/external/tensorflow/tensorflow/lite/ |
model_flex_test.cc | 15 #include "tensorflow/lite/model.h" 23 // Ensures that a model with TensorFlow ops can be imported as long as the 26 auto model = FlatBufferModel::BuildFromFile( local 28 ASSERT_TRUE(model); 31 ASSERT_EQ(InterpreterBuilder(*model,
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
remove_tensorflow_identity.cc | 22 #include "tensorflow/lite/toco/model.h" 28 ::tensorflow::Status RemoveTensorFlowIdentity::Run(Model* model, 32 const auto passthru_it = model->operators.begin() + op_index; 38 *modified = RemoveTrivialPassthroughOp(this, model, op_index);
|
resolve_tensorflow_switch.cc | 21 #include "tensorflow/lite/toco/model.h" 27 ::tensorflow::Status ResolveTensorFlowSwitch::Run(Model* model, 31 const auto switch_it = model->operators.begin() + op_index; 42 if (!IsConstantParameterArray(*model, predicate_name)) { 50 const auto& predicate_array = model->GetArray(predicate_name); 76 for (const auto& other_op : model->operators) { 92 for (const auto& other_op : model->operators) { 110 if (!GetOpWithInput(*model, switch_op->outputs[i])) { 111 model->EraseArray(switch_op->outputs[i]) [all...] |
convert_squeeze_to_reshape.cc | 22 #include "tensorflow/lite/toco/model.h" 33 ::tensorflow::Status ConvertSqueezeToReshape::Run(Model* model, 37 auto squeeze_it = model->operators.begin() + op_index; 45 const auto& input_array = model->GetArray(squeeze_op->inputs[0]); 54 if (!model->HasArray(squeeze_op->outputs[0]) || 55 !model->GetArray(squeeze_op->outputs[0]).has_shape()) { 61 const auto& output_shape = model->GetArray(squeeze_op->outputs[0]).shape(); 71 CreateInt32Array(model, squeeze_op->outputs[0] + "_shape", 80 const auto reshape_it = model->operators.emplace(squeeze_it, reshape_op) [all...] |
identify_l2_pool.cc | 21 #include "tensorflow/lite/toco/model.h" 30 Model* model, const Operator* op) { 31 auto it = model->operators.begin(); 32 for (; it != model->operators.end(); ++it) { 41 ::tensorflow::Status IdentifyL2Pool::Run(Model* model, std::size_t op_index, 44 const auto sqrt_it = model->operators.begin() + op_index; 56 Operator* prev_to_sqrt_op = GetOpWithOutput(*model, sqrt_op->inputs[0]); 75 square_op = GetOpWithOutput(*model, avpool_op->inputs[0]) [all...] |
identify_prelu.cc | 21 #include "tensorflow/lite/toco/model.h" 46 ::tensorflow::Status IdentifyPRelu::Run(Model* model, std::size_t op_index, 49 const auto add_op_it = model->operators.begin() + op_index; 57 const auto* relu_input_op = GetOpWithOutput(*model, add_op->inputs[0]); 67 const auto* mul_op = GetOpWithOutput(*model, add_op->inputs[1]); 76 const auto* relu_neg_input_op = GetOpWithOutput(*model, mul_op->inputs[1]); 92 GetOpWithOutput(*model, relu_neg_input_op->inputs[0]); 111 AvailableArrayName(*model, neg_alpha_tensor_name + "_neg"); 112 model->GetOrCreateArray(alpha_tensor_name) [all...] |
remove_trivial_passthrough.h | 19 #include "tensorflow/lite/toco/model.h" 43 // designated as a global input/output array of the graph, e.g. the model's 45 // specified by the model. 53 Model* model, std::size_t op_index,
|
propagate_array_data_types.cc | 21 #include "tensorflow/lite/toco/model.h" 27 void SetDataTypeForAllOutputs(Model* model, Operator* op, 30 model->GetArray(output).data_type = data_type; 35 ::tensorflow::Status PropagateArrayDataTypes::Run(Model* model, 39 auto it = model->operators.begin() + op_index; 44 if (!model->IsOptionalArray(input) && 45 model->GetArray(input).data_type == ArrayDataType::kNone) { 53 old_output_data_types[output] = model->GetArray(output).data_type [all...] |
reorder_elementwise_unary.cc | 22 #include "tensorflow/lite/toco/model.h" 67 ::tensorflow::Status ReorderElementwiseUnary::Run(Model* model, 71 const auto element_op_it = model->operators.begin() + op_index; 78 auto it = FindOpWithOutput(*model, intermediate_name); 79 if (it == model->operators.end()) { 90 if (CountOpsWithInput(*model, intermediate_name) != 1) { 96 if (!IsDiscardableArray(*model, intermediate_name)) { 114 if (!IsDiscardableArray(*model, output_name)) { 118 AvailableArrayName(*model, element_op->outputs[0] + "_reorder") [all...] |
resolve_constant_pack.cc | 18 #include "tensorflow/lite/toco/model.h" 27 void Pack(Model* model, PackOperator const& op) { 28 auto& output_array = model->GetArray(op.outputs[0]); 41 const auto& input_array = model->GetArray(op.inputs[i]); 52 ::tensorflow::Status ResolveConstantPack::Run(Model* model, 56 auto it = model->operators.begin() + op_index; 65 auto& output_array = model->GetArray(op->outputs[0]); 77 if (!IsConstantParameterArray(*model, input)) [all...] |
create_im2col_arrays.cc | 22 #include "tensorflow/lite/toco/model.h" 28 bool ProcessConvOperator(Model* model, ConvOperator* op) { 33 const auto& weights_array = model->GetArray(op->inputs[1]); 53 AvailableArrayName(*model, op->inputs[0] + "_im2col"); 54 model->GetOrCreateArray(im2col_array_name); 60 bool ProcessTransposeConvOperator(Model* model, TransposeConvOperator* op) { 69 *model, op->inputs[TransposeConvOperator::DATA_INPUT] + "_im2col"); 70 model->GetOrCreateArray(im2col_array_name) [all...] |
identify_relu1.cc | 21 #include "tensorflow/lite/toco/model.h" 30 Model* model, const Operator* op) { 31 auto it = model->operators.begin(); 32 for (; it != model->operators.end(); ++it) { 40 bool CheckArrayIsScalarFloat(Model* model, const std::string& name, float val) { 41 const auto& op_array = model->GetArray(name); 51 int GetSingleScalarInputIndexOfBinaryOp(Model* model, const Operator* op [all...] |
/cts/tests/openglperf2/jni/graphics/ |
SceneGraphNode.cpp | 26 void SceneGraphNode::draw(Program& program, Matrix& model, Matrix& view, Matrix& projection) { 27 before(program, model, view, projection); 29 mChildren[i]->draw(program, model, view, projection); 31 after(program, model, view, projection);
|
/developers/build/prebuilts/gradle/AutofillFramework/afservice/src/main/java/com/example/android/autofill/service/model/ |
DalCheck.java | 17 package com.example.android.autofill.service.model;
|
/developers/samples/android/input/autofill/AutofillFramework/afservice/src/main/java/com/example/android/autofill/service/model/ |
DalCheck.java | 17 package com.example.android.autofill.service.model;
|
/external/antlr/gunit/src/main/java/org/antlr/gunit/swingui/model/ |
ITestCaseInput.java | 28 package org.antlr.gunit.swingui.model;
|
ITestCaseOutput.java | 33 package org.antlr.gunit.swingui.model;
|
/external/tensorflow/tensorflow/lite/toco/ |
dump_graphviz.h | 20 #include "tensorflow/lite/toco/model.h" 24 void DumpGraphviz(const Model& model, string* output_file_contents,
|
/external/tensorflow/tensorflow/python/keras/ |
model_subclassing_test.py | 15 """Tests for Model subclassing.""" 47 class SimpleTestModel(keras.Model): 71 class SimpleConvTestModel(keras.Model): 87 class MultiIOTestModel(keras.Model): 114 class NestedTestModel1(keras.Model): 115 """A model subclass nested inside a model subclass. 136 # A simple functional-API model (a.k.a. graph network) 141 return keras.Model(inputs, outputs) 144 class NestedTestModel2(keras.Model) 1036 model = TestModel1() variable in class:GraphSpecificModelSubclassingTests.test_updates_and_losses_for_nested_models_in_subclassed_model.TestModel1 1057 model = TestModel2() variable in class:GraphSpecificModelSubclassingTests.test_updates_and_losses_for_nested_models_in_subclassed_model.TestModel2 1081 model = TestModel3() variable in class:GraphSpecificModelSubclassingTests.test_updates_and_losses_for_nested_models_in_subclassed_model.TestModel3 [all...] |
/frameworks/av/media/libaaudio/tests/ |
test_clock_model.cpp | 17 // Unit tests for Isochronous Clock Model 41 model.setSampleRate(SAMPLE_RATE); 42 model.setFramesPerBurst(HW_FRAMES_PER_BURST); 56 model.start(startTimeNanos); 64 model.processTimestamp(startPositionFrames, markerTime); 65 ASSERT_EQ(startPositionFrames, model.convertTimeToPosition(markerTime)); 81 model.processTimestamp(alignedPosition, currentTimeNanos); 83 ASSERT_EQ(alignedPosition, model.convertTimeToPosition(currentTimeNanos)); 87 IsochronousClockModel model; member in class:ClockModelTestFixture 92 ASSERT_EQ(SAMPLE_RATE, model.getSampleRate()) [all...] |
/external/ImageMagick/www/source/ |
examples.pl | 8 # Read model & smile image. 16 $model=Image::Magick->new(); 17 $x=$model->ReadImage('model.gif'); 19 $model->Label('Magick'); 20 $model->Set(background=>'white'); 34 $example=$model->Clone(); 40 $example=$model->Clone(); 46 $example=$model->Clone(); 52 $example=$model->Clone() [all...] |
/external/ImageMagick/Magick++/demo/ |
demo.cpp | 38 // Read model & smile image. 42 Image model( srcdir + "model.miff" ); 43 model.label( "Magick++" ); 44 model.borderColor( "black" ); 45 model.backgroundColor( "black" ); 62 Image example = model; 81 example = model; 93 example = model; 99 example = model; [all...] |
/external/tensorflow/tensorflow/lite/toco/graph_transformations/tests/ |
resolve_constant_concatenation_test.cc | 21 #include "tensorflow/lite/toco/model.h" 106 // Prepare a hypothetical TOCO model with one Concatenation operator in it 109 void PrepareModel(Model* model, int axis) { 124 Array& in_array = model->GetOrCreateArray(concat_input_name); 145 Array& out_array = model->GetOrCreateArray(concatenation_op->outputs[0]); 157 model->operators.push_back(std::unique_ptr<Operator>(concatenation_op)); 162 Model model; local 164 PrepareModel(&model, axis) 184 Model model; local 206 Model model; local [all...] |
/external/tensorflow/tensorflow/python/keras/saving/ |
saving_utils.py | 16 """Utils related to keras model saving.""" 26 def extract_model_metrics(model): 27 """Convert metrics from a Keras model `compile` API to dictionary. 32 model: A `tf.keras.Model` object. 36 the model does not contain any metrics. 38 if not getattr(model, '_compile_metrics', None): 41 # TODO(psv/kathywu): use this implementation in model to estimator flow. 42 # We are not using model.metrics here because we want to exclude the metrics 44 return {m.name: m for m in model._compile_metric_functions [all...] |
/external/python/google-api-python-client/tests/ |
test_json_model.py | 17 """JSON Model tests 19 Unit tests for the JSON model. 31 import googleapiclient.model 35 from googleapiclient.model import JsonModel 40 class Model(unittest.TestCase): 42 model = JsonModel(data_wrapper=False) 49 headers, unused_params, query, body = model.request( 58 model = JsonModel(data_wrapper=False) 65 headers, unused_params, query, body = model.request( 74 model = JsonModel(data_wrapper=True [all...] |