/external/tensorflow/tensorflow/contrib/metrics/python/metrics/ |
classification.py | 32 def accuracy(predictions, labels, weights=None, name=None): 33 """Computes the percentage of times that predictions matches labels. 37 matches 'labels'. 38 labels: the ground truth values, a `Tensor` of any shape and 50 if not (labels.dtype.is_integer or 51 labels.dtype in (dtypes.bool, dtypes.string)): 53 'Labels should have bool, integer, or string dtype, not %r' % 54 labels.dtype) 55 if not labels.dtype.is_compatible_with(predictions.dtype): 56 raise ValueError('Dtypes of predictions and labels should match. [all...] |
/external/minijail/ |
bpf.c | 294 int bpf_resolve_jumps(struct bpf_labels *labels, struct sock_filter *filter, 314 if (instr->k >= labels->count) { 318 if (labels->labels[instr->k].location == 0xffffffff) { 320 labels->labels[instr->k].label); 324 labels->labels[instr->k].location - (offset + 1); 329 if (labels->labels[instr->k].location != 0xffffffff) [all...] |
/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
losses_ops.py | 37 def mean_squared_error_regressor(tensor_in, labels, weights, biases, name=None): 40 [tensor_in, labels]): 42 if len(labels.get_shape()) == 1 and len(predictions.get_shape()) == 2: 44 return predictions, losses.mean_squared_error(labels, predictions) 50 labels, 60 This function requires labels to be passed in one-hot encoding. 64 labels: Tensor, [batch_size, n_classes], one-hot labels of the output 76 with ops.name_scope(name, 'softmax_classifier', [tensor_in, labels]): 80 return nn.softmax(logits), losses.softmax_cross_entropy(labels, logits [all...] |
/external/tensorflow/tensorflow/contrib/kernel_methods/python/ |
losses.py | 31 labels, 52 labels: `Tensor` of shape [batch_size] or [batch_size, 1]. Corresponds to 64 shape as `labels`; otherwise, it is a scalar. 67 ValueError: If `logits`, `labels` or `weights` have invalid or inconsistent 69 ValueError: If `labels` tensor has invalid dtype. 73 labels)) as scope: 85 # Check labels have valid type. 86 if labels.dtype != dtypes.int32 and labels.dtype != dtypes.int64: 88 'Invalid dtype for labels: {}. Acceptable dtypes: int32 and int64' [all...] |
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
logistic_regressor.py | 43 `(features, labels, mode) -> (predictions, loss, train_op)`. 50 def _model_fn(features, labels, mode, params): 54 predictions, loss, train_op = model_fn(features, labels, mode) 57 labels=labels, 109 `(features, labels, mode) -> (predictions, loss, train_op)`. 118 labels which are the output of `input_fn` and 119 returns features and labels which will be fed 133 def _make_logistic_eval_metric_ops(labels, predictions, thresholds): 137 labels: The labels `Tensor`, or a dict with only one `Tensor` keyed by name [all...] |
head.py | 80 def _my_dnn_model_fn(features, labels, mode, params, config=None): 94 labels=labels, 108 labels=labels, 122 labels=labels, 152 labels=None, 166 labels: Labels `Tensor`, or `dict` of same [all...] |
/external/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/ |
io_test.py | 43 labels = pd.DataFrame(iris.target) 47 classifier.fit(data, labels, steps=100) 48 score = accuracy_score(labels[0], list(classifier.predict_classes(data))) 59 labels = pd.Series(iris.target) 63 classifier.fit(data, labels, steps=100) 64 score = accuracy_score(labels, list(classifier.predict_classes(data))) 94 labels = ddf["a"] 95 extracted_labels = extract_dask_labels(labels) 99 # labels should only have one column 113 labels = pd.DataFrame(iris.target [all...] |
pandas_io.py | 124 def extract_pandas_labels(labels): 125 """Extract data from pandas.DataFrame for labels. 128 labels: `pandas.DataFrame` or `pandas.Series` containing one column of 129 labels to be extracted. 132 A numpy `ndarray` of labels from the DataFrame. 138 if isinstance(labels, 140 if len(labels.columns) > 1: 141 raise ValueError('Only one column for labels is allowed.') 143 bad_data = [column for column in labels 144 if labels[column].dtype.name not in PANDAS_DTYPES [all...] |
/external/autotest/server/cros/network/ |
rf_switch_controller.py | 41 self.rf_switch_labels = rf_switch_host.labels 42 # RF Switches are named as rf_switch_1, rf_switch_2 using labels. 44 labels = [ 48 self.hosts = afe.get_hosts(label=labels[0]) 52 if RF_SWITCH_APS in host.labels: 54 elif RF_SWITCH_CLIENT in host.labels:
|
rf_switch_client_box.py | 34 for label in client_box_host.labels: 44 'Labels not found:: %s' % msg) 57 def get_devices_using_labels(self, labels): 58 """Returns all devices with the passed labels in the Client Box. 60 @params labels: List of host labels. 67 labels.append(self.rf_switch_label) 71 lambda x: x in host.labels, labels)) 72 if len(labels) == len(labels_list) [all...] |
/external/eigen/bench/ |
dense_solvers.cpp | 11 std::vector<std::string> labels; variable 89 labels.push_back("LLT"); 90 labels.push_back("LDLT"); 91 labels.push_back("PartialPivLU"); 92 labels.push_back("FullPivLU"); 93 labels.push_back("HouseholderQR"); 94 labels.push_back("ColPivHouseholderQR"); 95 labels.push_back("CompleteOrthogonalDecomposition"); 96 labels.push_back("FullPivHouseholderQR"); 97 labels.push_back("JacobiSVD") 135 cout.width(32); cout << labels[i]; cout << " "; local 157 cout << "><td>" << labels[i] << "<\/td>"; local [all...] |
/external/snakeyaml/src/test/java/org/yaml/snakeyaml/issues/issue73/ |
Blog.java | 27 private TreeSet<String> labels = new TreeSet<String>(); field in class:Blog 58 return labels; 61 public void setLabels(TreeSet<String> labels) { 62 this.labels = labels;
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
custom_loss_head.py | 49 metrics_fn: a function that takes predictions dict, labels and weights and 53 def loss_wrapper(labels, logits, weight_tensor): 56 shape=[array_ops.shape(labels)[0], 1], dtype=dtypes.float32) 57 weighted_loss, _ = loss_fn(labels, weight_tensor, logits) 71 def _metrics(self, eval_loss, predictions, labels, weights): 73 return self._metrics_fn(predictions, labels, weights)
|
/external/tensorflow/tensorflow/contrib/metrics/python/ops/ |
metric_ops_test.py | 52 def _binary_2d_label_to_sparse_value(labels): 55 Only 1 values in `labels` are included in result. 58 labels: Dense 2D binary indicator tensor. 62 `labels`. 67 for row in labels: 79 shape = [len(labels), len(labels[0])] 85 def _binary_2d_label_to_sparse(labels): 88 Only 1 values in `labels` are included in result. 91 labels: Dense 2D binary indicator tensor [all...] |
metric_ops.py | 49 'order of the labels and predictions arguments has been switched.') 51 labels, 63 labels: The ground truth values, a `Tensor` whose dimensions must match 66 `labels`, and must be broadcastable to `labels` (i.e., all dimensions 67 must be either `1`, or the same as the corresponding `labels` 80 ValueError: If `predictions` and `labels` have mismatched shapes, or if 87 labels=labels, 95 'order of the labels and predictions arguments has been switched.' [all...] |
/external/tensorflow/tensorflow/contrib/learn/python/learn/ |
metric_spec_test.py | 35 def _fn0(predictions, labels, weights=None): 37 self.assertEqual("l1_value", labels) 93 def _fn(labels): 94 self.assertEqual(labels_, labels) 106 def _fn(labels, **kwargs): 107 self.assertEqual(labels_, labels) 120 def _fn(labels, predictions_by_another_name): 122 self.assertEqual(labels_, labels) 135 def _fn(predictions_by_another_name, labels): 137 self.assertEqual(labels_, labels) [all...] |
/external/tensorflow/tensorflow/contrib/training/python/training/ |
sampling_ops.py | 72 ValueError: enqueue_many is True and labels doesn't have a batch 73 dimension, or if enqueue_many is False and labels isn't a scalar. 74 ValueError: enqueue_many is True, and batch dimension on data and labels 136 labels, 153 labels: Tensor for label of data. Label is a single integer or a batch, 169 ValueError: `enqueue_many` is True and labels doesn't have a batch 170 dimension, or if `enqueue_many` is False and labels isn't a scalar. 171 ValueError: `enqueue_many` is True, and batch dimension on data and labels 176 TFAssertion: if labels aren't integers in [0, num classes). 187 [data_batch], labels = tf.contrib.training.stratified_sample [all...] |
/external/tensorflow/tensorflow/contrib/losses/python/losses/ |
loss_ops_test.py | 117 labels = constant_op.constant([[1, 0, 0], 122 loss_ops.softmax_cross_entropy(logits, labels, weights=None) 129 labels = constant_op.constant([[1, 0, 0], 132 loss = loss_ops.softmax_cross_entropy(logits, labels) 140 labels = constant_op.constant([[0, 0, 1], 145 loss = loss_ops.softmax_cross_entropy(logits, labels) 153 labels = constant_op.constant([[0, 0, 1], 158 loss = loss_ops.softmax_cross_entropy(logits, labels, weights) 165 labels = constant_op.constant([[0, 0, 1], 170 loss = loss_ops.softmax_cross_entropy(logits, labels, [all...] |
/external/python/google-api-python-client/samples/searchforshopping/ |
histograms.py | 43 labels = [] 47 labels.append(bucket['value'].rjust(20)) 52 for label, value in zip(labels, values):
|
/external/tensorflow/tensorflow/lite/java/src/test/java/org/tensorflow/lite/ |
InterpreterMobileNetTest.java | 45 float[][] labels = new float[1][1001]; local 48 interpreter.run(img, labels); 53 assertThat(labels[0])
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
sparse_xent_op_test.py | 49 def _npXent(self, features, labels): 51 labels = np.reshape(labels, [-1]) 60 labels_mat[np.arange(batch_size), labels] = 1.0 88 labels = [4, 3, 0, -1] 94 features, labels)) 107 gen_nn_ops.sparse_softmax_cross_entropy_with_logits(features, labels)) 116 labels = [3, 0] 136 np_loss, np_backprop = self._npXent(np.array(features), np.array(labels)) 149 labels=[[0, 2]], logits=[[0., 1.], [2., 3.], [2., 3.]] [all...] |
ctc_loss_op_test.py | 62 def _ctc_loss_v2(labels, inputs, sequence_length, 72 labels=labels, 85 labels, 95 inputs=inputs_t, labels=labels, sequence_length=seq_lens) 226 labels = SimpleSparseTensorFrom([targets_0, targets_1]) 243 self._testCTCLoss(inputs, seq_lens, labels, loss_truth, grad_truth) 254 labels = SimpleSparseTensorFrom([[0, 1], [1, 0]]) 264 inputs=inputs_t, labels=labels, sequence_length=seq_lens [all...] |
/external/boringssl/src/util/fipstools/delocate/testdata/x86_64-LabelRewrite/ |
in2.s | 1 # References to local labels are rewrittenn in subsequent files.
|
/external/tensorflow/tensorflow/examples/speech_commands/ |
label_wav.py | 17 The model, labels and .wav file specified in the arguments will be loaded, and 26 --labels=/tmp/speech_commands_train/conv_labels.txt \ 55 """Read in labels, one label per line.""" 59 def run_graph(wav_data, labels, input_layer_name, output_layer_name, 70 # Sort to show labels in order of confidence 73 human_string = labels[node_id] 80 def label_wav(wav, labels, graph, input_name, output_name, how_many_labels): 81 """Loads the model and labels, and runs the inference to print predictions.""" 85 if not labels or not tf.gfile.Exists(labels) [all...] |
/external/toolchain-utils/crosperf/ |
machine_image_manager_unittest.py | 61 labels = [] 70 labels.append(l) 71 return labels, duts 79 labels, duts = self.create_labels_and_duts_from_pattern(inp) 80 mim = MachineImageManager(labels, duts) 86 labels = [MockLabel('l1'), MockLabel('l2'), MockLabel('l3')] 88 mim = MachineImageManager(labels, [dut]) 93 labels = [MockLabel('l1')] 95 mim = MachineImageManager(labels, duts) 100 labels = [all...] |