/external/tensorflow/tensorflow/lite/examples/python/ |
label_image.py | 44 parser.add_argument("-l", "--label_file", default="/tmp/labels.txt", \ 45 help="name of file containing labels") 81 labels = load_labels(args.label_file) variable 84 print('{0:08.6f}'.format(float(results[i]))+":", labels[i]) 86 print('{0:08.6f}'.format(float(results[i]/255.0))+":", labels[i])
|
/external/v8/src/torque/ |
types.cc | 211 if (sig.labels.empty()) return; 213 os << " labels "; 214 for (size_t i = 0; i < sig.labels.size(); ++i) { 216 if (with_names) os << sig.labels[i].name; 218 if (sig.labels[i].types.size() > 0) os << "(" << sig.labels[i].types << ")"; 254 if (labels.size() != other.labels.size()) { 258 for (auto l : labels) { 259 if (l.types != other.labels[i++].types) [all...] |
/bionic/tools/bionicbb/ |
tasks.py | 94 labels = gmail_service.users().labels().list(userId='me').execute() 95 if not labels['labels']: 96 logging.error('Could not retrieve Gmail labels') 98 label_id = gmail.get_gerrit_label(labels['labels'])
|
/external/autotest/server/cros/network/ |
rf_switch_ap_box_test.py | 48 self.mock_host.labels = ['rf_switch_1', 'ap_box_1', 'rf_switch_aps'] 63 self.mock_host.labels = ['rf_switch_1', 'rf_switch_aps'] 68 'rf_switch labels' in context.exception) 73 self.mock_host.labels = ['ap_box_1', 'rf_switch_aps'] 78 'rf_switch labels' in context.exception) 83 self.mock_host.labels = ['rf_switch_1', 'ap_box_1', 'rf_switch_aps']
|
rf_switch_controller_test.py | 24 hostnames and labels. Create an instance of RfSwitchController and 35 self.rf_switch_host.labels = ['rf_switch', 'rf_switch_1'] 36 self.ap_box_host.labels = ['rf_switch_1', 'ap_box_1', 'rf_switch_aps'] 37 self.client_box_host.labels = [ 86 """Test when RF Switch connected to Client Box with invalid labels.""" 88 self.client_box_host.labels = ['rf_switch_1', 'client_1', 'rf_client']
|
/external/jacoco/org.jacoco.core/src/org/jacoco/core/internal/instr/ |
DuplicateFrameEliminator.java | 107 final Label dflt, final Label... labels) { 109 mv.visitTableSwitchInsn(min, max, dflt, labels); 114 final Label[] labels) { 116 mv.visitLookupSwitchInsn(dflt, keys, labels);
|
/external/python/cpython2/Lib/lib2to3/pgen2/ |
grammar.py | 62 labels -- a list of (x, y) pairs where x is either a token 71 keywords -- a dict mapping keyword strings to arc labels. 73 tokens -- a dict mapping token numbers to arc labels. 82 self.labels = [(0, "EMPTY")] 124 new.labels = self.labels[:] 140 print "labels" 141 pprint(self.labels)
|
/external/python/cpython3/Lib/lib2to3/pgen2/ |
grammar.py | 62 labels -- a list of (x, y) pairs where x is either a token 71 keywords -- a dict mapping keyword strings to arc labels. 73 tokens -- a dict mapping token numbers to arc labels. 82 self.labels = [(0, "EMPTY")] 123 new.labels = self.labels[:] 139 print("labels") 140 pprint(self.labels)
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
model.py | 39 labels, 48 labels: Labels used to train on. 137 update_op = gbdt_model.train(loss, predictions_dict, labels) 161 labels=labels, 170 labels=labels, 185 labels=labels, [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
xent_op.h | 33 // labels: batch_size, num_classes. 42 typename TTypes<T>::ConstMatrix labels, 58 typename TTypes<T>::ConstMatrix labels, 110 // sum(-labels * 113 loss.device(d) = (labels.broadcast(labels_bcast) * 118 // backprop: prob - labels, where 121 labels.broadcast(labels_bcast);
|
/external/tensorflow/tensorflow/core/lib/monitoring/ |
mobile_gauge.h | 56 template <typename... Labels> 57 GaugeCell<ValueType>* GetCell(const Labels&... labels) {
|
/external/tensorflow/tensorflow/examples/speech_commands/ |
recognize_commands.h | 40 // labels should be a list of the strings associated with each one-hot score. 50 explicit RecognizeCommands(const std::vector<string>& labels,
|
/external/ltp/testcases/realtime/func/gtod_latency/ |
gtod_latency.c | 82 char *labels[] = { "scatter plot x-axis", variable 163 labels[SCATTER_LABELX] = argv[++i]; 172 labels[SCATTER_LABELY] = argv[++i]; 181 labels[HIST_LABELX] = argv[++i]; 190 labels[HIST_LABELY] = argv[++i]; 337 labels[SCATTER_LABELX], labels[SCATTER_LABELY], 340 labels[HIST_LABELX], labels[HIST_LABELY], &hist,
|
/external/smali/dexlib2/src/main/java/org/jf/dexlib2/builder/ |
MethodLocation.java | 51 // the labels and debugItems lists only when they are needed 54 private List<Label> labels = null; field in class:MethodLocation 79 if (labels == null) { 81 labels = new ArrayList<Label>(1); 82 return labels; 86 return labels; 102 if (this.labels != null || other.labels != null) { 108 this.labels = null; 111 if (this.debugItems != null || other.labels != null) [all...] |
/external/tensorflow/tensorflow/contrib/distribute/python/examples/ |
mnist_eager_multigpu.py | 65 def compute_loss(logits, labels): 68 logits=logits, labels=labels)) 114 images, labels = inputs 117 loss = compute_loss(logits, labels) 121 training_accuracy.update_state(labels, logits) 124 images, labels = inputs 126 loss = compute_loss(logits, labels) 128 test_accuracy.update_state(labels, logits)
|
mnist_tf1_tpu.py | 63 def compute_loss(logits, labels): 66 logits=logits, labels=labels)) 107 images, labels = inputs 110 loss = compute_loss(logits, labels) 114 update_accuracy = training_accuracy.update_state(labels, logits) 120 images, labels = inputs 122 loss = compute_loss(logits, labels) 124 update_accuracy = test_accuracy.update_state(labels, logits)
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
revnet.py | 116 def compute_loss(self, logits, labels): 121 logits=logits, labels=labels) 125 labels = tf.one_hot( 126 labels, depth=self.config.n_classes, axis=1, dtype=self.config.dtype) 128 logits=logits, labels=labels) 132 def compute_gradients(self, saved_hidden, labels, training=True, l2_reg=True): 139 labels: One-hot labels for classificatio [all...] |
revnet_test.py | 32 def train_one_iter(model, inputs, labels, optimizer, global_step=None): 36 saved_hidden=saved_hidden, labels=labels) 106 saved_hidden=saved_hidden, labels=self.t) 117 loss_true = self.model.compute_loss(logits=logits, labels=self.t) 134 grads, _ = compute_gradients(saved_hidden=saved_hidden, labels=self.t) 160 grads, _ = model.compute_gradients(saved_hidden=saved_hidden, labels=t) 181 labels = tf.random_uniform( 184 return images, labels 284 (images, labels) = random_batch(batch_size, config [all...] |
/external/tensorflow/tensorflow/contrib/gan/python/estimator/python/ |
head_impl.py | 150 def create_loss(self, features, mode, logits, labels): 159 labels: Must be `None`. 165 _validate_logits_and_labels(logits, labels) 166 del mode, labels, features # unused for this head. 173 self, features, mode, logits, labels=None, 183 labels: Must be `None`. 196 _validate_logits_and_labels(logits, labels) 211 features=None, mode=mode, logits=gan_model, labels=None) 250 def _validate_logits_and_labels(logits, labels): 251 if labels is not None [all...] |
/external/tensorflow/tensorflow/contrib/tensor_forest/python/ops/ |
data_ops.py | 182 def ParseLabelTensorOrDict(labels): 183 """Return a tensor to use for input labels to tensor_forest. 192 labels: `Tensor` or `dict` of `Tensor` objects. 195 A 2-D tensor for labels/outputs. 197 if isinstance(labels, dict): 202 labels[k], default_value=-1) if isinstance( 203 labels, sparse_tensor.SparseTensor) else labels[k] 204 for k in sorted(labels.keys()) 209 if isinstance(labels, sparse_tensor.SparseTensor) [all...] |
/external/tensorflow/tensorflow/go/ |
example_inception_inference_test.go | 53 // A separate file contains a list of string labels corresponding to the 68 imagefile := flag.String("image", "", "Path of a JPEG-image to extract labels for") 117 // labels for each image in the "batch". The batch size was 1. 138 var labels []string 140 labels = append(labels, scanner.Text()) 145 fmt.Printf("BEST MATCH: (%2.0f%% likely) %s\n", probabilities[bestIdx]*100.0, labels[bestIdx]) 225 labels = filepath.Join(dir, "imagenet_comp_graph_label_strings.txt") 228 if filesExist(model, labels) == nil { 229 return model, labels, ni [all...] |
/external/jacoco/org.jacoco.core.test/src/org/jacoco/core/internal/flow/ |
MethodProbesAdapterTest.java | 75 Label dflt, Label[] labels, IFrame frame) { 77 Integer.valueOf(max), dflt, labels); 83 Label[] labels, IFrame frame) { 84 rec("visitLookupSwitchInsnWithProbes", dflt, keys, labels); 226 final Label[] labels = new Label[] { label, label }; local 228 adapter.visitLookupSwitchInsn(label, keys, labels); 231 expectedVisitor.visitLookupSwitchInsnWithProbes(label, keys, labels, 245 final Label[] labels = new Label[] { label2, label }; local 247 adapter.visitLookupSwitchInsn(label, keys, labels); 250 expectedVisitor.visitLookupSwitchInsnWithProbes(label, keys, labels, 261 final Label[] labels = new Label[] { label, label }; local 274 final Label[] labels = new Label[] { label, label }; local 292 final Label[] labels = new Label[] { label2, label }; local 307 final Label[] labels = new Label[] { label, label }; local [all...] |
/external/minijail/ |
syscall_filter.c | 159 unsigned int get_label_id(struct bpf_labels *labels, const char *label_str) 161 int label_id = bpf_label_id(labels, label_str); 167 unsigned int group_end_lbl(struct bpf_labels *labels, int nr, int idx) 171 return get_label_id(labels, lbl_str); 174 unsigned int success_lbl(struct bpf_labels *labels, int nr) 178 return get_label_id(labels, lbl_str); 187 char *atom, struct bpf_labels *labels, int nr, int grp_idx) 251 unsigned int id = group_end_lbl(labels, nr, grp_idx); 306 struct bpf_labels *labels, 396 if (compile_atom(state, head, comp, labels, nr 710 struct bpf_labels labels; local [all...] |
/external/tensorflow/tensorflow/contrib/eager/python/examples/resnet50/ |
resnet50_test.py | 46 labels = tf.random_uniform( 48 one_hot = tf.one_hot(labels, num_classes) 53 def compute_gradients(model, images, labels, num_replicas=1): 57 logits=logits, onehot_labels=labels) 127 images, labels = random_batch(2, data_format) 129 compute_gradients(model, images, labels)) 147 images, labels = random_batch(2, data_format) 154 compute_gradients(model, images, labels)) 162 compute_gradients(model, images, labels)) 264 (images, labels) = random_batch(batch_size, data_format [all...] |
/external/tensorflow/tensorflow/core/util/ctc/ |
ctc_loss_calculator.h | 45 // training labels do not have a class value of N-1, as training will skip 63 Status CalculateLoss(const VectorIn& seq_len, const LabelSequences& labels, 95 const LabelSequences& labels, size_t* max_u_prime, 101 // Delay for target labels in time steps. 109 const VectorIn& seq_len, const LabelSequences& labels, 161 batch_size, num_classes, seq_len, labels, &max_u_prime, &l_primes); 167 auto ComputeLossAndGradients = [this, num_classes, &labels, &l_primes, 174 // Return zero gradient for empty sequences or sequences with labels 178 labels[b].size() > seq_len(b) - this->output_delay_)) { 183 << b << ": " << str_util::Join(labels[b], " ") [all...] |