/tensorflow/compiler/tf2tensorrt/segment/ |
segment.cc | 44 // the need to create a copy of the graph. It is composed of edges and nodes. 45 // Nodes keep pointers to original TF nodes. 280 auto nodes = get_nodes(n); local 281 std::vector<const SimpleNode*> nodes_sorted(nodes.begin(), nodes.end()); 306 // 1. Get all nodes incoming to 'dst', excluding 'src' 307 // 2. Reverse DFS from those nodes 316 // a path with length > 1 that consists of intermedia nodes other than src). 321 // 2. if there is a path in the subgraph from X to Y (X and Y are both nodes [all...] |
/external/tensorflow/tensorflow/core/framework/ |
function.h | 131 // output names to the nodes from `node_def`. 227 std::vector<NodeDef> nodes; member in struct:tensorflow::InstantiationResult 362 // nodes using the function, and all previous pointers returned by `Find()` 438 // reachable from the nodes of `graph` or `func`. [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
mkl_lrn_op.cc | 227 const int nodes = cols * rows; local 229 auto in_shaped = input.shaped<T, 2>({nodes * batch, depth}); 253 auto out_shaped = output_dnn_data->shaped<T, 2>({nodes * batch, depth}); 558 const auto nodes = cols * rows; local 561 input_gradient_tensor.shaped<T, 2>({nodes * batch, depth}); 563 auto in_shaped = orig_input_tensor.shaped<T, 2>({nodes * batch, depth}); 564 auto activations = orig_output_tensor.shaped<T, 2>({nodes * batch, depth}); 574 auto out_shaped = output_dnn_data->shaped<T, 2>({nodes * batch, depth}); 602 Shard(worker_threads.num_threads, worker_threads.workers, nodes * batch,
|
/external/tensorflow/tensorflow/core/profiler/internal/ |
tfprof_code.cc | 180 // 'node' is the leaf of the displayed trace. It includes all graph nodes 183 // This method adds the statistics of graph nodes created by the python 249 std::vector<const CodeNode*> nodes = FetchAllLeaf(n); local 250 ret.insert(ret.end(), nodes.begin(), nodes.end()); 452 fprintf(stderr, "%lld gradient nodes not accounted\n", unaccounted_nodes); 513 void TFCode::Format(const CodeNode* root, const std::vector<CodeNode*>& nodes, 516 if (nodes.empty() && root->has_trace() && opts.output_type == kOutput[3]) { 520 for (CodeNode* node : nodes) {
|
/external/tensorflow/tensorflow/lite/delegates/flex/ |
kernel.cc | 38 // informs the interpreter of supported nodes in a graph, and each supported 360 // The larger 'op', which contains all the nodes in a supported subgraph. 364 std::vector<std::unique_ptr<OpNode>> nodes; member in struct:tflite::flex::kernel::OpData 395 op_data->nodes.reserve(params->nodes_to_replace->size); 404 op_data->nodes.emplace_back(new OpNode(node->inputs, node->outputs)); 405 OpNode& node_data = *op_data->nodes.back(); 430 for (auto& node_data : op_data->nodes) { 438 // For each node, resolve the inputs, so we can keep pointers to the nodes 440 for (auto& node_data : op_data->nodes) { 486 for (const auto& node_data : op_data->nodes) { [all...] |
/external/tensorflow/tensorflow/python/debug/lib/ |
debug_data.py | 531 processed the nodes of the graph. It is (one of many possible) topological 532 sort of the nodes. This is useful for displaying tensors in the debugger 663 of the construction of the nodes in the graph. 708 target nodes, input feed keys and debug tensor watch options. 711 `target_nodes`: Names of the target nodes. 822 Only the watched nodes are validated by this method, because tfdbg allows 823 clients to watch only a subset of the nodes. 853 # Inputs from Enter and NextIteration nodes are not validated because 855 # control edges from debug ops watching these types of nodes. 1021 def nodes(self, device_name=None): member in class:DebugDumpDir [all...] |
/external/testng/src/main/java/org/testng/xml/dom/ |
XDom.java | 53 NodeList nodes = m_document.getChildNodes(); local 54 for (int i = 0; i < nodes.getLength(); i++) { 55 Node item = nodes.item(i);
|
/external/u-boot/board/gateworks/gw_ventana/ |
gw_ventana.c | 1056 * PCI DT nodes must be nested therefore if we need to apply a DT fixup 1057 * we will walk the PCI bus and add bridge nodes up to the device receiving 1117 struct node_info nodes[] = { local 1140 /* Update partition nodes using info from mtdparts env var */ 1142 fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes)); [all...] |
/external/u-boot/fs/jffs2/ |
jffs2_nand_1pass.c | 49 char nodes[0]; member in struct:mem_block 84 b = (struct b_node *)&memBase->nodes[size * index];
|
/bionic/libc/bionic/ |
pthread_mutex.cpp | 253 // NodeArrayP nodes[256]; 256 // (*nodes[index >> 8])[index & 0xff] 269 static NodeArrayP* nodes; member in namespace:PIMutexAllocator 274 return (*nodes[id >> 8])[id & 0xff]; 294 nodes = static_cast<NodeArray**>(calloc(256, sizeof(NodeArray*))); 295 if (nodes == nullptr) { 299 nodes[array_pos] = static_cast<NodeArray*>(malloc(sizeof(NodeArray))); 300 if (nodes[array_pos] == nullptr) { [all...] |
/cts/tools/utils/ |
DescriptionGenerator.java | 302 * Rebuild the document, merging empty suite nodes. 305 // merge empty suite nodes 346 * Get the unmuatable child nodes for specified node. 352 ArrayList<Node> nodes = new ArrayList<Node>(); local 356 nodes.add(nodelist.item(i)); 359 return nodes; 364 * the existing suite nodes and do the real creation and append. 398 * Get the test suite child nodes of a specified element. 401 * @return The matched child nodes. 481 * Do the append, including creating test suite nodes and test case nodes, an [all...] |
/development/samples/browseable/DataLayer/Application/src/com.example.android.wearable.datalayer/ |
MainActivity.java | 272 // Trigger an AsyncTask that will query for a list of connected nodes and send a 348 NodeApi.GetConnectedNodesResult nodes = local 351 for (Node node : nodes.getNodes()) { 420 Collection<String> nodes = getNodes(); local 421 for (String node : nodes) {
|
/external/ImageMagick/MagickCore/ |
quantize.c | 89 % prohibitive because the tree's total number of nodes is 1 + 92 % A complete tree would require 19,173,961 nodes for k = 8, Cmax = 255. 94 % Initializes data structures for nodes only as they are needed; (2) 108 % lower depth in the tree; initially, n2 = 0 for all nodes except 117 % within a node and the nodes' center. This represents the 120 % Reduction repeatedly prunes the tree until the number of nodes with n2 123 % those nodes whose E count is minimal for pruning and merges their color 128 % while number of nodes with (n2 > 0) > required maximum number of colors 129 % prune all nodes such that E <= Ep 130 % Set Ep to minimum E in remaining nodes 256 *nodes; member in struct:_Nodes 286 nodes, member in struct:_CubeInfo 1341 *nodes; local 2120 *nodes; local [all...] |
statistic.c | 2400 *nodes; member in struct:_SkipList [all...] |
/external/adhd/cras/src/tests/ |
alsa_card_unittest.cc | 824 struct cras_ionode nodes[4]; local [all...] |
cras_test_client.c | 275 static void print_node_info(const struct cras_ionode_info *nodes, int num_nodes, 284 nodes[i].stable_id, 285 nodes[i].iodev_idx, 286 nodes[i].ionode_idx, 287 is_input ? nodes[i].capture_gain / 100.0 288 : (double) nodes[i].volume, 289 nodes[i].plugged ? "yes" : "no", 290 nodes[i].left_right_swapped ? "yes" : "no", 291 (long) nodes[i].plugged_time.tv_sec, 292 nodes[i].active_hotword_model 301 struct cras_ionode_info nodes[MAX_IONODES]; local [all...] |
/external/brotli/c/enc/ |
backward_references_hq.c | 248 /* REQUIRES: cost < kInfinity, nodes[start_pos].cost < kInfinity */ 250 static BROTLI_INLINE void UpdateZopfliNode(ZopfliNode* nodes, size_t pos, 253 ZopfliNode* next = &nodes[pos + len]; 305 const ZopfliNode* nodes, 313 while (pos + len <= num_bytes && nodes[pos + len].u.cost <= min_cost) { 329 /* REQUIRES: nodes[pos].cost < kInfinity 330 REQUIRES: nodes[0..pos] satisfies that "ZopfliNode array invariant". */ 335 const ZopfliNode* nodes) { 336 const size_t clen = ZopfliNodeCopyLength(&nodes[pos]); 337 const size_t ilen = nodes[pos].dcode_insert_length & 0x7FFFFFF 716 ZopfliNode* nodes; local 746 ZopfliNode* nodes; local [all...] |
/external/deqp/external/openglcts/modules/common/ |
glcShaderLibrary.cpp | 1153 vector<tcu::TestNode*> nodes = parser.parse(&buf[0]); local 1155 return nodes;
|
/external/deqp-deps/SPIRV-Tools/source/opt/ |
loop_dependence.cpp | 71 // and contains only the following types of nodes: SERecurrentNode, SEAddNode 91 auto nodes = std::vector<SERecurrentNode*>{}; local 93 nodes.push_back(recurrent_node); 99 nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()); 103 return nodes; 109 auto nodes = std::vector<SEConstantNode*>{}; local 111 nodes.push_back(recurrent_node); 117 nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()) [all...] |
/external/libxml2/ |
c14n.c | 45 int nsCurEnd; /* number of nodes in the set */ 50 xmlNodePtr *nodeTab; /* array of nodes in no particular order */ 256 xmlNodeSetPtr nodes = (xmlNodeSetPtr) user_data; local 257 if((nodes != NULL) && (node != NULL)) { 259 return(xmlXPathNodeSetContains(nodes, node)); 276 return(xmlXPathNodeSetContains(nodes, (xmlNodePtr)&ns)); 581 * Consider a list L containing only namespace nodes in the 588 * namespace node in the node-set (default namespace nodes always 600 * ancestor nodes of each orphan element node for attributes in the xml 658 * namespace node in the node-set (default namespace nodes alway [all...] |
/external/robolectric-shadows/shadows/framework/src/main/java/org/robolectric/shadows/ |
ShadowPathParser.java | 22 PathDataNode[] nodes = createNodesFromPathData(pathData); local 23 if (nodes != null) { 24 PathDataNode.nodesToPath(nodes, path);
|
/external/swiftshader/third_party/SPIRV-Tools/source/opt/ |
loop_dependence.cpp | 71 // and contains only the following types of nodes: SERecurrentNode, SEAddNode 91 auto nodes = std::vector<SERecurrentNode*>{}; local 93 nodes.push_back(recurrent_node); 99 nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()); 103 return nodes; 109 auto nodes = std::vector<SEConstantNode*>{}; local 111 nodes.push_back(recurrent_node); 117 nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()) [all...] |
/external/tensorflow/tensorflow/compiler/xla/service/ |
hlo_graph_dumper.cc | 87 // It lets callers tell the graph-drawing routines which nodes they want to be 235 // This is useful primarily for reduce and map nodes. These take a 341 // We omit some nodes from the graph, instead drawing them inlined into the 342 // nodes that use them. 361 // The exception is fusion nodes. For these, we walk up the chain of nested 362 // fusion nodes starting at instr until we reach a node that either (a) isn't 366 // We do this because fusion nodes are expanded inline -- if 476 // - Nodes are named "nodeN", where N corresponds to the 1-based index of 479 // - Nodes come before their in- and out-edges in the SVG. We need this 510 LOG(FATAL) << from_node->name() << " was added to edges but not to nodes"; 1268 absl::flat_hash_map<const HloInstruction*, NodeFilterResult> nodes; local [all...] |