/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
ops_test.py | 38 labels = array_ops.placeholder(dtypes.float32, [None, 2]) 42 prediction, loss = ops.softmax_classifier(features, labels, weights, 46 value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]})
|
seq2seq_ops.py | 38 def sequence_classifier(decoding, labels, sampling_decoding=None, name=None): 43 labels: List of Tensors with labels. 52 with ops.name_scope(name, "sequence_classifier", [decoding, labels]): 56 labels=labels[i], logits=pred,
|
/external/tensorflow/tensorflow/core/lib/monitoring/ |
counter.h | 70 // metric). Each value is identified by a tuple of labels. The class allows the 95 // Retrieves the cell for the specified labels, creating it on demand if 97 template <typename... Labels> 98 CounterCell* GetCell(const Labels&... labels) LOCKS_EXCLUDED(mu_); 149 template <typename... Labels> 150 CounterCell* Counter<NumLabels>::GetCell(const Labels&... labels) 154 static_assert(sizeof...(Labels) == NumLabels, 155 "Mismatch between Counter<NumLabels> and number of labels " [all...] |
sampler.h | 100 // Each histogram is identified by a tuple of labels. The class allows the 126 // Retrieves the cell for the specified labels, creating it on demand if 128 template <typename... Labels> 129 SamplerCell* GetCell(const Labels&... labels) LOCKS_EXCLUDED(mu_); 192 template <typename... Labels> 193 SamplerCell* Sampler<NumLabels>::GetCell(const Labels&... labels) 197 static_assert(sizeof...(Labels) == NumLabels, 198 "Mismatch between Sampler<NumLabels> and number of labels " [all...] |
collected_metrics.h | 42 // Metrics may optionally have labels, which are additional dimensions used to 44 // might have two labels named "rpc_service" and "rpc_method". 51 // a counter and that it has two labels named "rpc_service" and "rpc_method"). 53 // value) and specific values for each of the labels. 75 // Usually a Point should provide a |label| field for each of the labels 78 // or fewer labels than those that appear in the MetricDescriptor. 85 std::vector<Label> labels; member in struct:tensorflow::monitoring::Point 140 // No two Points in the same PointSet should have the same set of labels.
|
/external/tensorflow/tensorflow/examples/how_tos/reading_data/ |
convert_to_records.py | 43 labels = data_set.labels 64 'label': _int64_feature(int(labels[index])),
|
/external/tensorflow/tensorflow/examples/speech_commands/ |
recognize_commands.cc | 20 RecognizeCommands::RecognizeCommands(const std::vector<string>& labels, 24 : labels_(labels), 29 labels_count_ = labels.size();
|
/external/tensorflow/tensorflow/examples/tutorials/word2vec/ |
word2vec_basic.py | 116 labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) 128 labels[i * num_skips + j, 0] = buffer[context_word] 137 return batch, labels 139 batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) 141 print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], 142 reverse_dictionary[labels[i, 0]]) 187 # tf.nce_loss automatically draws a new sample of the negative labels each 196 labels=train_labels, 284 # Write corresponding labels for the embeddings. 292 # Create a configuration for visualizing embeddings with the labels i [all...] |
/external/antlr/tool/src/main/java/org/antlr/analysis/ |
DecisionProbe.java | 155 /** Used while finding a path through an NFA whose edge labels match 301 List<Label> labels = new ArrayList<Label>(); // may access ith element; use array local 303 return labels; 308 labels); 309 return labels; 316 public String getInputSequenceDisplay(List<? extends Label> labels) { 319 for (Iterator<? extends Label> it = labels.iterator(); it.hasNext();) { 330 * find the path of NFA states associated with the labels sequence. 350 * The NFA path matching the sample input sequence (labels) is computed 358 List<? extends Label> labels) [all...] |
/external/autotest/frontend/afe/ |
rpc_interface.py | 96 # labels 196 Yet another method to create labels. 304 labels = models.Label.query_objects(filter_data) 306 labels = labels.exclude(**exclude_filter) 309 return rpc_utils.prepare_rows_as_nested_dicts(labels, ()) 315 non_static_lists = rpc_utils.prepare_rows_as_nested_dicts(labels, ()) 318 label_ids = [label.id for label in labels] 321 replaced_label_names = {l.name for l in labels if l.id in replaced_ids} 470 def add_labels_to_host(id, labels) [all...] |
/external/autotest/cli/ |
host_unittest.py | 37 labels = ['l0', 'l1', 'l2', 'p0', 'l3'] 40 hh._cleanup_labels(labels, 'p0')) 44 labels = ['l0', 'l1', 'l2', 'l3'] 47 hh._cleanup_labels(labels)) 51 labels = ['l0', 'l1', 'l2', 'l3'] 54 hh._cleanup_labels(labels, 'p0')) 81 self.assertEqual(['label0'], hl.labels) 89 self.assertEqualNoOrder(['label0', 'label2'], hl.labels) 97 self.assertEqual(['label,0'], hl.labels) 105 self.assertEqualNoOrder(['label,0', 'label,2'], hl.labels) [all...] |
/external/antlr/tool/src/main/java/org/antlr/codegen/ |
ACyclicDFACodeGenerator.java | 115 if ( edgeST.impl.formalArguments.get("labels")!=null ) { 116 List<Integer> labels = edge.label.getSet().toList(); local 117 List<String> targetLabels = new ArrayList<String>(labels.size()); 118 for (int j = 0; j < labels.size(); j++) { 119 Integer vI = labels.get(j); 124 edgeST.add("labels", targetLabels);
|
/external/gemmlowp/profiling/ |
profiler.h | 22 // pseudo-stack "labels", see ScopedProfilingLabel. 116 // to your own labels, you will also see 'other' nodes that collect 125 // This means that 20% of all labels were under Foo, of which 12%/20%==60% 196 if (child->label == stack.labels[level]) { 203 child_to_add_to->label = stack.labels[level]; 298 // This is OK because we're looking at a pseudo-stack of labels, 307 // here is that pointers are changed atomically, and the labels 313 dst->labels[dst->size] = thread->stack.labels[dst->size];
|
/external/owasp/sanitizer/tools/ |
upload_jars_to_googlecode_downloads.sh | 83 --labels='Type-Archive,OpSys-All,Featured' \
|
/external/python/cpython2/Python/ |
makeopcodetargets.py | 3 (for compilers supporting computed gotos or "labels-as-values", such as gcc).
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
state_saving_rnn_estimator_test.py | 268 labels = constant_op.constant(5.0, shape=[sequence_length]) 304 features, labels, mode, sequence_feature_columns, 335 labels = constant_op.constant([1., 0., 1.]) 350 model_fn_ops = model_fn(features=features, labels=labels, mode=mode) 398 labels = array_ops.slice(random_sequence, [0], [sequence_length]) 407 labels = None 408 return features, labels 453 labels = array_ops.slice(random_sequence, [0], [sequence_length]) 457 return {'inputs': inputs}, labels [all...] |
/external/tensorflow/tensorflow/contrib/text/kernels/ |
skip_gram_kernels.cc | 72 std::vector<T> labels; variable 81 // (token, label) pairs for all labels whose distances from the token are 91 labels.push_back(input(i + j)); 103 "labels", TensorShape({static_cast<int>(labels.size())}), 117 labels_output->vec<T>()(i) = labels[i];
|
/external/tensorflow/tensorflow/examples/ios/camera/ |
CameraExampleViewController.h | 40 std::vector<std::string> labels; variable
|
/external/tensorflow/tensorflow/examples/label_image/ |
label_image.py | 90 parser.add_argument("--labels", help="name of file containing labels") 103 if args.labels: 104 label_file = args.labels 138 labels = load_labels(label_file) variable 140 print(labels[i], results[i])
|
/external/tensorflow/tensorflow/lite/examples/ios/camera/ |
CameraExampleViewController.h | 53 std::vector<std::string> labels; variable
|
/external/cldr/tools/java/org/unicode/cldr/draft/ |
Typology.java | 91 String[] labels = fullPath.split("/"); local 94 for (String item : labels) { 150 String[] labels = path2.split("/"); external variable declarations 152 for (int j = 0; j < labels.length; ++j) { 153 labelToPaths.put(labels[j], path2); 157 Map<String, UnicodeSet> map = label_parent_uset.get(labels[j]); 159 label_parent_uset.put(labels[j], map = new TreeMap<String, UnicodeSet>()); 166 parent += labels[j] + "/"; 175 // System.out.println("\nuset - path labels\t" + uset_path); 178 // System.out.println("\npath -uset labels\t" + path_uset) [all...] |
/external/grpc-grpc/tools/run_tests/artifacts/ |
distribtest_targets.py | 90 self.labels = ['distribtest', 'csharp', platform, arch] 94 self.labels.append(docker_suffix) 98 self.labels.append('dotnetcli') 100 self.labels.append('olddotnet') 158 self.labels = ['distribtest', 'python', platform, arch, docker_suffix] 196 self.labels = ['distribtest', 'ruby', platform, arch, docker_suffix] 232 self.labels = ['distribtest', 'php', platform, arch, docker_suffix] 270 self.labels = [
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/rnn_colorbot/ |
rnn_colorbot.py | 138 """Multi-layer (LSTM) RNN that regresses on real-valued vector labels. 147 label_dimension: the length of the labels on which to regress 208 def loss(labels, predictions): 210 return tf.reduce_mean(tf.squared_difference(predictions, labels)) 216 for (labels, chars, sequence_length) in tfe.Iterator(eval_data): 218 avg_loss(loss(labels, predictions)) 229 def model_loss(labels, chars, sequence_length): 231 loss_value = loss(labels, predictions) 235 for (batch, (labels, chars, sequence_length)) in enumerate( 238 batch_model_loss = functools.partial(model_loss, labels, chars [all...] |
rnn_colorbot_test.py | 43 labels = tf.random_normal([batch_size, LABEL_DIMENSION]) 44 return tf.data.Dataset.from_tensors((labels, chars, sequence_length))
|
/external/tensorflow/tensorflow/core/kernels/ |
sparse_xent_op_gpu.cu.cc | 63 typename TTypes<Index>::ConstVec labels, 66 SparseXentEigenImpl<GPUDevice, T, Index>::Compute(ctx, logits, labels,
|