/external/boringssl/src/crypto/fipsmodule/ec/ |
ec_montgomery.c | 334 EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; local 337 // gamma = y^2 338 ec_GFp_mont_felem_sqr(group, &gamma, &a->Y); 339 // beta = x*gamma 340 ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma); 357 // z' = (y + z)^2 - gamma - delta 358 ec_felem_add(group, &delta, &gamma, &delta); 363 // y' = alpha*(4*beta - x') - 8*gamma^2 365 ec_felem_add(group, &gamma, &gamma, &gamma) [all...] |
/external/libxaac/decoder/drc_src/ |
impd_drc_fiilter_bank.c | 36 FLOAT32 gamma = normal_cross_freq[crossover_freq_idx].gamma; local 41 pstr_lp_filt_coeff->a1 = 2.0f * (gamma - delta); 42 pstr_lp_filt_coeff->a2 = 2.0f * (gamma + delta) - 1.0f; 43 pstr_lp_filt_coeff->b0 = gamma; 44 pstr_lp_filt_coeff->b1 = 2.0f * gamma; 45 pstr_lp_filt_coeff->b2 = gamma; 57 pstr_ap_filt_coeff->a1 = 2.0f * (gamma - delta); 59 pstr_ap_filt_coeff->a2 = 2.0f * (gamma + delta) - 1.0f;
|
impd_drc_filter_bank.c | 36 FLOAT32 gamma = normal_cross_freq[crossover_freq_idx].gamma; local 41 pstr_lp_filt_coeff->a1 = 2.0f * (gamma - delta); 42 pstr_lp_filt_coeff->a2 = 2.0f * (gamma + delta) - 1.0f; 43 pstr_lp_filt_coeff->b0 = gamma; 44 pstr_lp_filt_coeff->b1 = 2.0f * gamma; 45 pstr_lp_filt_coeff->b2 = gamma; 57 pstr_ap_filt_coeff->a1 = 2.0f * (gamma - delta); 59 pstr_ap_filt_coeff->a2 = 2.0f * (gamma + delta) - 1.0f;
|
/external/pdfium/core/fxcodec/codec/ |
ccodec_pngmodule.cpp | 132 double gamma = 1.0; local 134 &color_type, &gamma)) { 139 png_set_gamma(png_ptr, gamma, 0.45455); 143 png_set_gamma(png_ptr, gamma, image_gamma); 145 png_set_gamma(png_ptr, gamma, 0.45455);
|
/external/ImageMagick/MagickCore/ |
pixel.c | 4429 gamma; local 4493 gamma, local 4920 gamma, local 5485 gamma; local [all...] |
composite.c | 153 Da' in in the follow formula as 'gamma' The resulting alpla value. 157 gamma = Sa+Da-Sa*Da; 158 gamma = 1 - QuantumScale*alpha * QuantumScale*beta; 159 opacity = QuantumScale*alpha*beta; // over blend, optimized 1-Gamma 385 gamma; 499 gamma=PerceptibleReciprocal(alpha); 500 pixel=QuantumRange*gamma*(Sca+Dca*(1.0-Sa)); 383 gamma; local 1291 gamma; local [all...] |
channel.c | 533 if (fabs(image->gamma-1.0) <= MagickEpsilon) 753 separate_image->gamma=image->gamma; 924 gamma, 935 gamma=Sa*(-Da)+Sa+Da; 936 gamma=PerceptibleReciprocal(gamma); 947 composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, 953 composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, 959 composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta 918 gamma, local 1031 gamma; local 1151 gamma, local [all...] |
gem.c | 1485 gamma, local 1600 gamma, local 1641 gamma, local [all...] |
effect.c | 312 gamma, 348 gamma=0.0; 359 gamma+=(*k); 364 gamma=PerceptibleReciprocal(gamma); 365 SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); 377 gamma+=(*k)*alpha; 382 gamma=PerceptibleReciprocal(gamma); 383 SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q) 310 gamma, local 631 gamma, local 1269 gamma, local 2133 gamma, local 2273 gamma, local 2942 gamma, local 3251 gamma, local 3661 gamma, local [all...] |
accelerate-kernels-private.h | 757 gamma, 763 gamma=sqrt(-2.0f*log(alpha)); 764 sigma=gamma*cospi((2.0f*beta)); 765 tau=gamma*sinpi((2.0f*beta)); [all...] |
/external/libpng/contrib/gregbook/ |
readpng.c | 210 double gamma; local 252 * this file may have come from--so if it doesn't have a file gamma, don't 255 if (png_get_gAMA(png_ptr, info_ptr, &gamma)) 256 png_set_gamma(png_ptr, display_exponent, gamma);
|
writepng.h | 91 double gamma; member in struct:_mainprog_info
|
/external/adhd/cras/src/dsp/ |
biquad.c | 58 double gamma = (0.5 + beta) * cos(theta); local 59 double alpha = 0.25 * (0.5 + beta - gamma); 64 double a1 = 2 * -gamma; 93 double gamma = (0.5 + beta) * cos(theta); local 94 double alpha = 0.25 * (0.5 + beta + gamma); 99 double a1 = 2 * -gamma;
|
/external/libaom/libaom/av1/common/ |
warped_motion.c | 338 static int is_affine_shear_allowed(int16_t alpha, int16_t beta, int16_t gamma, 341 (4 * abs(gamma) + 4 * abs(delta) >= (1 << WARPEDMODEL_PREC_BITS))) 357 wm->gamma = 368 wm->gamma = ROUND_POWER_OF_TWO_SIGNED(wm->gamma, WARP_PARAM_REDUCE_BITS) * 373 if (!is_affine_shear_allowed(wm->alpha, wm->beta, wm->gamma, wm->delta)) 399 int16_t beta, int16_t gamma, int16_t delta) { 435 sy4 += gamma * (-4) + delta * (-4); 510 sy += gamma; 531 const int16_t gamma = wm->gamma local 817 const int16_t gamma = wm->gamma; local [all...] |
/external/skia/tests/ |
ParametricStageTest.cpp | 43 static void check_error(skiatest::Reporter* r, float limit, float gamma) { 45 fn.g = gamma;
|
/external/skqp/tests/ |
ParametricStageTest.cpp | 43 static void check_error(skiatest::Reporter* r, float limit, float gamma) { 45 fn.g = gamma;
|
/external/syzkaller/vendor/google.golang.org/grpc/transport/ |
bdp_estimator.go | 36 // increase our bbp estimate by a factor of gamma. 41 gamma = 2 130 b.bdp = uint32(gamma * sampleFloat) 37 gamma = 2 const
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
chi2.py | 27 from tensorflow.python.ops.distributions import gamma 37 class Chi2(gamma.Gamma): 49 Z = 2**(0.5 df) Gamma(0.5 df) 56 * `Gamma` is the [gamma function]( 59 The Chi2 distribution is a special case of the Gamma distribution, i.e., 62 Chi2(df) = Gamma(concentration=0.5 * df, rate=0.5) 97 # not true in the parent class "gamma." therefore, passing
|
/external/tensorflow/tensorflow/python/layers/ |
normalization_test.py | 328 np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) 370 np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) 412 np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) 453 np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) 494 np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) 535 np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) 577 np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) 618 np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) 660 np_gamma, np_beta = self.evaluate([bn.gamma, bn.beta]) 706 gamma = all_vars['bn/gamma:0' [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
TriDiagonalTransformer.java | 243 // compute gamma = beta vT z / 2 244 double gamma = 0; local 246 gamma += z[i] * hK[i]; 248 gamma *= beta / 2; 250 // compute z = z - gamma v 252 z[i] -= gamma * hK[i];
|
/external/eigen/unsupported/Eigen/src/EulerAngles/ |
EulerSystem.h | 143 IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */ 289 res.gamma() = -res.gamma(); 298 if (PositiveRangeGamma && (res.gamma() < 0)) 299 res.gamma() += Scalar(2 * EIGEN_PI);
|
/external/eigen/unsupported/Eigen/src/IterativeSolvers/ |
ConstrainedConjGrad.h | 114 Scalar rho = 1.0, rho_1, lambda, gamma; local 163 if (transition || iter.first()) gamma = 0.0; 164 else gamma = (std::max)(0.0, (rho - old_z.dot(z)) / rho_1); 165 p = z + gamma*p;
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/ |
batch_normalization.py | 61 scale: A scale `Tensor`, often denoted `gamma` in equations, or 237 gamma = broadcast_fn(self.batchnorm.gamma) if self.batchnorm.scale else None 239 x, mean, variance, beta, gamma, self.batchnorm.epsilon) 272 # `gamma` and `log Var(y)` reductions over event_dims. 273 # Log(total change in area from gamma term). 274 log_total_gamma = math_ops.reduce_sum(math_ops.log(self.batchnorm.gamma))
|
/external/ImageMagick/coders/ |
pango.c | 447 gamma; 456 gamma=QuantumScale*fill_color.alpha; 457 gamma=PerceptibleReciprocal(gamma); 458 fill_color.blue*=gamma; 459 fill_color.green*=gamma; 460 fill_color.red*=gamma; 444 gamma; local
|
/external/tensorflow/tensorflow/python/keras/layers/ |
normalization_test.py | 86 self.assertEqual(layer.gamma.constraint, max_norm) 106 out /= np.reshape(keras.backend.eval(norm.gamma), (1, 3, 1, 1)) 126 out /= np.reshape(keras.backend.eval(norm.gamma), (1, 1, 1, 3)) 156 self.assertEqual(norm.gamma.dtype.base_dtype, 'float32') 267 out /= keras.backend.eval(norm.gamma) 401 out /= keras.backend.eval(norm.gamma) 453 self.assertEqual(layer.gamma.constraint, max_norm) 473 out /= np.reshape(keras.backend.eval(norm.gamma), (1, 3, 1, 1)) 492 out /= np.reshape(keras.backend.eval(norm.gamma), (1, 1, 1, 3)) 544 gamma = layer.gamm [all...] |