/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/layers/ |
decisions_to_data_test.py | 38 num_features=31, 55 [[random.uniform(-1, 1) for i in range(self.params.num_features)]
|
decisions_to_data.py | 42 shape=[params.num_nodes, params.num_features], 128 shape=[params.num_nodes, params.num_features], 166 shape=[params.num_nodes, params.num_features], 218 shape=[params.num_nodes, params.num_features],
|
/external/tensorflow/tensorflow/core/tpu/ |
tpu_embedding_output_layout_utils.cc | 37 two_d->set_dim0_size_per_sample(table.num_features()); 46 for (int feature_index = 0; feature_index < table.num_features();
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
ar_model.py | 55 num_features, 62 num_features: number of input features per time step. 78 self._mean_transform = core.Dense(num_features * output_window_size, 80 self._covariance_transform = core.Dense(num_features * output_window_size, 82 self._prediction_shape = [-1, output_window_size, num_features] 101 [batch size, output window size, num_features], where num_features is the 137 num_features, 144 num_features: number of input features per time step. 156 self._mean_transform = core.Dense(num_features, [all...] |
math_utils_test.py | 278 self, stat_object, num_features, dtype, give_full_data, 285 + numpy.arange(num_features, dtype=numpy_dtype)[None, ...])[None]) 306 range(num_features) + numpy.mean(numpy.arange(chunk_size))[None], 311 [num_features]), 335 for num_features in [1, 2, 3]: 338 num_features=num_features, dtype=dtype), 339 num_features=num_features,
|
ar_model_test.py | 116 num_features=2, 223 periodicities=10, num_features=1, 245 num_features=1, 266 num_features=1, 287 num_features=1, 322 [1, 3, 1], # batch, window, num_features. The window size has 2 337 num_features=1, 356 [1, 2, 1], # batch, window, num_features. The window has two cut
|
/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/core/ops/ |
hard_routing_function_op.cc | 111 const int32 num_features = variable 147 tree_biases(j), num_features); 153 for (int k = 0; k < num_features; k++) {
|
k_feature_routing_function_op.cc | 117 const int32 num_features = variable 140 tensorforest::GetFeatureSet(layer_num_, i, random_seed_, num_features, 149 tree_biases(j), num_features, num_features_per_node_);
|
routing_function_op.cc | 102 const int32 num_features = variable 129 tree_biases(j), num_features);
|
routing_gradient_op.cc | 101 const int32 num_features = variable 129 tree_biases(j), num_features);
|
stochastic_hard_routing_function_op.cc | 122 const int32 num_features = variable 161 tree_biases(j), num_features);
|
/external/tensorflow/tensorflow/contrib/timeseries/examples/ |
lstm.py | 51 def __init__(self, num_units, num_features, exogenous_feature_columns=None, 60 num_features: The dimensionality of the time series (features per 72 num_features=num_features, 103 func_=functools.partial(tf.layers.dense, units=self.num_features), 112 tf.zeros([self.num_features], dtype=self.dtype), 133 current_values: A [batch size, self.num_features] floating point Tensor 203 model=_LSTMModel(num_features=5, num_units=128,
|
known_anomaly.py | 62 num_features=1, 77 num_features=1,
|
predict.py | 54 periodicities=100, num_features=1, cycle_num_latent_values=5) 64 num_features=1,
|
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/ |
eval_utils_impl.py | 59 num_features = image_shape[0] * image_shape[1] * num_channels 60 if int(input_tensor.shape[1]) != num_features:
|
/external/harfbuzz_ng/src/ |
hb-directwrite.cc | 514 unsigned int num_features, 608 typographic_features.featureCount = num_features; 609 if (num_features) 611 typographic_features.features = new DWRITE_FONT_FEATURE[num_features]; 612 for (unsigned int i = 0; i < num_features; ++i) 828 if (num_features) 840 unsigned int num_features) 843 features, num_features, 0); 854 unsigned int num_features, 860 features, num_features, &shapers) [all...] |
hb-fallback-shape.cc | 75 unsigned int num_features HB_UNUSED)
|
hb-shape-plan.h | 100 unsigned int num_features);
|
/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/ |
hybrid_layer_test.py | 34 num_features=7,
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/state_space_models/ |
state_space_model_test.py | 69 size=(configuration.num_features, state_dimension)).astype( 128 num_features=1)) 177 dtype=dtypes.float64, num_features=1)) 257 dtype=dtypes.float64, num_features=1)) 368 dtype=dtype, num_features=1)) 389 dtype=dtype, num_features=1)) 422 dtype=dtype, num_features=1)) 445 dtype=dtype, num_features=1)) 690 num_features=1) 692 for feature in range(configuration.num_features) [all...] |
state_space_model.py | 51 "num_features", "use_observation_noise", "dtype", 64 num_features=1, 82 num_features: Output dimension for model 165 cls, num_features, use_observation_noise, dtype, 235 num_features=configuration.num_features, 472 .concatenate([self.num_features, self.num_features])) 474 (self.num_features,))) 476 (self.num_features, self.num_features)) [all...] |
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
mixture_test.py | [all...] |
/external/tensorflow/tensorflow/contrib/eager/python/examples/linear_regression/ |
linear_regression.py | 105 def synthetic_dataset_helper(w, b, num_features, noise_level, batch_size, 113 x = tf.random_normal([batch_size, num_features])
|
linear_regression_graph_test.py | 35 num_features=3,
|
/external/tensorflow/tensorflow/lite/experimental/microfrontend/ops/ |
audio_microfrontend_op.cc | 100 DimensionHandle num_features = ctx->MakeDim(num_channels); 102 ctx->Multiply(num_features, stack_size, &num_features)); 104 ShapeHandle output = ctx->MakeShape({num_frames, num_features});
|