/external/tensorflow/tensorflow/contrib/solvers/python/ops/ |
linear_equations.py | 80 - gamma: \\(r \dot M \dot r\\), equivalent to \\(||r||_2^2\\) when 84 cg_state = collections.namedtuple("CGState", ["i", "x", "r", "p", "gamma"]) 91 alpha = state.gamma / util.dot(state.p, z) 95 gamma = util.dot(r, r) 96 beta = gamma / state.gamma 100 gamma = util.dot(r, q) 101 beta = gamma / state.gamma 103 return i + 1, cg_state(i + 1, x, r, p, gamma) [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/direct/ |
MultiDirectional.java | 40 private final double gamma; field in class:MultiDirectional 43 * <p>The default values are 2.0 for khi and 0.5 for gamma.</p> 47 this.gamma = 0.5; 52 * @param gamma contraction coefficient 54 public MultiDirectional(final double khi, final double gamma) { 56 this.gamma = gamma; 90 final RealPointValuePair contracted = evaluateNewSimplex(original, gamma, comparator);
|
NelderMead.java | 42 private final double gamma; field in class:NelderMead 49 * for both gamma and sigma.</p> 54 this.gamma = 0.5; 61 * @param gamma contraction coefficient 65 final double gamma, final double sigma) { 68 this.gamma = gamma; 139 xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]); 154 xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]);
|
/external/libkmsxx/py/tests/ |
gamma.py | 32 gamma = pykms.Blob(card, arr); variable 34 crtc.set_prop("GAMMA_LUT", gamma.id) 36 input("press enter to remove gamma\n")
|
/external/pdfium/core/fxcodec/codec/ |
ccodec_pngmodule.h | 30 double* gamma) = 0;
|
/external/libaom/libaom/test/ |
warp_filter_test_util.h | 30 int16_t *alpha, int16_t *beta, int16_t *gamma, 42 int16_t beta, int16_t gamma, int16_t delta); 74 int16_t gamma, int16_t delta);
|
warp_filter_test_util.cc | 30 int16_t *alpha, int16_t *beta, int16_t *gamma, 68 *gamma = clamp(((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) / mat[2], 76 (4 * abs(*gamma) + 4 * abs(*delta) >= (1 << WARPEDMODEL_PREC_BITS))) 83 *gamma = ROUND_POWER_OF_TWO_SIGNED(*gamma, WARP_PARAM_REDUCE_BITS) * 133 int16_t alpha, beta, gamma, delta; local 136 generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta, 159 sub_x, sub_y, &conv_params, alpha, beta, gamma, delta); 194 int16_t alpha, beta, gamma, delta; local 211 generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta 325 int16_t alpha, beta, gamma, delta; local 390 int16_t alpha, beta, gamma, delta; local [all...] |
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
normalization.py | 68 scale: If True, multiply by `gamma`. If False, `gamma` is 74 param_initializers: Optional initializers for beta, gamma, moving mean and 122 # Allocate parameters for the beta and gamma of the normalization. 123 beta, gamma = None, None 142 variables_collections, 'gamma') 144 'gamma', init_ops.ones_initializer()) 145 gamma = variables.model_variable('gamma', 152 gamma = array_ops.reshape(gamma, params_shape_broadcast [all...] |
/external/skia/src/core/ |
SkMaskGamma.h | 29 virtual SkScalar toLuma(SkScalar gamma, SkScalar luminance) const = 0; 31 virtual SkScalar fromLuma(SkScalar gamma, SkScalar luma) const = 0; 34 static U8CPU computeLuminance(SkScalar gamma, SkColor c) { 35 const SkColorSpaceLuminance& luminance = Fetch(gamma); 36 SkScalar r = luminance.toLuma(gamma, SkIntToScalar(SkColorGetR(c)) / 255); 37 SkScalar g = luminance.toLuma(gamma, SkIntToScalar(SkColorGetG(c)) / 255); 38 SkScalar b = luminance.toLuma(gamma, SkIntToScalar(SkColorGetB(c)) / 255); 43 return SkScalarRoundToInt(luminance.fromLuma(gamma, luma) * 255); 46 /** Retrieves the SkColorSpaceLuminance for the given gamma. */ 47 static const SkColorSpaceLuminance& Fetch(SkScalar gamma); [all...] |
/external/skqp/src/core/ |
SkMaskGamma.h | 29 virtual SkScalar toLuma(SkScalar gamma, SkScalar luminance) const = 0; 31 virtual SkScalar fromLuma(SkScalar gamma, SkScalar luma) const = 0; 34 static U8CPU computeLuminance(SkScalar gamma, SkColor c) { 35 const SkColorSpaceLuminance& luminance = Fetch(gamma); 36 SkScalar r = luminance.toLuma(gamma, SkIntToScalar(SkColorGetR(c)) / 255); 37 SkScalar g = luminance.toLuma(gamma, SkIntToScalar(SkColorGetG(c)) / 255); 38 SkScalar b = luminance.toLuma(gamma, SkIntToScalar(SkColorGetB(c)) / 255); 43 return SkScalarRoundToInt(luminance.fromLuma(gamma, luma) * 255); 46 /** Retrieves the SkColorSpaceLuminance for the given gamma. */ 47 static const SkColorSpaceLuminance& Fetch(SkScalar gamma); [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
batch_norm_op.cc | 52 const Tensor& gamma = context->input(4); variable 66 OP_REQUIRES(context, gamma.dims() == 1, 67 errors::InvalidArgument("gamma must be 1-dimensional", 68 gamma.shape().DebugString())); 76 var.vec<T>(), beta.vec<T>(), gamma.vec<T>(), variance_epsilon_, 101 const Tensor& gamma = context->input(3); variable 113 OP_REQUIRES(context, gamma.dims() == 1, 114 errors::InvalidArgument("gamma must be 1-dimensional", 115 gamma.shape().DebugString())); 137 OP_REQUIRES_OK(context, context->allocate_output(4, gamma.shape(), &dg)) [all...] |
quantized_batch_norm_op.cc | 35 float beta_min, float beta_max, const Tensor& gamma, 43 auto gamma_flat = gamma.flat<T1>(); 98 float beta_min, float beta_max, const Tensor& gamma, 106 auto gamma_flat = gamma.flat<T1>(); 187 const Tensor& gamma = context->input(12); variable 203 OP_REQUIRES(context, gamma.dims() == 1, 204 errors::InvalidArgument("gamma must be 1-dimensional", 205 gamma.shape().DebugString())); 214 beta_max, gamma, gamma_min, gamma_max,
|
batch_norm_op.h | 32 typename TTypes<T>::ConstVec gamma, T variance_epsilon, 55 ((var + var.constant(variance_epsilon)).rsqrt() * gamma) 78 typename TTypes<T>::ConstVec gamma, 108 // dv = sum_over_rest(out_backprop * gamma * (x - m)) * 111 // dm = sum_over_rest(out_backprop * gamma) * (-1 / rsqrt(v + epsilon)) 113 // dx = out_backprop * (gamma * rsqrt(v + epsilon)) 127 out_backprop.reshape(rest_by_depth) * ((scratch1 * gamma) 131 dm.device(d) = -db * (scratch1 * gamma).eval(); 138 dg.device(d) = dg.constant(static_cast<T>(0.0)); // Gamma is not learned. 146 dv.device(d) = scratch2 * (scratch1 * gamma).eval() [all...] |
/external/ImageMagick/coders/ |
hdr.c | 148 gamma; 308 if (LocaleCompare(keyword,"gamma") == 0) 310 image->gamma=StringToDouble(value,(char **) NULL); 492 gamma=pow(2.0,pixel[3]-(128.0+8.0)); 493 SetPixelRed(image,ClampToQuantum(QuantumRange*gamma*pixel[0]),q); 494 SetPixelGreen(image,ClampToQuantum(QuantumRange*gamma*pixel[1]),q); 495 SetPixelBlue(image,ClampToQuantum(QuantumRange*gamma*pixel[2]),q); 733 if (image->gamma != 0.0) 735 count=FormatLocaleString(header,MagickPathExtent,"GAMMA=%g\n", 736 image->gamma); 144 gamma; local 771 gamma; local [all...] |
/external/eigen/unsupported/Eigen/src/EulerAngles/ |
EulerAngles.h | 31 * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma 137 /** \returns the axis vector of the third (gamma) rotation */ 149 /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */ 150 EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) : 151 m_angles(alpha, beta, gamma) {} 169 * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. 199 * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. 211 /** \returns The angle values stored in a vector (alpha, beta, gamma). */ 213 /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). * 227 Scalar gamma() const { return m_angles[2]; } function in class:Eigen::EulerAngles 229 Scalar& gamma() { return m_angles[2]; } function in class:Eigen::EulerAngles [all...] |
/external/libaom/libaom/av1/common/x86/ |
warp_plane_sse4.c | 457 static INLINE void prepare_vertical_filter_coeffs(int gamma, int sy, 460 (__m128i *)(warped_filter + ((sy + 0 * gamma) >> WARPEDDIFF_PREC_BITS))); 462 (__m128i *)(warped_filter + ((sy + 2 * gamma) >> WARPEDDIFF_PREC_BITS))); 464 (__m128i *)(warped_filter + ((sy + 4 * gamma) >> WARPEDDIFF_PREC_BITS))); 466 (__m128i *)(warped_filter + ((sy + 6 * gamma) >> WARPEDDIFF_PREC_BITS))); 480 (__m128i *)(warped_filter + ((sy + 1 * gamma) >> WARPEDDIFF_PREC_BITS))); 482 (__m128i *)(warped_filter + ((sy + 3 * gamma) >> WARPEDDIFF_PREC_BITS))); 484 (__m128i *)(warped_filter + ((sy + 5 * gamma) >> WARPEDDIFF_PREC_BITS))); 486 (__m128i *)(warped_filter + ((sy + 7 * gamma) >> WARPEDDIFF_PREC_BITS))); 657 uint8_t *pred, __m128i *tmp, ConvolveParams *conv_params, int16_t gamma, [all...] |
/cts/apps/CameraITS/tests/scene1/ |
test_auto_vs_manual.py | 83 gamma = sum([[i/63.0, math.pow(i/63.0, 1/2.2)] for i in xrange(64)], []) 86 "red": gamma, "green": gamma, "blue": gamma}
|
/cts/tests/tests/uirendering/src/android/uirendering/cts/bitmapcomparers/ |
MSSIMComparer.java | 167 * The prime symbols dictate a gamma correction of 1. 170 final double gamma = 1; local 172 l += (0.21f * Math.pow(Color.red(pixel) / 255f, gamma)); 173 l += (0.72f * Math.pow(Color.green(pixel) / 255f, gamma)); 174 l += (0.07f * Math.pow(Color.blue(pixel) / 255f, gamma));
|
/external/skia/src/effects/ |
SkTableMaskFilter.cpp | 112 SkMaskFilter* SkTableMaskFilter::CreateGamma(SkScalar gamma) { 114 MakeGammaTable(table, gamma); 124 void SkTableMaskFilter::MakeGammaTable(uint8_t table[256], SkScalar gamma) { 126 const float g = SkScalarToFloat(gamma);
|
/external/skqp/src/effects/ |
SkTableMaskFilter.cpp | 112 SkMaskFilter* SkTableMaskFilter::CreateGamma(SkScalar gamma) { 114 MakeGammaTable(table, gamma); 124 void SkTableMaskFilter::MakeGammaTable(uint8_t table[256], SkScalar gamma) { 126 const float g = SkScalarToFloat(gamma);
|
/external/libpng/contrib/gregbook/ |
readpng2.c | 223 double gamma; local 225 png_fixed_point gamma; local 336 * such images have a file gamma of 0.45455, which corresponds to a PC-like 342 * "gamma" value for the entire display system, i.e., the product of 346 if (png_get_gAMA(png_ptr, info_ptr, &gamma)) 347 png_set_gamma(png_ptr, mainprog_ptr->display_exponent, gamma); 351 if (png_get_gAMA_fixed(png_ptr, info_ptr, &gamma)) 353 (png_fixed_point)(100000*mainprog_ptr->display_exponent+.5), gamma);
|
/external/webrtc/webrtc/modules/remote_bitrate_estimator/test/estimators/ |
nada.cc | 248 float gamma = local 252 bitrate_kbps_ = static_cast<int>((1.0f + gamma) * fb.receiving_rate() + 0.5f); 257 float gamma = 3.0f * kMaxCongestionSignalMs / local 259 gamma = std::min(gamma, kGamma0); 260 bitrate_kbps_ = gamma * fb.receiving_rate() + 0.5f;
|
/external/tensorflow/tensorflow/python/ops/ |
batch_norm_benchmark.py | 40 def batch_norm_op(tensor, mean, variance, beta, gamma, scale): 46 tensor, mean, variance, beta, gamma, 0.001, scale) 53 # batch_norm *= gamma 55 def batch_norm_py(tensor, mean, variance, beta, gamma, scale): 57 return nn_impl.batch_normalization(tensor, mean, variance, beta, gamma if 61 def batch_norm_slow(tensor, mean, variance, beta, gamma, scale): 64 batch_norm *= gamma 104 gamma = variables.Variable(constant_op.constant(1.0, shape=moment_shape)) 106 tensor = batch_norm_py(tensor, mean, variance, beta, gamma, scale) 108 tensor = batch_norm_op(tensor, mean, variance, beta, gamma, scale [all...] |
nn_batchnorm_test.py | 40 def _npBatchNorm(self, x, m, v, beta, gamma, epsilon, 43 y = y * gamma if scale_after_normalization else y 46 def _opsBatchNorm(self, x, m, v, beta, gamma, epsilon, 50 y = gamma * y 53 def _tfBatchNormV1(self, x, m, v, beta, gamma, epsilon, 58 x, m, v, beta, gamma, epsilon, scale_after_normalization) 60 def _tfBatchNormV1BW(self, x, m, v, beta, gamma, epsilon, 64 x, m, v, beta, gamma, epsilon, scale_after_normalization) 66 def _tfBatchNormV2(self, x, m, v, beta, gamma, epsilon, 71 gamma if scale_after_normalization els [all...] |
/external/u-boot/drivers/video/ |
fsl_diu_fb.c | 161 __be32 gamma; member in struct:diu 257 struct diu_addr gamma; local 323 /* Initialize the gamma table */ 324 if (allocate_buf(&gamma, 256 * 3, 32) < 0) { 328 gamma_table_base = gamma.vaddr; 333 if (gamma_fix == 1) { /* fix the gamma */ 334 gamma_table_base = gamma.vaddr; 350 out_be32(&hw->gamma, gamma.paddr);
|