/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
resolve_gather_attributes.cc | 21 #include "tensorflow/lite/toco/model.h" 27 ::tensorflow::Status ResolveGatherAttributes::Run(Model* model, 31 auto* gather_op = model->operators[op_index].get(); 41 if (!IsConstantParameterArray(*model, op->inputs[2])) 44 const auto& indices_array = model->GetArray(op->inputs[2]); 52 DeleteArrayIfUsedOnce(op->inputs[2], model);
|
quantize.cc | 25 #include "tensorflow/lite/toco/model.h" 83 const MinMax& GetOrComputeMinMax(Model* model, const string& array_name) { 84 auto& array = model->GetArray(array_name); 184 GraphTransformation* transformation, Model* model, const Operator& op, 188 auto& array = model->GetArray(input); 218 model->GetArray(op.inputs[activations_input_index]); 219 const auto& input_weights = model->GetArray(op.inputs[weights_input_index]); 239 const MinMax& minmax = GetOrComputeMinMax(model, input) [all...] |
fuse_binary_into_following_affine.cc | 22 #include "tensorflow/lite/toco/model.h" 31 void FuseAddOrSubParamsIntoFollowingAffine(Model* model, Operator* following_op, 45 const auto& weights = model->GetArray(following_op->inputs[1]); 46 auto& bias = model->GetArray(following_op->inputs[2]); 49 model->GetArray(add_or_sub_op->inputs[index_of_constant_input]); 113 void FuseMulOrDivParamsIntoFollowingAffine(Model* model, Operator* following_op, 125 auto& weights = model->GetArray(weights_name); 126 DropMinMax(model, weights_name) [all...] |
resolve_batch_to_space_nd_attributes.cc | 21 #include "tensorflow/lite/toco/model.h" 27 ::tensorflow::Status ResolveBatchToSpaceNDAttributes::Run(Model* model, 31 const auto op_it = model->operators.begin() + op_index; 44 if (!IsConstantParameterArray(*model, op->inputs[1]) || 45 !IsConstantParameterArray(*model, op->inputs[2])) 49 const auto& crops_array = model->GetArray(op->inputs[2]); 65 const auto& block_shape_array = model->GetArray(op->inputs[1]);
|
resolve_fake_quant_args_from_vars.cc | 22 #include "tensorflow/lite/toco/model.h" 28 ::tensorflow::Status ResolveFakeQuantArgsFromVars::Run(Model* model, 32 const auto fakequant_it = model->operators.begin() + op_index; 48 if (!IsConstantParameterArray(*model, fakequant_op->inputs[i])) { 54 const auto& min_array = model->GetArray(fakequant_op->inputs[1]); 55 const auto& max_array = model->GetArray(fakequant_op->inputs[2]); 77 DeleteArrayIfUsedOnce(fakequant_op->inputs[i], model);
|
resolve_space_to_batch_nd_attributes.cc | 21 #include "tensorflow/lite/toco/model.h" 27 ::tensorflow::Status ResolveSpaceToBatchNDAttributes::Run(Model* model, 31 const auto op_it = model->operators.begin() + op_index; 47 if (!IsConstantParameterArray(*model, op->inputs[block_shape_index]) || 48 !IsConstantParameterArray(*model, op->inputs[paddings_index])) 52 const auto& paddings_array = model->GetArray(op->inputs[paddings_index]); 69 model->GetArray(op->inputs[block_shape_index]);
|
/external/tensorflow/tensorflow/lite/nnapi/ |
NeuralNetworksShim.h | 139 * The model should be constructed with calls to 143 * <p>{@link ANeuralNetworksModel_finish} should be called once the model 146 * <p>{@link ANeuralNetworksModel_free} should be called once the model 149 * @param model The {@link ANeuralNetworksModel} to be created. 154 inline int ANeuralNetworksModel_create(ANeuralNetworksModel** model) { 156 EXECUTE_FUNCTION_RETURN(model); 160 * Destroy a model. 162 * The model need not have been finished by a call to 167 * @param model The model to be destroyed. Passing NULL is acceptable an [all...] |
/external/tensorflow/tensorflow/python/keras/engine/ |
training_arrays.py | 45 def model_iteration(model, 69 model: Keras Model instance. 114 - In PREDICT mode: Outputs of the Model called on inputs. 138 input_iterator = _get_iterator(inputs, model._distribution_strategy) 144 if model._distribution_strategy: 146 strategy=model._distribution_strategy, 151 f = _make_execution_function(model, mode) 168 ins = _prepare_feed_values(model, inputs, targets, sample_weights, mode) 189 val_iterator = _get_iterator(val_inputs, model._distribution_strategy [all...] |
/external/tensorflow/tensorflow/contrib/eager/python/examples/resnet50/ |
resnet50_test.py | 15 """Tests and benchmarks for the ResNet50 model, executed eagerly.""" 53 def compute_gradients(model, images, labels, num_replicas=1): 55 logits = model(images, training=True) 66 grads = grad_tape.gradient(loss, model.variables) 70 def apply_gradients(model, optimizer, gradients): 71 optimizer.apply_gradients(zip(gradients, model.variables)) 78 model = resnet50.ResNet50(data_format) 80 model.call = tfe.function(model.call) 83 output = model(images, training=False [all...] |
/external/tensorflow/tensorflow/python/keras/ |
metrics_correctness_test.py | 15 """Tests metrics correctness using Keras model.""" 46 model = testing_utils.get_multi_io_model(branch_a, branch_b) 47 model.compile( 55 return model 138 model = self._get_multi_io_model() 139 history = model.fit([self.x, self.x], [self.y, self.y], 151 model = self._get_multi_io_model() 152 eval_result = model.evaluate([self.x, self.x], [self.y, self.y], 164 mse1 = model.evaluate([x, x], [y, y], sample_weight=[w, w], batch_size=5)[3] 165 mse2 = model.evaluate([x, x], [y, y], sample_weight=[w, w] [all...] |
/external/glide/library/src/main/java/com/bumptech/glide/load/resource/gif/ |
GifFrameModelLoader.java | 6 import com.bumptech.glide.load.model.ModelLoader; 11 public DataFetcher<GifDecoder> getResourceFetcher(GifDecoder model, int width, int height) { 12 return new GifFrameDataFetcher(model);
|
/external/junit/src/main/java/org/junit/internal/runners/statements/ |
RunAfters.java | 6 import org.junit.runners.model.FrameworkMethod; 7 import org.junit.runners.model.MultipleFailureException; 8 import org.junit.runners.model.Statement;
|
/external/tensorflow/tensorflow/examples/saved_model/integration_tests/ |
use_text_rnn_model.py | 15 """Load and use RNN model stored as a SavedModel.""" 37 model = tf.saved_model.load(FLAGS.model_dir) 38 model.train(tf.constant(sentences)) 39 decoded = model.decode_greedy(
|
/external/tensorflow/tensorflow/lite/examples/minimal/ |
minimal.cc | 18 #include "tensorflow/lite/model.h" 21 // This is an example that is minimal to read a model 29 // Usage: minimal <tflite model> 41 fprintf(stderr, "minimal <tflite model>\n"); 46 // Load model 47 std::unique_ptr<tflite::FlatBufferModel> model = local 49 TFLITE_MINIMAL_CHECK(model != nullptr); 53 InterpreterBuilder builder(*model, resolver);
|
/external/tensorflow/tensorflow/lite/tools/ |
gen_op_registration.cc | 19 #include "tensorflow/lite/model.h" 31 void ReadOpsFromModel(const ::tflite::Model* model, 34 if (!model) return; 35 auto opcodes = model->operator_codes();
|
/external/testng/src/main/java/org/testng/mustache/ |
Mustache.java | 12 return run(template, new Model(m)); 15 String run(String template, Model model) throws IOException { 43 Value value = model.resolveValue(conditionalVariable); 54 model.push(conditionalVariable, o); 55 String r = new Mustache().run(subTemplate, model); 56 model.popSubModel(); 57 chunks.add(new StringChunk(model, r)); 63 model.push(conditionalVariable, v); 64 String r = new Mustache().run(subTemplate, model); [all...] |
/external/u-boot/board/gateworks/gw_ventana/ |
eeprom.c | 47 if (info->model[0] != 'G' || info->model[1] != 'W') { 48 puts("EEPROM: Invalid Model in EEPROM\n"); 62 baseboard = info->model[3]; 63 if (strncasecmp((const char *)info->model, "GW5400-A", 8) == 0) 84 if (info->model[4] == '1') { 87 } else if (info->model[4] == '2') { 90 } else if (info->model[4] == '3') { 96 if (info->model[4] == '0') 100 if (info->model[4] == '0' && info->model[5] == '3' [all...] |
/external/dagger2/compiler/src/main/java/dagger/internal/codegen/ |
InjectFieldValidator.java | 21 import javax.lang.model.element.AnnotationMirror; 22 import javax.lang.model.element.Modifier; 23 import javax.lang.model.element.VariableElement; 31 import static javax.lang.model.element.Modifier.FINAL; 32 import static javax.lang.model.element.Modifier.PRIVATE; 33 import static javax.lang.model.element.Modifier.STATIC;
|
/external/deqp-deps/SPIRV-Tools/source/val/ |
validate_barriers.cpp | 45 [](SpvExecutionModel model, std::string* message) { 46 if (model != SpvExecutionModelTessellationControl && 47 model != SpvExecutionModelGLCompute && 48 model != SpvExecutionModelKernel && 49 model != SpvExecutionModelTaskNV && 50 model != SpvExecutionModelMeshNV) {
|
/external/glide/library/src/main/java/com/bumptech/glide/load/model/file_descriptor/ |
FileDescriptorUriLoader.java | 1 package com.bumptech.glide.load.model.file_descriptor; 11 import com.bumptech.glide.load.model.GenericLoaderFactory; 12 import com.bumptech.glide.load.model.GlideUrl; 13 import com.bumptech.glide.load.model.ModelLoader; 14 import com.bumptech.glide.load.model.ModelLoaderFactory; 15 import com.bumptech.glide.load.model.UriLoader; 23 * The default factory for {@link com.bumptech.glide.load.model.file_descriptor.FileDescriptorUriLoader}s.
|
/external/glide/library/src/main/java/com/bumptech/glide/load/model/stream/ |
StreamUriLoader.java | 1 package com.bumptech.glide.load.model.stream; 10 import com.bumptech.glide.load.model.GenericLoaderFactory; 11 import com.bumptech.glide.load.model.GlideUrl; 12 import com.bumptech.glide.load.model.ModelLoader; 13 import com.bumptech.glide.load.model.ModelLoaderFactory; 14 import com.bumptech.glide.load.model.UriLoader; 26 * THe default factory for {@link com.bumptech.glide.load.model.stream.StreamUriLoader}s.
|
/external/robolectric-shadows/processor/src/main/java/org/robolectric/annotation/processing/validator/ |
FoundOnImplementsValidator.java | 4 import javax.lang.model.element.AnnotationMirror; 5 import javax.lang.model.element.Element; 6 import javax.lang.model.element.ExecutableElement; 7 import javax.lang.model.element.TypeElement; 8 import javax.lang.model.element.VariableElement; 9 import javax.lang.model.type.TypeMirror;
|
/external/swiftshader/third_party/SPIRV-Tools/source/val/ |
validate_barriers.cpp | 45 [](SpvExecutionModel model, std::string* message) { 46 if (model != SpvExecutionModelTessellationControl && 47 model != SpvExecutionModelGLCompute && 48 model != SpvExecutionModelKernel && 49 model != SpvExecutionModelTaskNV && 50 model != SpvExecutionModelMeshNV) {
|
/external/tensorflow/tensorflow/contrib/distribute/python/examples/ |
keras_model_with_estimator.py | 15 """An example of training tf.keras Model using MirroredStrategy.""" 45 # Define a Keras Model. 46 model = tf.keras.Sequential() 47 model.add(tf.keras.layers.Dense(16, activation='relu', input_shape=(10,))) 48 model.add(tf.keras.layers.Dense(1, activation='sigmoid')) 50 # Compile the model. 52 model.compile(loss='binary_crossentropy', optimizer=optimizer) 53 model.summary() 56 # Define a DistributionStrategy and convert the Keras Model to an 63 keras_model=model, config=config, model_dir=model_dir [all...] |
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
main.py | 44 model = revnet.RevNet(config=config) 52 optimizer=optimizer, model=model, optimizer_step=global_step) 55 model.call = tfe.defun(model.call) 56 model.compute_gradients = tfe.defun(model.compute_gradients) 57 model.get_moving_stats = tfe.defun(model.get_moving_stats) 58 model.restore_moving_stats = tfe.defun(model.restore_moving_stats [all...] |