/external/tensorflow/tensorflow/examples/saved_model/integration_tests/ |
use_model_in_sequential_keras.py | 36 labels = np.array([1, 0]) 37 dataset = tf.data.Dataset.from_tensor_slices((features, labels))
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/training/functions/ |
gbdt_batch_test.py | 256 labels = array_ops.ones([4, 1], dtypes.float32) 261 _squared_loss(labels, weights, predictions)), 263 labels=labels) 349 labels = array_ops.constant([[-2], [-1], [1], [2]], dtypes.float32) 354 _squared_loss(labels, weights, predictions)), 356 labels=labels) 520 labels = array_ops.ones([4, 1], dtypes.float32) 525 _squared_loss(labels, weights, predictions)) [all...] |
/external/autotest/server/cros/dynamic_suite/ |
host_spec.py | 11 Currently, 'complex' means that the spec contains more labels. 18 return len(host_spec.labels) 207 def __init__(self, labels, num): 210 Given a set of labels specifying what kind of hosts we need, 214 @param labels: list of labels indicating what kind of hosts need 218 self._spec = HostSpec(labels) 219 self._meta_hosts = labels[:1]*num 220 self._dependencies = labels[1:] 266 Wraps a list of labels, for the purposes of specifying a set of host 279 def labels(self): member in class:HostSpec [all...] |
host_spec_unittest.py | 82 """Should be able to make a HostGroup from labels.""" 83 labels = ['meta_host', 'dep1', 'dep2'] 85 group = host_spec.MetaHostGroup(labels, num) 87 self.assertEquals(labels[:1] * num, args['meta_hosts']) 88 self.assertEquals(labels[1:], args['dependencies']) 173 labels = ['meta_host', 'dep1', 'dep2'] 175 group = host_spec.MetaHostGroup(labels, num)
|
/external/autotest/server/hosts/ |
shadowing_store_unittest.py | 21 info = host_info.HostInfo(labels='blah', attributes='boo') 32 info = host_info.HostInfo(labels='blah', attributes='boo') 39 init_info = host_info.HostInfo(labels='init') 43 info = host_info.HostInfo(labels='blah', attributes='boo') 50 init_info = host_info.HostInfo(labels='init') 59 init_info = host_info.HostInfo(labels='init')
|
base_label_unittest.py | 31 This is a variation of BaseLabel with multiple labels for _NAME 32 to ensure we handle a label that contains a list of labels for 43 This test class is to check that we properly construct the prefix labels 59 def __init__(self, labels=None, attributes=None): 60 self.labels = labels or [] 81 """Let's make sure generate_labels() returns the labels expected.""" 88 # We should get labels here. 97 """Check that we get the expected labels for get_all_labels().""" 101 # We want to check that we always get a list of labels regardless i [all...] |
factory_unittest.py | 54 def _gen_machine_dict(hostname='localhost', labels=[], attributes={}): 58 @param labels: list of host labels 63 afe_host = base_label_unittest.MockAFEHost(labels, attributes) 65 store.commit(host_info.HostInfo(labels, attributes)) 113 machine = _gen_machine_dict(labels=['os:foo']) 123 machine = _gen_machine_dict(labels=['os:foo'],
|
/external/desugar/test/java/com/google/devtools/build/android/desugar/ |
ByteCodeTypePrinter.java | 147 public void visitLookupSwitchInsn(Label dflt, int[] keys, Label[] labels) { 148 printer.visitLookupSwitchInsn(dflt, keys, labels); 150 super.visitLookupSwitchInsn(dflt, keys, labels); 154 public void visitTableSwitchInsn(int min, int max, Label dflt, Label... labels) { 155 printer.visitTableSwitchInsn(min, max, dflt, labels); 157 super.visitTableSwitchInsn(min, max, dflt, labels);
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
main_estimator.py | 30 def model_fn(features, labels, mode, params): 35 labels: Labels of images 57 grads, loss = model.compute_gradients(saved_hidden, labels, training=True) 69 loss = model.compute_loss(labels=labels, logits=logits) 75 tf.metrics.accuracy(labels=labels, predictions=predictions)
|
/external/tensorflow/tensorflow/contrib/tensor_forest/client/ |
eval_metrics.py | 48 labels=targets, predictions=predictions, weights=weights) 97 labels=targets, predictions=predictions, weights=weights) 102 labels=targets, 110 labels=targets, predictions=predictions, weights=weights) 115 labels=targets, 123 labels=targets,
|
random_forest_test.py | 38 labels = iris.target.astype(np.int32) 41 x=data, y=labels, batch_size=150, num_epochs=None, shuffle=False) 51 labels = boston.target.astype(np.int32) 54 x=data, y=labels, batch_size=506, num_epochs=None, shuffle=False) 121 labels = iris.target.astype(np.int32) 128 y=labels, 242 labels = iris.target.astype(np.int32) 245 x=data, y=labels, batch_size=150, num_epochs=None, shuffle=False) 307 labels = iris.target.astype(np.int32) 314 y=labels, [all...] |
/external/tensorflow/tensorflow/core/lib/monitoring/ |
collection_registry.h | 61 // Collects the value with these labels. 62 void CollectValue(const std::array<string, NumLabels>& labels, 148 // metric_collector.CollectValue(cell.labels(), cell.value()); 328 const std::array<string, NumLabels>& labels, const Value& value) { 333 point->labels.reserve(NumLabels); 335 point->labels.push_back({}); 336 auto* const label = &point->labels.back(); 338 label->value = labels[i];
|
/external/v8/tools/ignition/ |
bytecode_dispatches_report.py | 129 labels = sorted(dispatches_table.keys()) 131 counters_matrix = numpy.empty([len(labels), len(labels)], dtype=int) 132 for from_index, from_name in enumerate(labels): 134 for to_index, to_name in enumerate(labels): 138 xlabels = labels
|
/external/autotest/scheduler/ |
rdb_cache_unittests.py | 19 """Get the cache line with the hosts that match given labels. 21 Confirm that all hosts have matching labels within a line, 22 then return the lines with the requested labels. There can 25 @param labels: A list of label names. 28 @return: A list of the cache lines with the requested labels. 34 labels = list(line)[0].labels.get_label_names() 35 if any(host.labels.get_label_names() != labels for host in line): 37 if required_labels == labels [all...] |
/external/tensorflow/tensorflow/contrib/eager/python/examples/densenet/ |
densenet_test.py | 140 def compute_gradients(model, images, labels): 144 logits=logits, onehot_labels=labels) 167 labels = tf.random_uniform( 169 one_hot = tf.one_hot(labels, num_classes) 272 (images, labels) = random_batch(batch_size, data_format) 288 iterator = make_iterator((images, labels)) 290 (images, labels) = iterator.next() 292 compute_gradients(model, images, labels)) 300 (images, labels) = iterator.next() 302 compute_gradients(model, images, labels)) [all...] |
/external/autotest/server/ |
site_utils.py | 97 we only use attributes and labels but as time goes by and other 104 self.labels = [] 132 """Retrieve a host's specific labels from the AFE. 134 Looks for the host labels that have the form <label_prefix>:<value> 142 @returns A list of labels that match the prefix or 'None' 145 labels = afe.get_labels(name__startswith=label_prefix, 147 if labels: 148 return [l.name.split(label_prefix, 1)[1] for l in labels] 164 labels = get_labels_from_afe(hostname, label_prefix, afe) 165 if labels and len(labels) == 1 [all...] |
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
head_test.py | 64 with self.assertRaisesRegexp(ValueError, "received a `labels`"): 65 model_fn(features={}, labels={"a": "b"}, mode=mode) 67 with self.assertRaisesRegexp(ValueError, "received a `labels`"): 68 model_fn(features={}, labels=array_ops.zeros([]), mode=mode) 73 model_fn(features={}, labels={}, mode="Not a mode") 120 features=features, labels=None, mode=estimator_lib.ModeKeys.EVAL) 206 labels=None, 216 labels=None, 230 labels=None, 244 labels=None [all...] |
/external/tensorflow/tensorflow/tools/compatibility/testdata/ |
test_file_v0_11.py | 177 labels = [.8, .5, .2, .1] 181 logits, labels).eval(), 183 labels=labels, logits=logits).eval()) 186 logits, labels).eval(), 188 labels=labels, logits=logits).eval())
|
/external/toolchain-utils/fdo_scripts/ |
vanilla_vs_fdo.py | 130 def _TestLabels(self, labels): 145 for label in labels: 146 # TODO(asharif): Fix crosperf so it accepts labels with symbols 224 labels = [] 230 labels.append(minus_pgo) 235 labels.append(plus_pgo) 248 labels.append(updated_pgo_label) 251 self._TestLabels(labels)
|
/external/tensorflow/tensorflow/python/compiler/tensorrt/test/ |
quantization_mnist_test.py | 198 features, labels = iterator.get_next() 199 return features, labels 212 features, labels = iterator.get_next() 213 return features, labels 215 def _ModelFn(features, labels, mode): 227 labels=labels, logits=logits_out) 232 labels=labels, predictions=classes_out, name='acc_op')
|
/development/tools/repo_pull/ |
repo_review.py | 39 """Collect and check labels from args.""" 42 labels = {} 45 labels[name] = int(value) 49 return labels 99 help='Labels to be added') 175 """Set review labels to selected change lists""" 186 labels = _get_labels_from_args(args) 209 labels, args.message, errors=errors)
|
/external/autotest/server/cros/clique_lib/ |
clique_dut_locker.py | 165 labels = [] 166 labels.append(constants.BOARD_PREFIX + board_name) 167 labels.append('clique_dut') 170 afe, self.lock_manager, labels=labels) + '.cros'
|
/external/autotest/site_utils/ |
dut_status.py | 321 labels = labellib.LabelsMapping() 322 labels['board'] = arguments.board 323 labels['pool'] = arguments.pool 324 labels['model'] = arguments.model 326 afe, arguments.since, arguments.until, labels.getlabels())
|
/external/jacoco/org.jacoco.core/src/org/jacoco/core/internal/analysis/filter/ |
TryWithResourcesEcjFilter.java | 52 private final Map<String, LabelNode> labels = new HashMap<String, LabelNode>(); field in class:TryWithResourcesEcjFilter.Matcher 64 labels.clear(); 239 final LabelNode expected = labels.get(name); 241 labels.put(name, actual); 257 final LabelNode expected = labels.get(name);
|
/external/tensorflow/tensorflow/compiler/tests/ |
jit_test.py | 68 """Returns all labels in run_metadata.""" 69 labels = [] 72 labels.append(node_stats.timeline_label) 73 return labels 76 def InLabels(labels, substr): 77 """Returns true iff one of the labels contains substr.""" 78 return any(substr in x for x in labels) 458 labels = _Run(compiled=False) 459 self.assertFalse(InLabels(labels, "Log")) 460 self.assertTrue(InLabels(labels, "Reciprocal") [all...] |