/external/u-boot/arch/arm/dts/ |
at91sam9x25.dtsi | 16 model = "Atmel AT91SAM9X25 SoC";
|
at91sam9x35.dtsi | 15 model = "Atmel AT91SAM9X35 SoC";
|
at91sam9x35ek.dts | 15 model = "Atmel AT91SAM9X35-EK";
|
sun8i-a23-inet86dz.dts | 48 model = "INet-86DZ Rev 01";
|
sun8i-a83t-allwinner-h8homlet-v2.dts | 48 model = "Allwinner A83T H8Homlet Proto Dev Board v2.0";
|
sun8i-a83t-bananapi-m3.dts | 48 model = "Allwinner A83T BananaPi M3 Board v1.2";
|
sun8i-a83t-cubietruck-plus.dts | 49 model = "Cubietech Cubietruck Plus";
|
sun8i-a83t-tbs-a711.dts | 48 model = "TBS A711 Tablet";
|
sun8i-r40-bananapi-m2-ultra.dts | 47 model = "Banana Pi BPI-M2-Ultra";
|
/external/u-boot/tools/ |
microcode-tool.py | 17 """Holds information about the microcode for a particular model of CPU. 22 model: Model code string (this is cpuid(1).eax, e.g. '206a7') 35 # The model is in the 4rd hex word 36 self.model = '%x' % self.words[3] 121 def List(date, microcodes, model): 127 model: Model string to search for, or None 130 if model: 131 mcode_list, tried = FindMicrocode(microcodes, model.lower() [all...] |
/external/tensorflow/tensorflow/lite/toco/ |
export_tensorflow.cc | 32 #include "tensorflow/lite/toco/model.h" 81 tensorflow::DataType GetTensorFlowDataType(const Model& model, 83 return GetTensorFlowDataType(model.GetArray(array_name).data_type, 178 void ConvertFloatTensorConst(const Model& model, const string& name, 185 CHECK(model.HasArray(name)); 186 const auto& input_array = model.GetArray(name); 196 void ConvertFloatTensorConst(const Model& model, const string& name [all...] |
/external/tensorflow/tensorflow/python/training/tracking/ |
data_structures_test.py | 42 class HasList(training.Model): 78 model = HasList() 79 output = model(array_ops.ones([32, 2])) 81 self.assertEqual(11, len(model.layers)) 82 self.assertEqual(10, len(model.layer_list.layers)) 85 model.layers, 86 model.layer_list.layers + model.layers_with_updates) 88 self.assertEqual(3 + index, model.layer_list.layers[index].units) 89 self.assertEqual(2, len(model._checkpoint_dependencies) [all...] |
/external/tensorflow/tensorflow/contrib/distribute/python/ |
keras_test.py | 57 model = keras.models.Sequential() 58 model.add(keras.layers.Dense(16, activation='relu', input_shape=_INPUT_SIZE)) 59 model.add(keras.layers.Dropout(0.1)) 60 model.add(keras.layers.Dense(_NUM_CLASS, activation='softmax')) 61 return model 69 model = keras.models.Model(inputs=[a], outputs=[b]) 70 return model 75 class _SimpleMLP(keras.Model): 94 model = keras.models.Model [all...] |
/external/androidplot/AndroidPlot-Core/src/test/java/com/androidplot/ui/ |
DynamicTableModelTest.java | 40 TableModel model = new DynamicTableModel(5, 5, TableOrder.COLUMN_MAJOR);
local 48 DynamicTableModel model = new DynamicTableModel(5, 5);
local 50 RectF cellRect = model.getCellRect(tableRect, 10);
54 model = new DynamicTableModel(5, 0);
55 cellRect = model.getCellRect(tableRect, 10);
59 model = new DynamicTableModel(0, 5);
60 cellRect = model.getCellRect(tableRect, 10);
65 TableModel model = new DynamicTableModel(2, 2);
local 70 Iterator<RectF> it = model.getIterator(tableRect, 10);
80 model = new DynamicTableModel(2, 0); 96 TableModel model = new DynamicTableModel(2, 2); local 154 TableModel model = new DynamicTableModel(2, 2, TableOrder.COLUMN_MAJOR); local 201 TableModel model = new DynamicTableModel(0, 1); local [all...] |
/external/deqp-deps/SPIRV-Tools/source/val/ |
validate_mode_setting.cpp | 66 << "Fragment execution model entry points can only specify " 74 << "Fragment execution model entry points require either an " 90 << "Fragment execution model entry points can specify at most " 110 << "Tessellation execution model entry points can specify at " 127 << "Tessellation execution model entry points can specify at " 142 << "Tessellation execution model entry points can specify at " 163 << "Geometry execution model entry points must specify " 181 << "Geometry execution model entry points must specify " 210 << "In the Vulkan environment, GLCompute execution model " 249 [](const SpvExecutionModel& model) { [all...] |
/external/swiftshader/third_party/SPIRV-Tools/source/val/ |
validate_mode_setting.cpp | 66 << "Fragment execution model entry points can only specify " 74 << "Fragment execution model entry points require either an " 90 << "Fragment execution model entry points can specify at most " 110 << "Tessellation execution model entry points can specify at " 127 << "Tessellation execution model entry points can specify at " 142 << "Tessellation execution model entry points can specify at " 163 << "Geometry execution model entry points must specify " 181 << "Geometry execution model entry points must specify " 210 << "In the Vulkan environment, GLCompute execution model " 249 [](const SpvExecutionModel& model) { [all...] |
/external/tensorflow/tensorflow/lite/toco/tflite/ |
import.cc | 18 #include "tensorflow/lite/model.h" 30 void LoadTensorsTable(const ::tflite::Model& input_model, 40 void LoadOperatorsTable(const ::tflite::Model& input_model, 55 void ImportTensors(const ::tflite::Model& input_model, Model* model) { 61 Array& array = model->GetOrCreateArray(input_tensor->name()->c_str()); 101 const ::tflite::Model& input_model, 104 const details::OperatorsTable& operators_table, Model* model) { 217 std::unique_ptr<Model> model; local [all...] |
/external/tensorflow/tensorflow/python/keras/layers/ |
convolutional_recurrent_test.py | 70 model = keras.models.Model(x, states[0]) 71 state = model.predict(inputs) 101 model = keras.models.Sequential() 111 model.add(layer) 112 model.compile(optimizer='sgd', loss='mse') 113 out1 = model.predict(np.ones_like(inputs)) 116 model.train_on_batch(np.ones_like(inputs), 118 out2 = model.predict(np.ones_like(inputs)) 124 # (even though the model itself didn't change [all...] |
gru_test.py | 52 model = keras.models.Sequential() 53 model.add(layer) 54 model.compile( 58 model.train_on_batch(x, y) 101 gru_model = keras.models.Model(inputs, output) 112 model = keras.models.Sequential() 113 model.add(keras.layers.Masking(input_shape=(3, 4))) 114 model.add(layer_class(units=5, return_sequences=True, unroll=False)) 115 model.compile( 119 model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1 [all...] |
simplernn_test.py | 51 model = keras.models.Sequential() 52 model.add(layer) 53 model.compile('rmsprop', 'mse') 56 model.train_on_batch(x, y) 106 model = keras.models.Sequential() 107 model.add(keras.layers.Masking(input_shape=(3, 4))) 108 model.add(layer_class(units=5, return_sequences=True, unroll=False)) 109 model.compile(loss='categorical_crossentropy', optimizer='rmsprop') 110 model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) 147 model = keras.models.Sequential( [all...] |
/external/tensorflow/tensorflow/python/keras/saving/ |
saved_model_test.py | 16 """Tests for saving/loading function for keras Model.""" 56 model = keras.models.Sequential() 57 model.add(keras.layers.Dense(2, input_shape=(3,))) 58 model.add(keras.layers.RepeatVector(3)) 59 model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) 60 model.compile( 67 model.train_on_batch(x, y) 69 ref_y = model.predict(x) 72 keras_saved_model.export_saved_model(model, saved_model_dir) 81 model = keras.models.Sequential( [all...] |
/external/glide/library/src/main/java/com/bumptech/glide/ |
RequestManager.java | 11 import com.bumptech.glide.load.model.ModelLoader; 12 import com.bumptech.glide.load.model.file_descriptor.FileDescriptorModelLoader; 13 import com.bumptech.glide.load.model.stream.MediaStoreStreamLoader; 14 import com.bumptech.glide.load.model.stream.StreamByteArrayLoader; 15 import com.bumptech.glide.load.model.stream.StreamModelLoader; 90 * @param <T> The type of the model. 174 * Returns a request builder that uses the given {@link com.bumptech.glide.load.model.ModelLoader} to fetch a 181 * @param modelLoader The {@link ModelLoader} class to use to load the model. 183 * @param <A> The type of the model to be loaded. 191 * Returns a request builder that uses the given {@link com.bumptech.glide.load.model.stream.StreamModelLoader} t 693 private final A model; field in class:RequestManager.GenericModelRequest.GenericTypeRequest [all...] |
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
revnet_test.py | 32 def train_one_iter(model, inputs, labels, optimizer, global_step=None): 34 logits, saved_hidden = model(inputs) 35 grads, loss = model.compute_gradients( 38 zip(grads, model.trainable_variables), global_step=global_step) 57 self.model = revnet.RevNet(config=config) 67 del self.model 76 y, _ = self.model(self.x, training=False) 104 _, saved_hidden = self.model(self.x) # Initialize model 105 grads, loss = self.model.compute_gradients [all...] |
/external/tensorflow/tensorflow/lite/ |
model_test.cc | 23 #include "tensorflow/lite/model.h" 75 // Make sure a model with nothing in it loads properly. 77 auto model = FlatBufferModel::BuildFromFile( local 79 ASSERT_TRUE(model); 80 // Now try to build it into a model. 82 ASSERT_EQ(InterpreterBuilder(*model, TrivialResolver())(&interpreter), 85 ASSERT_NE(InterpreterBuilder(*model, TrivialResolver())(nullptr), kTfLiteOk); 109 auto model = FlatBufferModel::BuildFromFile( local 111 ASSERT_TRUE(model); 114 ASSERT_NE(InterpreterBuilder(*model, TrivialResolver(nullptr))(&interpreter) 121 auto model = FlatBufferModel::BuildFromFile( local 201 auto model = FlatBufferModel::BuildFromFile( local 271 auto model = FlatBufferModel::BuildFromFile( local 286 auto model = FlatBufferModel::BuildFromFile( local 308 auto model = FlatBufferModel::BuildFromModel(model_fb); local [all...] |
/external/tensorflow/tensorflow/python/keras/engine/ |
training_eager.py | 43 def _eager_metrics_fn(model, outputs, targets, sample_weights=None, masks=None): 44 """Calculates the metrics for each output of the given model. 47 model: The model on which metrics are being calculated. 48 outputs: The outputs of the given model. 49 targets: The predictions or targets of the given model. 54 Returns the metric results for each output of the model. 59 metric_results = model._handle_metrics( 64 def _model_loss(model, 70 """Calculates the loss for a given model [all...] |