Home | History | Annotate | Download | only in src
      1 // Copyright 2007, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 
     31 // Google Mock - a framework for writing C++ mock classes.
     32 //
     33 // This file implements Matcher<const string&>, Matcher<string>, and
     34 // utilities for defining matchers.
     35 
     36 #include "gmock/gmock-matchers.h"
     37 #include "gmock/gmock-generated-matchers.h"
     38 
     39 #include <string.h>
     40 #include <iostream>
     41 #include <sstream>
     42 #include <string>
     43 
     44 namespace testing {
     45 namespace internal {
     46 
     47 // Returns the description for a matcher defined using the MATCHER*()
     48 // macro where the user-supplied description string is "", if
     49 // 'negation' is false; otherwise returns the description of the
     50 // negation of the matcher.  'param_values' contains a list of strings
     51 // that are the print-out of the matcher's parameters.
     52 GTEST_API_ std::string FormatMatcherDescription(bool negation,
     53                                                 const char* matcher_name,
     54                                                 const Strings& param_values) {
     55   std::string result = ConvertIdentifierNameToWords(matcher_name);
     56   if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
     57   return negation ? "not (" + result + ")" : result;
     58 }
     59 
     60 // FindMaxBipartiteMatching and its helper class.
     61 //
     62 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
     63 // bipartite matching. Flow is considered to be from left to right.
     64 // There is an implicit source node that is connected to all of the left
     65 // nodes, and an implicit sink node that is connected to all of the
     66 // right nodes. All edges have unit capacity.
     67 //
     68 // Neither the flow graph nor the residual flow graph are represented
     69 // explicitly. Instead, they are implied by the information in 'graph' and
     70 // a vector<int> called 'left_' whose elements are initialized to the
     71 // value kUnused. This represents the initial state of the algorithm,
     72 // where the flow graph is empty, and the residual flow graph has the
     73 // following edges:
     74 //   - An edge from source to each left_ node
     75 //   - An edge from each right_ node to sink
     76 //   - An edge from each left_ node to each right_ node, if the
     77 //     corresponding edge exists in 'graph'.
     78 //
     79 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
     80 // nodes l and r. This induces the following changes:
     81 //   - The edges (source, l), (l, r), and (r, sink) are added to the
     82 //     flow graph.
     83 //   - The same three edges are removed from the residual flow graph.
     84 //   - The reverse edges (l, source), (r, l), and (sink, r) are added
     85 //     to the residual flow graph, which is a directional graph
     86 //     representing unused flow capacity.
     87 //
     88 // When the method augments a flow (moving left_[l] from some r1 to some
     89 // other r2), this can be thought of as "undoing" the above steps with
     90 // respect to r1 and "redoing" them with respect to r2.
     91 //
     92 // It bears repeating that the flow graph and residual flow graph are
     93 // never represented explicitly, but can be derived by looking at the
     94 // information in 'graph' and in left_.
     95 //
     96 // As an optimization, there is a second vector<int> called right_ which
     97 // does not provide any new information. Instead, it enables more
     98 // efficient queries about edges entering or leaving the right-side nodes
     99 // of the flow or residual flow graphs. The following invariants are
    100 // maintained:
    101 //
    102 // left[l] == kUnused or right[left[l]] == l
    103 // right[r] == kUnused or left[right[r]] == r
    104 //
    105 // . [ source ]                                        .
    106 // .   |||                                             .
    107 // .   |||                                             .
    108 // .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
    109 // .   ||                   |                    |     .
    110 // .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
    111 // .   |                                        ||     .
    112 // .   \----> left[2]=2  ------> right[2]=2  --\||     .
    113 // .                                           |||     .
    114 // .         elements           matchers       vvv     .
    115 // .                                         [ sink ]  .
    116 //
    117 // See Also:
    118 //   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
    119 //       "Introduction to Algorithms (Second ed.)", pp. 651-664.
    120 //   [2] "Ford-Fulkerson algorithm", Wikipedia,
    121 //       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
    122 class MaxBipartiteMatchState {
    123  public:
    124   explicit MaxBipartiteMatchState(const MatchMatrix& graph)
    125       : graph_(&graph),
    126         left_(graph_->LhsSize(), kUnused),
    127         right_(graph_->RhsSize(), kUnused) {}
    128 
    129   // Returns the edges of a maximal match, each in the form {left, right}.
    130   ElementMatcherPairs Compute() {
    131     // 'seen' is used for path finding { 0: unseen, 1: seen }.
    132     ::std::vector<char> seen;
    133     // Searches the residual flow graph for a path from each left node to
    134     // the sink in the residual flow graph, and if one is found, add flow
    135     // to the graph. It's okay to search through the left nodes once. The
    136     // edge from the implicit source node to each previously-visited left
    137     // node will have flow if that left node has any path to the sink
    138     // whatsoever. Subsequent augmentations can only add flow to the
    139     // network, and cannot take away that previous flow unit from the source.
    140     // Since the source-to-left edge can only carry one flow unit (or,
    141     // each element can be matched to only one matcher), there is no need
    142     // to visit the left nodes more than once looking for augmented paths.
    143     // The flow is known to be possible or impossible by looking at the
    144     // node once.
    145     for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
    146       // Reset the path-marking vector and try to find a path from
    147       // source to sink starting at the left_[ilhs] node.
    148       GTEST_CHECK_(left_[ilhs] == kUnused)
    149           << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
    150       // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
    151       seen.assign(graph_->RhsSize(), 0);
    152       TryAugment(ilhs, &seen);
    153     }
    154     ElementMatcherPairs result;
    155     for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
    156       size_t irhs = left_[ilhs];
    157       if (irhs == kUnused) continue;
    158       result.push_back(ElementMatcherPair(ilhs, irhs));
    159     }
    160     return result;
    161   }
    162 
    163  private:
    164   static const size_t kUnused = static_cast<size_t>(-1);
    165 
    166   // Perform a depth-first search from left node ilhs to the sink.  If a
    167   // path is found, flow is added to the network by linking the left and
    168   // right vector elements corresponding each segment of the path.
    169   // Returns true if a path to sink was found, which means that a unit of
    170   // flow was added to the network. The 'seen' vector elements correspond
    171   // to right nodes and are marked to eliminate cycles from the search.
    172   //
    173   // Left nodes will only be explored at most once because they
    174   // are accessible from at most one right node in the residual flow
    175   // graph.
    176   //
    177   // Note that left_[ilhs] is the only element of left_ that TryAugment will
    178   // potentially transition from kUnused to another value. Any other
    179   // left_ element holding kUnused before TryAugment will be holding it
    180   // when TryAugment returns.
    181   //
    182   bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
    183     for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
    184       if ((*seen)[irhs]) continue;
    185       if (!graph_->HasEdge(ilhs, irhs)) continue;
    186       // There's an available edge from ilhs to irhs.
    187       (*seen)[irhs] = 1;
    188       // Next a search is performed to determine whether
    189       // this edge is a dead end or leads to the sink.
    190       //
    191       // right_[irhs] == kUnused means that there is residual flow from
    192       // right node irhs to the sink, so we can use that to finish this
    193       // flow path and return success.
    194       //
    195       // Otherwise there is residual flow to some ilhs. We push flow
    196       // along that path and call ourselves recursively to see if this
    197       // ultimately leads to sink.
    198       if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
    199         // Add flow from left_[ilhs] to right_[irhs].
    200         left_[ilhs] = irhs;
    201         right_[irhs] = ilhs;
    202         return true;
    203       }
    204     }
    205     return false;
    206   }
    207 
    208   const MatchMatrix* graph_;  // not owned
    209   // Each element of the left_ vector represents a left hand side node
    210   // (i.e. an element) and each element of right_ is a right hand side
    211   // node (i.e. a matcher). The values in the left_ vector indicate
    212   // outflow from that node to a node on the right_ side. The values
    213   // in the right_ indicate inflow, and specify which left_ node is
    214   // feeding that right_ node, if any. For example, left_[3] == 1 means
    215   // there's a flow from element #3 to matcher #1. Such a flow would also
    216   // be redundantly represented in the right_ vector as right_[1] == 3.
    217   // Elements of left_ and right_ are either kUnused or mutually
    218   // referent. Mutually referent means that left_[right_[i]] = i and
    219   // right_[left_[i]] = i.
    220   ::std::vector<size_t> left_;
    221   ::std::vector<size_t> right_;
    222 
    223   GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
    224 };
    225 
    226 const size_t MaxBipartiteMatchState::kUnused;
    227 
    228 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
    229   return MaxBipartiteMatchState(g).Compute();
    230 }
    231 
    232 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
    233                                      ::std::ostream* stream) {
    234   typedef ElementMatcherPairs::const_iterator Iter;
    235   ::std::ostream& os = *stream;
    236   os << "{";
    237   const char* sep = "";
    238   for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
    239     os << sep << "\n  ("
    240        << "element #" << it->first << ", "
    241        << "matcher #" << it->second << ")";
    242     sep = ",";
    243   }
    244   os << "\n}";
    245 }
    246 
    247 bool MatchMatrix::NextGraph() {
    248   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
    249     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
    250       char& b = matched_[SpaceIndex(ilhs, irhs)];
    251       if (!b) {
    252         b = 1;
    253         return true;
    254       }
    255       b = 0;
    256     }
    257   }
    258   return false;
    259 }
    260 
    261 void MatchMatrix::Randomize() {
    262   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
    263     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
    264       char& b = matched_[SpaceIndex(ilhs, irhs)];
    265       b = static_cast<char>(rand() & 1);  // NOLINT
    266     }
    267   }
    268 }
    269 
    270 std::string MatchMatrix::DebugString() const {
    271   ::std::stringstream ss;
    272   const char* sep = "";
    273   for (size_t i = 0; i < LhsSize(); ++i) {
    274     ss << sep;
    275     for (size_t j = 0; j < RhsSize(); ++j) {
    276       ss << HasEdge(i, j);
    277     }
    278     sep = ";";
    279   }
    280   return ss.str();
    281 }
    282 
    283 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
    284     ::std::ostream* os) const {
    285   switch (match_flags()) {
    286     case UnorderedMatcherRequire::ExactMatch:
    287       if (matcher_describers_.empty()) {
    288         *os << "is empty";
    289         return;
    290       }
    291       if (matcher_describers_.size() == 1) {
    292         *os << "has " << Elements(1) << " and that element ";
    293         matcher_describers_[0]->DescribeTo(os);
    294         return;
    295       }
    296       *os << "has " << Elements(matcher_describers_.size())
    297           << " and there exists some permutation of elements such that:\n";
    298       break;
    299     case UnorderedMatcherRequire::Superset:
    300       *os << "a surjection from elements to requirements exists such that:\n";
    301       break;
    302     case UnorderedMatcherRequire::Subset:
    303       *os << "an injection from elements to requirements exists such that:\n";
    304       break;
    305   }
    306 
    307   const char* sep = "";
    308   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
    309     *os << sep;
    310     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
    311       *os << " - element #" << i << " ";
    312     } else {
    313       *os << " - an element ";
    314     }
    315     matcher_describers_[i]->DescribeTo(os);
    316     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
    317       sep = ", and\n";
    318     } else {
    319       sep = "\n";
    320     }
    321   }
    322 }
    323 
    324 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
    325     ::std::ostream* os) const {
    326   switch (match_flags()) {
    327     case UnorderedMatcherRequire::ExactMatch:
    328       if (matcher_describers_.empty()) {
    329         *os << "isn't empty";
    330         return;
    331       }
    332       if (matcher_describers_.size() == 1) {
    333         *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
    334             << " that ";
    335         matcher_describers_[0]->DescribeNegationTo(os);
    336         return;
    337       }
    338       *os << "doesn't have " << Elements(matcher_describers_.size())
    339           << ", or there exists no permutation of elements such that:\n";
    340       break;
    341     case UnorderedMatcherRequire::Superset:
    342       *os << "no surjection from elements to requirements exists such that:\n";
    343       break;
    344     case UnorderedMatcherRequire::Subset:
    345       *os << "no injection from elements to requirements exists such that:\n";
    346       break;
    347   }
    348   const char* sep = "";
    349   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
    350     *os << sep;
    351     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
    352       *os << " - element #" << i << " ";
    353     } else {
    354       *os << " - an element ";
    355     }
    356     matcher_describers_[i]->DescribeTo(os);
    357     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
    358       sep = ", and\n";
    359     } else {
    360       sep = "\n";
    361     }
    362   }
    363 }
    364 
    365 // Checks that all matchers match at least one element, and that all
    366 // elements match at least one matcher. This enables faster matching
    367 // and better error reporting.
    368 // Returns false, writing an explanation to 'listener', if and only
    369 // if the success criteria are not met.
    370 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
    371     const ::std::vector<std::string>& element_printouts,
    372     const MatchMatrix& matrix, MatchResultListener* listener) const {
    373   bool result = true;
    374   ::std::vector<char> element_matched(matrix.LhsSize(), 0);
    375   ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
    376 
    377   for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
    378     for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
    379       char matched = matrix.HasEdge(ilhs, irhs);
    380       element_matched[ilhs] |= matched;
    381       matcher_matched[irhs] |= matched;
    382     }
    383   }
    384 
    385   if (match_flags() & UnorderedMatcherRequire::Superset) {
    386     const char* sep =
    387         "where the following matchers don't match any elements:\n";
    388     for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
    389       if (matcher_matched[mi]) continue;
    390       result = false;
    391       if (listener->IsInterested()) {
    392         *listener << sep << "matcher #" << mi << ": ";
    393         matcher_describers_[mi]->DescribeTo(listener->stream());
    394         sep = ",\n";
    395       }
    396     }
    397   }
    398 
    399   if (match_flags() & UnorderedMatcherRequire::Subset) {
    400     const char* sep =
    401         "where the following elements don't match any matchers:\n";
    402     const char* outer_sep = "";
    403     if (!result) {
    404       outer_sep = "\nand ";
    405     }
    406     for (size_t ei = 0; ei < element_matched.size(); ++ei) {
    407       if (element_matched[ei]) continue;
    408       result = false;
    409       if (listener->IsInterested()) {
    410         *listener << outer_sep << sep << "element #" << ei << ": "
    411                   << element_printouts[ei];
    412         sep = ",\n";
    413         outer_sep = "";
    414       }
    415     }
    416   }
    417   return result;
    418 }
    419 
    420 bool UnorderedElementsAreMatcherImplBase::FindPairing(
    421     const MatchMatrix& matrix, MatchResultListener* listener) const {
    422   ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
    423 
    424   size_t max_flow = matches.size();
    425   if ((match_flags() & UnorderedMatcherRequire::Superset) &&
    426       max_flow < matrix.RhsSize()) {
    427     if (listener->IsInterested()) {
    428       *listener << "where no permutation of the elements can satisfy all "
    429                    "matchers, and the closest match is "
    430                 << max_flow << " of " << matrix.RhsSize()
    431                 << " matchers with the pairings:\n";
    432       LogElementMatcherPairVec(matches, listener->stream());
    433     }
    434     return false;
    435   }
    436   if ((match_flags() & UnorderedMatcherRequire::Subset) &&
    437       max_flow < matrix.LhsSize()) {
    438     if (listener->IsInterested()) {
    439       *listener
    440           << "where not all elements can be matched, and the closest match is "
    441           << max_flow << " of " << matrix.RhsSize()
    442           << " matchers with the pairings:\n";
    443       LogElementMatcherPairVec(matches, listener->stream());
    444     }
    445     return false;
    446   }
    447 
    448   if (matches.size() > 1) {
    449     if (listener->IsInterested()) {
    450       const char* sep = "where:\n";
    451       for (size_t mi = 0; mi < matches.size(); ++mi) {
    452         *listener << sep << " - element #" << matches[mi].first
    453                   << " is matched by matcher #" << matches[mi].second;
    454         sep = ",\n";
    455       }
    456     }
    457   }
    458   return true;
    459 }
    460 
    461 }  // namespace internal
    462 }  // namespace testing
    463