/external/tensorflow/tensorflow/python/ops/parallel_for/ |
control_flow_ops_test.py | [all...] |
/external/tensorflow/tensorflow/contrib/boosted_trees/lib/learner/batch/ |
categorical_split_handler_test.py | 72 sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), 195 sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), 306 sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), 436 sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), 501 sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), 549 sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), 603 sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]),
|
ordinal_split_handler_test.py | [all...] |
/external/tensorflow/tensorflow/python/ops/ |
ctc_ops.py | 121 labels: An `int32` `SparseTensor`. 155 TypeError: if labels is not a `SparseTensor`. 159 if not isinstance(labels, sparse_tensor.SparseTensor): 160 raise TypeError("Expected labels (first argument) to be a SparseTensor") 234 is an `SparseTensor` containing the decoded outputs s.t.: 252 return ([sparse_tensor.SparseTensor(decoded_ix, decoded_val, decoded_shape)], 286 is a `SparseTensor` containing the decoded outputs: 307 [sparse_tensor.SparseTensor(ix, val, shape) for (ix, val, shape) 333 is a `SparseTensor` containing the decoded outputs: 604 vector of label sequence lengths OR as a SparseTensor [all...] |
logging_ops.py | 273 and (not isinstance(inputs[0], sparse_tensor.SparseTensor)) 299 if isinstance(x, sparse_tensor.SparseTensor): 302 "SparseTensor(indices={}, values={}, shape={})".format(
|
parsing_ops.py | 67 `SequenceExample`) in order to parse out `SparseTensor`s instead of 70 Closely mimicking the `SparseTensor` that will be obtained by parsing an 74 `Tensor` will be the resulting `SparseTensor.values`. 77 `SparseTensor` whose `indices[i][dim]` indicating the position of 81 * `size`: A list of ints for the resulting `SparseTensor.dense_shape`. 83 For example, we can represent the following 2D `SparseTensor` 86 SparseTensor(indices=[[3, 1], [20, 0]], 114 To represent `SparseTensor`s with a `dense_shape` of `rank` higher than 1 310 `tensor_dict` mapping to `SparseTensor`s. Constructs a single `SparseTensor` [all...] |
lookup_ops.py | 201 keys: Keys to look up. May be either a `SparseTensor` or dense `Tensor`. 205 A `SparseTensor` if keys are sparse, otherwise a dense `Tensor`. 212 if isinstance(keys, sparse_tensor.SparseTensor): 226 if isinstance(keys, sparse_tensor.SparseTensor): 227 return sparse_tensor.SparseTensor(keys.indices, values, keys.dense_shape) [all...] |
/external/tensorflow/tensorflow/python/kernel_tests/ |
sets_test.py | 65 return sparse_tensor_lib.SparseTensor( 130 sp = sparse_tensor_lib.SparseTensor( 321 sp_a = sparse_tensor_lib.SparseTensor( 339 sp_b = sparse_tensor_lib.SparseTensor( 465 if isinstance(input_tensor, sparse_tensor_lib.SparseTensor): 811 sp_a = sparse_tensor_lib.SparseTensor( 829 sp_b = sparse_tensor_lib.SparseTensor( [all...] |
sparse_add_op_test.py | 47 return sparse_tensor.SparseTensor( 73 return sparse_tensor.SparseTensor.from_value( 83 return sparse_tensor.SparseTensor(
|
sparse_slice_op_test.py | 45 return sparse_tensor.SparseTensor(ind, val, shape) 60 return sparse_tensor.SparseTensor(ind, val, shape) 80 return sparse_tensor.SparseTensor.from_value(
|
sparse_split_op_test.py | 42 return sparse_tensor.SparseTensor(ind, val, shape) 57 return sparse_tensor.SparseTensor(ind, val, shape) 76 return sparse_tensor.SparseTensor.from_value(self._SparseTensorValue_3x4x2(
|
sparse_tensor_dense_matmul_grad_test.py | 42 return sparse_tensor.SparseTensor(
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
feature_column_ops.py | 51 tensor: A Tensor or SparseTensor to be reshaped. 55 A reshaped Tensor or SparseTensor. 61 if input_rank is None and isinstance(tensor, sparse_tensor_py.SparseTensor): 78 if isinstance(tensor, sparse_tensor_py.SparseTensor): 334 sparse_tensor_py.SparseTensor(t.indices, 594 A `dict` mapping FeatureColumn to `Tensor` and `SparseTensor` values. 650 A `dict` mapping FeatureColumn to `Tensor` and `SparseTensor` values. 689 `context_feature_columns` to their parsed `Tensors`/`SparseTensor`s. 691 `sequence_feature_columns` to their parsed `Tensors`/`SparseTensor`s. 734 if isinstance(tensor, sparse_tensor_py.SparseTensor) [all...] |
feature_column_test.py | 44 # Returns a arbitrary `SparseTensor` with given shape and vocab size. 56 return sparse_tensor_lib.SparseTensor( 61 # Returns a arbitrary `SparseTensor` with given shape and vocab size. 77 return (sparse_tensor_lib.SparseTensor( 79 sparse_tensor_lib.SparseTensor( 192 input_tensor_c1 = sparse_tensor_lib.SparseTensor( 195 input_tensor_c2 = sparse_tensor_lib.SparseTensor( 618 sparse_tensor = sparse_tensor_lib.SparseTensor( [all...] |
embedding_ops.py | 77 sparse_ids: `SparseTensor` of shape `[d_0, d_1, ..., d_n]` containing the 79 sparse_weights: `SparseTensor` of same shape as `sparse_ids`, containing 138 sparse_weights = sparse_tensor.SparseTensor( 394 sparse_values: A 2-D `SparseTensor` containing the values to be embedded. 411 TypeError: If sparse_values is not a SparseTensor. 422 if not isinstance(sparse_values, sparse_tensor.SparseTensor): 423 raise TypeError("sparse_values must be SparseTensor") 528 sp_values: A 2D `SparseTensor` to be embedded with shape `[d0, d1]`. 548 TypeError: If sp_values is not `SparseTensor`. 551 if not isinstance(sp_values, sparse_tensor.SparseTensor) [all...] |
/external/tensorflow/tensorflow/examples/saved_model/integration_tests/ |
export_simple_text_embedding.py | 91 sparse_ids=tf.SparseTensor(token_ids, token_values, token_dense_shape),
|
/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/ |
get_single_element_test.py | 50 return sparse_tensor.SparseTensor(x_2d, x_1d, x_1d)
|
/external/tensorflow/tensorflow/python/data/experimental/ops/ |
parsing_ops.py | 76 [sparse_tensor.SparseTensor for _ in range(len(self._sparse_keys)) 108 and `SparseTensor` objects. `features` is a dict from keys to `VarLenFeature`, 110 and `SparseFeature` is mapped to a `SparseTensor`, and each
|
scan_ops.py | 39 # Convert any `SparseTensorValue`s to `SparseTensor`s and all other 42 sparse_tensor.SparseTensor.from_value(t)
|
batching.py | 60 elif dataset_output_classes is sparse_tensor.SparseTensor: 133 return sparse_tensor.SparseTensor( 157 """A transformation that batches ragged elements into `tf.SparseTensor`s. 163 comprise a `tf.SparseTensor` that represents the same data. The 165 resulting `tf.SparseTensor`, to which the effective batch size is 191 resulting `tf.SparseTensor`. Each element of this dataset must 218 string for string types. If `dataset` contains `tf.SparseTensor`, this 229 (ops.Tensor, sparse_tensor.SparseTensor)): 233 elif issubclass(dataset_output_classes, (sparse_tensor.SparseTensor)): 339 return sparse_tensor.SparseTensor( [all...] |
/external/tensorflow/tensorflow/python/data/kernel_tests/ |
from_sparse_tensor_slices_test.py | 36 """Test a dataset based on slices of a `tf.SparseTensor`.""" 41 get_next = sparse_tensor.SparseTensor(*iterator.get_next())
|
/external/tensorflow/tensorflow/python/data/util/ |
structure.py | 46 * `tf.SparseTensor` 204 (sparse_tensor_lib.SparseTensor, sparse_tensor_lib.SparseTensorValue)): 279 elif issubclass(flat_class, sparse_tensor_lib.SparseTensor): 502 """Represents structural information about a `tf.SparseTensor`.""" 510 # NOTE(mrry): The default flat shape of a boxed `SparseTensor` is `(3,)`, 512 # `SparseTensor` objects with shape `(?, 3)` (and batches of batches, etc.), 551 sparse_tensor = sparse_tensor_lib.SparseTensor.from_value(value) 563 return sparse_tensor_lib.SparseTensor
|
/external/tensorflow/tensorflow/python/framework/ |
framework_lib.py | 30 from tensorflow.python.framework.sparse_tensor import SparseTensor
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
debug_test.py | 280 sparse_tensor.SparseTensor( 309 sparse_tensor.SparseTensor( 536 sparse_tensor.SparseTensor( 570 sparse_tensor.SparseTensor( 673 sparse_tensor.SparseTensor( 831 sparse_tensor.SparseTensor(
|
/external/tensorflow/tensorflow/contrib/training/python/training/ |
sequence_queueing_state_saver.py | [all...] |