/external/u-boot/arch/arm/dts/ |
sun8i-h3-nanopi-m1.dts | 46 model = "FriendlyArm NanoPi M1";
|
sun8i-h3-nanopi-neo.dts | 46 model = "FriendlyARM NanoPi NEO";
|
/external/glide/library/src/main/java/com/bumptech/glide/load/model/ |
ModelCache.java | 1 package com.bumptech.glide.load.model; 10 * model, width and height. For a loader that takes a model and returns a url, the cache could be used to safely memoize 13 * @param <A> Some Model type that implements {@link #equals} and {@link #hashCode}. 37 * @param model The model. 43 public B get(A model, int width, int height) { 44 ModelKey<A> key = ModelKey.get(model, width, height); 53 * @param model The model 69 private A model; field in class:ModelCache.ModelKey [all...] |
UriLoader.java | 1 package com.bumptech.glide.load.model; 11 * remote {@link android.net.Uri}s to a wrapped {@link com.bumptech.glide.load.model.ModelLoader} that handles 12 * {@link com.bumptech.glide.load.model.GlideUrl}s. 26 public final DataFetcher<T> getResourceFetcher(Uri model, int width, int height) { 27 final String scheme = model.getScheme(); 31 if (AssetUriParser.isAssetUri(model)) { 32 String path = AssetUriParser.toAssetPath(model); 35 result = getLocalUriFetcher(context, model); 38 result = urlLoader.getResourceFetcher(new GlideUrl(model.toString()), width, height);
|
/external/grpc-grpc/tools/internal_ci/linux/ |
grpc_android.sh | 41 --device model=Nexus6P,version=27,locale=en,orientation=portrait \ 42 --device model=Nexus6P,version=26,locale=en,orientation=portrait \ 43 --device model=Nexus6P,version=25,locale=en,orientation=portrait \ 44 --device model=Nexus6P,version=24,locale=en,orientation=portrait \ 45 --device model=Nexus6P,version=23,locale=en,orientation=portrait \ 46 --device model=Nexus6,version=22,locale=en,orientation=portrait \ 47 --device model=Nexus6,version=21,locale=en,orientation=portrait
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
unroll_batch_matmul.cc | 25 #include "tensorflow/lite/toco/model.h" 35 Model* model, std::vector<std::unique_ptr<Operator>>::iterator* tail_it, 39 const auto& input_array_a = model->GetArray(input_lhs); 40 const auto& input_array_b = model->GetArray(input_rhs); 53 CreateInt32Array(model, batch_name + "/slice_a/slice/begin", 55 CreateInt32Array(model, batch_name + "/slice_a/slice/size", slice_size_a), 57 slice_a_op->outputs = {AvailableArrayName(*model, batch_name + "/slice_a")}; 58 auto& slice_a_op_output = model->GetOrCreateArray(slice_a_op->outputs[0]); 60 *tail_it = model->operators.emplace(*tail_it, slice_a_op) + 1 [all...] |
resolve_squeeze_attributes.cc | 22 #include "tensorflow/lite/toco/model.h" 28 ::tensorflow::Status ResolveSqueezeAttributes::Run(Model* model, 32 auto* squeeze_op = model->operators[op_index].get(); 40 if (CountOpsWithInput(*model, squeeze_op->outputs[0]) == 1) { 41 const auto* next_op = GetOpWithInput(*model, squeeze_op->outputs[0]); 48 *modified = RemoveTrivialPassthroughOp(this, model, op_index);
|
resolve_tensorflow_merge.cc | 21 #include "tensorflow/lite/toco/model.h" 27 ::tensorflow::Status ResolveTensorFlowMerge::Run(Model* model, 31 const auto merge_it = model->operators.begin() + op_index; 51 for (const auto& other_op : model->operators) { 61 model->EraseArray(merge_op->outputs[0]); 62 model->operators.erase(merge_it);
|
identify_lstm_split_inputs.cc | 23 #include "tensorflow/lite/toco/model.h" 28 ::tensorflow::Status SplitLstmCellInputs::Run(Model* model, 33 auto op_it = model->operators.begin() + op_index; 49 *model, curr_op->inputs[LstmCellOperator::WEIGHTS_INPUT]) || 51 *model, curr_op->inputs[LstmCellOperator::BIASES_INPUT])) { 56 if (!model->GetArray(curr_op->outputs[LstmCellOperator::ACTIV_OUTPUT]) 65 int num_input = model->GetArray(curr_op->inputs[LstmCellOperator::DATA_INPUT]) 71 model->GetArray(curr_op->outputs[LstmCellOperator::ACTIV_OUTPUT]) 88 model->GetArray(curr_op->inputs[LstmCellOperator::WEIGHTS_INPUT]) [all...] |
convert_trivial_tile_to_concat.cc | 18 #include "tensorflow/lite/toco/model.h" 24 ::tensorflow::Status ConvertTrivialTileToConcat::Run(Model* model, 28 auto tile_it = model->operators.begin() + op_index; 34 const auto& input_array = model->GetArray(tile_op->inputs[0]); 35 const auto& multiples_array = model->GetArray(tile_op->inputs[1]); 36 const auto& output_array = model->GetArray(tile_op->outputs[0]); 83 if (IsDiscardableArray(*model, tile_op->inputs[1]) && 84 CountOpsWithInput(*model, tile_op->inputs[1]) == 1) { 85 model->EraseArray(tile_op->inputs[1]) [all...] |
ensure_bias_vectors.cc | 21 #include "tensorflow/lite/toco/model.h" 29 int GetOutputDepthFromWeights(const Model& model, const Operator& op) { 31 const auto& weights_shape = model.GetArray(weights_name).shape(); 43 bool ProcessLinearOperator(Model* model, Operator* op) { 49 if (!model->GetArray(weights_name).has_shape()) { 52 const int depth = GetOutputDepthFromWeights(*model, *op); 53 const string& bias_name = AvailableArrayName(*model, output_name + "_bias"); 56 auto& bias_array = model->GetOrCreateArray(bias_name) [all...] |
remove_trivial_reshape.cc | 23 #include "tensorflow/lite/toco/model.h" 31 bool IsReshapeTrivial(const Model& model, const Operator& op, 37 const auto& input_array = model.GetArray(op.inputs[0]); 38 const auto& output_array = model.GetArray(op.outputs[0]); 59 if (CountOpsWithInput(model, op.outputs[0]) == 1) { 60 const auto* next_op = GetOpWithInput(model, op.outputs[0]); 62 if (!IsDiscardableArray(model, next_op->outputs[0])) { 63 // If the |next_op| output is used as a model output we need to preserve 84 ::tensorflow::Status RemoveTrivialReshape::Run(Model* model [all...] |
identify_dilated_conv.cc | 19 #include "tensorflow/lite/toco/model.h" 57 bool ResolveDilatedConv(Model* model, Operator* conv_base_op, Operator* stb_op, 68 auto* post_conv_op = GetOpWithInput(*model, conv_op->outputs[0]); 83 ? GetOpWithInput(*model, post_conv_op->outputs[0]) 84 : GetOpWithInput(*model, conv_op->outputs[0]); 95 ? GetOpWithInput(*model, pad_op->outputs[0]) 97 ? GetOpWithInput(*model, post_conv_op->outputs[0]) 98 : GetOpWithInput(*model, conv_op->outputs[0]); 103 auto final_op = GetOpWithInput(*model, next_op->outputs[0]) [all...] |
identify_l2_normalization.cc | 22 #include "tensorflow/lite/toco/model.h" 31 Model* model, const Operator* op) { 32 auto it = model->operators.begin(); 33 for (; it != model->operators.end(); ++it) { 42 ::tensorflow::Status IdentifyL2Normalization::Run(Model* model, 46 const auto div_it = model->operators.begin() + op_index; 58 GetOpWithOutput(*model, div_or_mul_op->inputs[0]), 59 GetOpWithOutput(*model, div_or_mul_op->inputs[1]) [all...] |
dequantize.cc | 22 #include "tensorflow/lite/toco/model.h" 44 Model* model, const string& array_name) { 45 for (auto it = model->operators.begin(); it != model->operators.end(); ++it) { 52 return model->operators.end(); 55 void ClearArrayQuantizationParams(const string& array_name, Model* model) { 56 auto* array = &model->GetArray(array_name); 58 for (auto& input_array : *model->flags.mutable_input_arrays()) [all...] |
fuse_broadcast_into_following_binary.cc | 21 #include "tensorflow/lite/toco/model.h" 33 bool IsBroadcastingOp(const Model& model, Operator* op) { 54 ::tensorflow::Status FuseBroadcastIntoFollowingBinary::Run(Model* model, 58 const auto binary_it = model->operators.begin() + op_index; 74 GetOpWithOutput(*model, binary_op->inputs[0]), 75 GetOpWithOutput(*model, binary_op->inputs[1]), 79 bool is_op_0_broadcast = op[0] && IsBroadcastingOp(*model, op[0]); 80 bool is_op_1_broadcast = op[1] && IsBroadcastingOp(*model, op[1]) [all...] |
remove_trivial_slice.cc | 23 #include "tensorflow/lite/toco/model.h" 31 bool IsSliceTrivial(const Model& model, const Operator& op, 36 const auto& input_array = model.GetArray(op.inputs[0]); 37 const auto& output_array = model.GetArray(op.outputs[0]); 52 ::tensorflow::Status RemoveTrivialSlice::Run(Model* model, std::size_t op_index, 55 const auto reshape_it = model->operators.begin() + op_index; 61 if (!IsSliceTrivial(*model, *slice_op, this)) { 68 *modified = RemoveTrivialPassthroughOp(this, model, op_index) [all...] |
unfuse_activation_functions.cc | 21 #include "tensorflow/lite/toco/model.h" 28 ::tensorflow::Status UnfuseActivationFunctions::Run(Model* model, 32 const auto it = model->operators.begin() + op_index; 61 model->operators.emplace(it + 1, ac_op); 68 AvailableArrayName(*model, op->outputs[0] + "_unfused"); 69 CHECK(!model->HasArray(tmp_array_name)); 71 const auto& output_array = model->GetArray(op->outputs[0]); 72 auto& tmp_array = model->GetOrCreateArray(tmp_array_name);
|
unpartition_embedding_lookup.cc | 20 #include "tensorflow/lite/toco/model.h" 25 ::tensorflow::Status UnpartitionEmbeddingLookup::Run(Model* model, 51 auto op_it = model->operators.begin() + op_index; 71 auto* op = GetOpWithOutput(*model, indices_partition_output_name); 96 if (!IsConstantParameterArray(*model, indices_partition_op->inputs[0])) { 100 auto& indices_data_array = model->GetArray(indices_partition_op->inputs[0]); 116 auto* op = GetOpWithOutput(*model, gather_output_name); 131 auto* op = GetOpWithOutput(*model, gather_op->inputs[1]); 164 Operator* div_op = GetOpWithOutput(*model, data_partition_op->inputs[0]) [all...] |
/external/glide/library/src/main/java/com/bumptech/glide/load/model/file_descriptor/ |
FileDescriptorStringLoader.java | 1 package com.bumptech.glide.load.model.file_descriptor; 8 import com.bumptech.glide.load.model.GenericLoaderFactory; 9 import com.bumptech.glide.load.model.ModelLoader; 10 import com.bumptech.glide.load.model.ModelLoaderFactory; 11 import com.bumptech.glide.load.model.StringLoader; 21 * The default factory for {@link com.bumptech.glide.load.model.file_descriptor.FileDescriptorStringLoader}s.
|
/external/glide/library/src/main/java/com/bumptech/glide/load/model/stream/ |
MediaStoreStreamLoader.java | 1 package com.bumptech.glide.load.model.stream; 8 import com.bumptech.glide.load.model.ModelLoader; 13 * An {@link com.bumptech.glide.load.model.ModelLoader} that can use media store uris to open pre-generated thumbnails 17 * it falls back to the wrapped {@link com.bumptech.glide.load.model.ModelLoader} to load the 30 public DataFetcher<InputStream> getResourceFetcher(Uri model, int width, int height) { 31 return new MediaStoreThumbFetcher(context, model, uriLoader.getResourceFetcher(model, width, height), width,
|
StreamStringLoader.java | 1 package com.bumptech.glide.load.model.stream; 7 import com.bumptech.glide.load.model.GenericLoaderFactory; 8 import com.bumptech.glide.load.model.ModelLoader; 9 import com.bumptech.glide.load.model.ModelLoaderFactory; 10 import com.bumptech.glide.load.model.StringLoader; 21 * The default factory for {@link com.bumptech.glide.load.model.stream.StreamStringLoader}s.
|
/external/tensorflow/tensorflow/python/keras/engine/ |
correctness_test.py | 40 class MultiInputSubclassed(keras.Model): 41 """Subclassed Model that adds its inputs and then adds a bias.""" 54 """Functional Model that adds its inputs and then adds a bias.""" 60 return keras.Model([input_1, input_2, input_3], output) 68 model = testing_utils.get_model_from_layers([Bias()], input_shape=(1,)) 69 model.compile( 73 return model 78 model = self._get_simple_bias_model() 80 history = model.fit(x, y, batch_size=3, epochs=5) 86 model = self._get_simple_bias_model( [all...] |
/external/androidplot/AndroidPlot-Core/src/main/java/com/androidplot/ui/ |
FixedTableModel.java | 55 private FixedTableModel model;
field in class:FixedTableModel.FixedTableModelIterator 60 protected FixedTableModelIterator(FixedTableModel model, RectF tableRect, int numElements) {
61 this.model = model;
67 tableRect.left + model.getCellWidth(),
68 tableRect.top + model.getCellHeight());
78 return lastRect.bottom + model.getCellHeight() > tableRect.height();
82 return lastRect.right + model.getCellWidth() > tableRect.width();
95 switch (model.getOrder()) {
|
/external/desugar/java/com/google/devtools/common/options/processor/ |
ProcessorUtils.java | 18 import javax.lang.model.element.AnnotationMirror; 19 import javax.lang.model.element.AnnotationValue; 20 import javax.lang.model.element.Element; 21 import javax.lang.model.element.ExecutableElement; 22 import javax.lang.model.element.TypeElement; 23 import javax.lang.model.type.DeclaredType; 24 import javax.lang.model.type.TypeMirror; 25 import javax.lang.model.util.Elements; 26 import javax.lang.model.util.Types; 28 /** Convenient utilities for dealing with the javax.lang.model types. * [all...] |