Home | History | Annotate | Download | only in xmpmeta
      1 #include "xmpmeta/md5.h"
      2 
      3 #include <string.h>  // for memcpy().
      4 
      5 #include <vector>
      6 
      7 #include "base/integral_types.h"
      8 #include "strings/escaping.h"
      9 
     10 namespace dynamic_depth {
     11 namespace xmpmeta {
     12 namespace {
     13 
     14 const int kMd5DigestSize = 16;
     15 
     16 typedef struct MD5Context MD5_CTX;
     17 
     18 struct MD5Context {
     19   uint32 buf[4];
     20   uint32 bits[2];
     21   uint32 in[16];
     22 };
     23 
     24 void MD5Init(struct MD5Context* context);
     25 void MD5Update(struct MD5Context* context, const uint8* data, size_t len);
     26 void MD5Final(unsigned char digest[16], struct MD5Context* ctx);
     27 void MD5Transform(uint32 buf[4], const uint32 in[16]);
     28 
     29 // Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
     30 // initialization constants.
     31 void MD5Init(MD5Context* context) {
     32   context->buf[0] = 0x67452301;
     33   context->buf[1] = 0xefcdab89;
     34   context->buf[2] = 0x98badcfe;
     35   context->buf[3] = 0x10325476;
     36   context->bits[0] = 0;
     37   context->bits[1] = 0;
     38 }
     39 
     40 // Update context to reflect the concatenation of another buffer full of bytes.
     41 void MD5Update(MD5Context* context, const uint8* data, size_t len) {
     42   // Update bitcount.
     43   uint32 t = context->bits[0];
     44   if ((context->bits[0] = t + (static_cast<uint32>(len) << 3)) < t) {
     45     context->bits[1]++;  // Carry from low to high.
     46   }
     47   context->bits[1] += len >> 29;
     48   t = (t >> 3) & 0x3f;  // Bytes already in shsInfo->data.
     49 
     50   // Handle any leading odd-sized chunks.
     51   if (t) {
     52     uint8* p = reinterpret_cast<uint8*>(context->in) + t;
     53 
     54     t = 64 - t;
     55     if (len < t) {
     56       memcpy(p, data, len);
     57       return;
     58     }
     59     memcpy(p, data, t);
     60     MD5Transform(context->buf, context->in);
     61     data += t;
     62     len -= t;
     63   }
     64 
     65   // Process data in 64-byte chunks.
     66   while (len >= 64) {
     67     memcpy(context->in, data, 64);
     68     MD5Transform(context->buf, context->in);
     69     data += 64;
     70     len -= 64;
     71   }
     72 
     73   // Handle any remaining bytes of data.
     74   memcpy(context->in, data, len);
     75 }
     76 
     77 // Final wrapup - pad to 64-byte boundary with the bit pattern.
     78 // 1 0* (64-bit count of bits processed, MSB-first)
     79 void MD5Final(uint8 digest[16], MD5Context* ctx) {
     80   // Compute number of bytes mod 64.
     81   uint32 count = (ctx->bits[0] >> 3) & 0x3F;
     82 
     83   // Set the first char of padding to 0x80.  This is safe since there is
     84   // always at least one byte free.
     85   uint8* p = reinterpret_cast<uint8*>(ctx->in) + count;
     86   *p++ = 0x80;
     87 
     88   // Bytes of padding needed to make 64 bytes.
     89   count = 64 - 1 - count;
     90 
     91   // Pad out to 56 mod 64.
     92   if (count < 8) {
     93     // Two lots of padding:  Pad the first block to 64 bytes.
     94     memset(p, 0, count);
     95     MD5Transform(ctx->buf, ctx->in);
     96 
     97     // Now fill the next block with 56 bytes.
     98     memset(ctx->in, 0, 56);
     99   } else {
    100     // Pad block to 56 bytes.
    101     memset(p, 0, count - 8);
    102   }
    103 
    104   // Append length in bits and transform.
    105   ctx->in[14] = ctx->bits[0];
    106   ctx->in[15] = ctx->bits[1];
    107 
    108   MD5Transform(ctx->buf, ctx->in);
    109   memcpy(digest, ctx->buf, 16);
    110   memset(ctx, 0, sizeof(*ctx));  // In case it's sensitive.
    111 }
    112 
    113 // The four core functions - F1 is optimized somewhat.
    114 // #define F1(x, y, z) (x & y | ~x & z)
    115 #define F1(x, y, z) (z ^ (x & (y ^ z)))
    116 #define F2(x, y, z) F1(z, x, y)
    117 #define F3(x, y, z) (x ^ y ^ z)
    118 #define F4(x, y, z) (y ^ (x | ~z))
    119 
    120 // This is the central step in the MD5 algorithm.
    121 #define MD5STEP(f, w, x, y, z, data, s) \
    122   (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
    123 
    124 #if defined(__clang__) && defined(__has_attribute)
    125 #if __has_attribute(no_sanitize)
    126 #define DDEPTH_NO_UNSIGNED_OVERFLOW_CHECK \
    127   __attribute__((no_sanitize("unsigned-integer-overflow")))
    128 #endif
    129 #endif
    130 
    131 #ifndef DDEPTH_NO_UNSIGNED_OVERFLOW_CHECK
    132 #define DDEPTH_NO_UNSIGNED_OVERFLOW_CHECK
    133 #endif
    134 
    135 // The core of the MD5 algorithm, this alters an existing MD5 hash to
    136 // reflect the addition of 16 longwords of new data.  MD5Update blocks
    137 // the data and converts bytes into longwords for this routine.
    138 DDEPTH_NO_UNSIGNED_OVERFLOW_CHECK void MD5Transform(uint32 buf[4],
    139                                                     const uint32 in[16]) {
    140   uint32 a = buf[0];
    141   uint32 b = buf[1];
    142   uint32 c = buf[2];
    143   uint32 d = buf[3];
    144 
    145   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    146   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    147   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    148   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    149   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    150   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    151   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    152   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    153   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    154   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    155   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    156   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    157   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    158   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    159   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    160   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
    161 
    162   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    163   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    164   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    165   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    166   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    167   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    168   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    169   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    170   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    171   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    172   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    173   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    174   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    175   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    176   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    177   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    178 
    179   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    180   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    181   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    182   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    183   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    184   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    185   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    186   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    187   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    188   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    189   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    190   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    191   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    192   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    193   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    194   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
    195 
    196   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    197   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    198   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    199   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    200   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    201   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    202   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    203   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    204   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    205   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    206   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    207   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    208   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    209   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    210   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    211   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
    212   buf[0] += a;
    213   buf[1] += b;
    214   buf[2] += c;
    215   buf[3] += d;
    216 }
    217 
    218 void MD5(const uint8_t* to_hash, size_t to_hash_length, uint8_t* output) {
    219   MD5Context md5_context;
    220   MD5Init(&md5_context);
    221   MD5Update(&md5_context, to_hash, to_hash_length);
    222   MD5Final(output, &md5_context);
    223 }
    224 
    225 }  // namespace
    226 
    227 string MD5Hash(const string& to_hash) {
    228   std::vector<uint8_t> buffer;
    229   buffer.resize(kMd5DigestSize);
    230   MD5(reinterpret_cast<const uint8_t*>(to_hash.data()), to_hash.length(),
    231       &buffer[0]);
    232   return dynamic_depth::b2a_hex(reinterpret_cast<const char*>(&buffer[0]),
    233                                 kMd5DigestSize);
    234 }
    235 
    236 }  // namespace xmpmeta
    237 }  // namespace dynamic_depth
    238