Home | History | Annotate | Download | only in bn
      1 /* crypto/bn/bn_gf2m.c */
      2 /* ====================================================================
      3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
      4  *
      5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
      6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
      7  * to the OpenSSL project.
      8  *
      9  * The ECC Code is licensed pursuant to the OpenSSL open source
     10  * license provided below.
     11  *
     12  * In addition, Sun covenants to all licensees who provide a reciprocal
     13  * covenant with respect to their own patents if any, not to sue under
     14  * current and future patent claims necessarily infringed by the making,
     15  * using, practicing, selling, offering for sale and/or otherwise
     16  * disposing of the ECC Code as delivered hereunder (or portions thereof),
     17  * provided that such covenant shall not apply:
     18  *  1) for code that a licensee deletes from the ECC Code;
     19  *  2) separates from the ECC Code; or
     20  *  3) for infringements caused by:
     21  *       i) the modification of the ECC Code or
     22  *      ii) the combination of the ECC Code with other software or
     23  *          devices where such combination causes the infringement.
     24  *
     25  * The software is originally written by Sheueling Chang Shantz and
     26  * Douglas Stebila of Sun Microsystems Laboratories.
     27  *
     28  */
     29 
     30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
     31  * and may be modified; but after modifications, the above covenant
     32  * may no longer apply!  In such cases, the corresponding paragraph
     33  * ["In addition, Sun covenants ... causes the infringement."] and
     34  * this note can be edited out; but please keep the Sun copyright
     35  * notice and attribution. */
     36 
     37 /* ====================================================================
     38  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  *
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in
     49  *    the documentation and/or other materials provided with the
     50  *    distribution.
     51  *
     52  * 3. All advertising materials mentioning features or use of this
     53  *    software must display the following acknowledgment:
     54  *    "This product includes software developed by the OpenSSL Project
     55  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     56  *
     57  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     58  *    endorse or promote products derived from this software without
     59  *    prior written permission. For written permission, please contact
     60  *    openssl-core (at) openssl.org.
     61  *
     62  * 5. Products derived from this software may not be called "OpenSSL"
     63  *    nor may "OpenSSL" appear in their names without prior written
     64  *    permission of the OpenSSL Project.
     65  *
     66  * 6. Redistributions of any form whatsoever must retain the following
     67  *    acknowledgment:
     68  *    "This product includes software developed by the OpenSSL Project
     69  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     70  *
     71  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     72  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     74  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     75  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     76  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     77  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     78  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     80  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     81  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     82  * OF THE POSSIBILITY OF SUCH DAMAGE.
     83  * ====================================================================
     84  *
     85  * This product includes cryptographic software written by Eric Young
     86  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     87  * Hudson (tjh (at) cryptsoft.com).
     88  *
     89  */
     90 
     91 #include <assert.h>
     92 #include <limits.h>
     93 #include <stdio.h>
     94 #include "cryptlib.h"
     95 #include "bn_lcl.h"
     96 
     97 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
     98 #define MAX_ITERATIONS 50
     99 
    100 static const BN_ULONG SQR_tb[16] =
    101   {     0,     1,     4,     5,    16,    17,    20,    21,
    102        64,    65,    68,    69,    80,    81,    84,    85 };
    103 /* Platform-specific macros to accelerate squaring. */
    104 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
    105 #define SQR1(w) \
    106     SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
    107     SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
    108     SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
    109     SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
    110 #define SQR0(w) \
    111     SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
    112     SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
    113     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    114     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
    115 #endif
    116 #ifdef THIRTY_TWO_BIT
    117 #define SQR1(w) \
    118     SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
    119     SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
    120 #define SQR0(w) \
    121     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
    122     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
    123 #endif
    124 #ifdef SIXTEEN_BIT
    125 #define SQR1(w) \
    126     SQR_tb[(w) >> 12 & 0xF] <<  8 | SQR_tb[(w) >>  8 & 0xF]
    127 #define SQR0(w) \
    128     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
    129 #endif
    130 #ifdef EIGHT_BIT
    131 #define SQR1(w) \
    132     SQR_tb[(w) >>  4 & 0xF]
    133 #define SQR0(w) \
    134     SQR_tb[(w)       & 15]
    135 #endif
    136 
    137 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
    138  * result is a polynomial r with degree < 2 * BN_BITS - 1
    139  * The caller MUST ensure that the variables have the right amount
    140  * of space allocated.
    141  */
    142 #ifdef EIGHT_BIT
    143 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
    144 	{
    145 	register BN_ULONG h, l, s;
    146 	BN_ULONG tab[4], top1b = a >> 7;
    147 	register BN_ULONG a1, a2;
    148 
    149 	a1 = a & (0x7F); a2 = a1 << 1;
    150 
    151 	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
    152 
    153 	s = tab[b      & 0x3]; l  = s;
    154 	s = tab[b >> 2 & 0x3]; l ^= s << 2; h  = s >> 6;
    155 	s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
    156 	s = tab[b >> 6      ]; l ^= s << 6; h ^= s >> 2;
    157 
    158 	/* compensate for the top bit of a */
    159 
    160 	if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
    161 
    162 	*r1 = h; *r0 = l;
    163 	}
    164 #endif
    165 #ifdef SIXTEEN_BIT
    166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
    167 	{
    168 	register BN_ULONG h, l, s;
    169 	BN_ULONG tab[4], top1b = a >> 15;
    170 	register BN_ULONG a1, a2;
    171 
    172 	a1 = a & (0x7FFF); a2 = a1 << 1;
    173 
    174 	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
    175 
    176 	s = tab[b      & 0x3]; l  = s;
    177 	s = tab[b >> 2 & 0x3]; l ^= s <<  2; h  = s >> 14;
    178 	s = tab[b >> 4 & 0x3]; l ^= s <<  4; h ^= s >> 12;
    179 	s = tab[b >> 6 & 0x3]; l ^= s <<  6; h ^= s >> 10;
    180 	s = tab[b >> 8 & 0x3]; l ^= s <<  8; h ^= s >>  8;
    181 	s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >>  6;
    182 	s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >>  4;
    183 	s = tab[b >>14      ]; l ^= s << 14; h ^= s >>  2;
    184 
    185 	/* compensate for the top bit of a */
    186 
    187 	if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
    188 
    189 	*r1 = h; *r0 = l;
    190 	}
    191 #endif
    192 #ifdef THIRTY_TWO_BIT
    193 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
    194 	{
    195 	register BN_ULONG h, l, s;
    196 	BN_ULONG tab[8], top2b = a >> 30;
    197 	register BN_ULONG a1, a2, a4;
    198 
    199 	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
    200 
    201 	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
    202 	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
    203 
    204 	s = tab[b       & 0x7]; l  = s;
    205 	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
    206 	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
    207 	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
    208 	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
    209 	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
    210 	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
    211 	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
    212 	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
    213 	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
    214 	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
    215 
    216 	/* compensate for the top two bits of a */
    217 
    218 	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
    219 	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
    220 
    221 	*r1 = h; *r0 = l;
    222 	}
    223 #endif
    224 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
    225 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
    226 	{
    227 	register BN_ULONG h, l, s;
    228 	BN_ULONG tab[16], top3b = a >> 61;
    229 	register BN_ULONG a1, a2, a4, a8;
    230 
    231 	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
    232 
    233 	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
    234 	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
    235 	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
    236 	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
    237 
    238 	s = tab[b       & 0xF]; l  = s;
    239 	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
    240 	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
    241 	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
    242 	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
    243 	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
    244 	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
    245 	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
    246 	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
    247 	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
    248 	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
    249 	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
    250 	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
    251 	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
    252 	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
    253 	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
    254 
    255 	/* compensate for the top three bits of a */
    256 
    257 	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
    258 	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
    259 	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
    260 
    261 	*r1 = h; *r0 = l;
    262 	}
    263 #endif
    264 
    265 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
    266  * result is a polynomial r with degree < 4 * BN_BITS2 - 1
    267  * The caller MUST ensure that the variables have the right amount
    268  * of space allocated.
    269  */
    270 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
    271 	{
    272 	BN_ULONG m1, m0;
    273 	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
    274 	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
    275 	bn_GF2m_mul_1x1(r+1, r, a0, b0);
    276 	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
    277 	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
    278 	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
    279 	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
    280 	}
    281 
    282 
    283 /* Add polynomials a and b and store result in r; r could be a or b, a and b
    284  * could be equal; r is the bitwise XOR of a and b.
    285  */
    286 int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
    287 	{
    288 	int i;
    289 	const BIGNUM *at, *bt;
    290 
    291 	bn_check_top(a);
    292 	bn_check_top(b);
    293 
    294 	if (a->top < b->top) { at = b; bt = a; }
    295 	else { at = a; bt = b; }
    296 
    297 	if(bn_wexpand(r, at->top) == NULL)
    298 		return 0;
    299 
    300 	for (i = 0; i < bt->top; i++)
    301 		{
    302 		r->d[i] = at->d[i] ^ bt->d[i];
    303 		}
    304 	for (; i < at->top; i++)
    305 		{
    306 		r->d[i] = at->d[i];
    307 		}
    308 
    309 	r->top = at->top;
    310 	bn_correct_top(r);
    311 
    312 	return 1;
    313 	}
    314 
    315 
    316 /* Some functions allow for representation of the irreducible polynomials
    317  * as an int[], say p.  The irreducible f(t) is then of the form:
    318  *     t^p[0] + t^p[1] + ... + t^p[k]
    319  * where m = p[0] > p[1] > ... > p[k] = 0.
    320  */
    321 
    322 
    323 /* Performs modular reduction of a and store result in r.  r could be a. */
    324 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
    325 	{
    326 	int j, k;
    327 	int n, dN, d0, d1;
    328 	BN_ULONG zz, *z;
    329 
    330 	bn_check_top(a);
    331 
    332 	if (!p[0])
    333 		{
    334 		/* reduction mod 1 => return 0 */
    335 		BN_zero(r);
    336 		return 1;
    337 		}
    338 
    339 	/* Since the algorithm does reduction in the r value, if a != r, copy
    340 	 * the contents of a into r so we can do reduction in r.
    341 	 */
    342 	if (a != r)
    343 		{
    344 		if (!bn_wexpand(r, a->top)) return 0;
    345 		for (j = 0; j < a->top; j++)
    346 			{
    347 			r->d[j] = a->d[j];
    348 			}
    349 		r->top = a->top;
    350 		}
    351 	z = r->d;
    352 
    353 	/* start reduction */
    354 	dN = p[0] / BN_BITS2;
    355 	for (j = r->top - 1; j > dN;)
    356 		{
    357 		zz = z[j];
    358 		if (z[j] == 0) { j--; continue; }
    359 		z[j] = 0;
    360 
    361 		for (k = 1; p[k] != 0; k++)
    362 			{
    363 			/* reducing component t^p[k] */
    364 			n = p[0] - p[k];
    365 			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
    366 			n /= BN_BITS2;
    367 			z[j-n] ^= (zz>>d0);
    368 			if (d0) z[j-n-1] ^= (zz<<d1);
    369 			}
    370 
    371 		/* reducing component t^0 */
    372 		n = dN;
    373 		d0 = p[0] % BN_BITS2;
    374 		d1 = BN_BITS2 - d0;
    375 		z[j-n] ^= (zz >> d0);
    376 		if (d0) z[j-n-1] ^= (zz << d1);
    377 		}
    378 
    379 	/* final round of reduction */
    380 	while (j == dN)
    381 		{
    382 
    383 		d0 = p[0] % BN_BITS2;
    384 		zz = z[dN] >> d0;
    385 		if (zz == 0) break;
    386 		d1 = BN_BITS2 - d0;
    387 
    388 		/* clear up the top d1 bits */
    389 		if (d0)
    390 			z[dN] = (z[dN] << d1) >> d1;
    391 		else
    392 			z[dN] = 0;
    393 		z[0] ^= zz; /* reduction t^0 component */
    394 
    395 		for (k = 1; p[k] != 0; k++)
    396 			{
    397 			BN_ULONG tmp_ulong;
    398 
    399 			/* reducing component t^p[k]*/
    400 			n = p[k] / BN_BITS2;
    401 			d0 = p[k] % BN_BITS2;
    402 			d1 = BN_BITS2 - d0;
    403 			z[n] ^= (zz << d0);
    404 			tmp_ulong = zz >> d1;
    405                         if (d0 && tmp_ulong)
    406                                 z[n+1] ^= tmp_ulong;
    407 			}
    408 
    409 
    410 		}
    411 
    412 	bn_correct_top(r);
    413 	return 1;
    414 	}
    415 
    416 /* Performs modular reduction of a by p and store result in r.  r could be a.
    417  *
    418  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
    419  * function is only provided for convenience; for best performance, use the
    420  * BN_GF2m_mod_arr function.
    421  */
    422 int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
    423 	{
    424 	int ret = 0;
    425 	const int max = BN_num_bits(p);
    426 	unsigned int *arr=NULL;
    427 	bn_check_top(a);
    428 	bn_check_top(p);
    429 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
    430 	ret = BN_GF2m_poly2arr(p, arr, max);
    431 	if (!ret || ret > max)
    432 		{
    433 		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
    434 		goto err;
    435 		}
    436 	ret = BN_GF2m_mod_arr(r, a, arr);
    437 	bn_check_top(r);
    438 err:
    439 	if (arr) OPENSSL_free(arr);
    440 	return ret;
    441 	}
    442 
    443 
    444 /* Compute the product of two polynomials a and b, reduce modulo p, and store
    445  * the result in r.  r could be a or b; a could be b.
    446  */
    447 int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
    448 	{
    449 	int zlen, i, j, k, ret = 0;
    450 	BIGNUM *s;
    451 	BN_ULONG x1, x0, y1, y0, zz[4];
    452 
    453 	bn_check_top(a);
    454 	bn_check_top(b);
    455 
    456 	if (a == b)
    457 		{
    458 		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
    459 		}
    460 
    461 	BN_CTX_start(ctx);
    462 	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
    463 
    464 	zlen = a->top + b->top + 4;
    465 	if (!bn_wexpand(s, zlen)) goto err;
    466 	s->top = zlen;
    467 
    468 	for (i = 0; i < zlen; i++) s->d[i] = 0;
    469 
    470 	for (j = 0; j < b->top; j += 2)
    471 		{
    472 		y0 = b->d[j];
    473 		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
    474 		for (i = 0; i < a->top; i += 2)
    475 			{
    476 			x0 = a->d[i];
    477 			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
    478 			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
    479 			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
    480 			}
    481 		}
    482 
    483 	bn_correct_top(s);
    484 	if (BN_GF2m_mod_arr(r, s, p))
    485 		ret = 1;
    486 	bn_check_top(r);
    487 
    488 err:
    489 	BN_CTX_end(ctx);
    490 	return ret;
    491 	}
    492 
    493 /* Compute the product of two polynomials a and b, reduce modulo p, and store
    494  * the result in r.  r could be a or b; a could equal b.
    495  *
    496  * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
    497  * function is only provided for convenience; for best performance, use the
    498  * BN_GF2m_mod_mul_arr function.
    499  */
    500 int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
    501 	{
    502 	int ret = 0;
    503 	const int max = BN_num_bits(p);
    504 	unsigned int *arr=NULL;
    505 	bn_check_top(a);
    506 	bn_check_top(b);
    507 	bn_check_top(p);
    508 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
    509 	ret = BN_GF2m_poly2arr(p, arr, max);
    510 	if (!ret || ret > max)
    511 		{
    512 		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
    513 		goto err;
    514 		}
    515 	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
    516 	bn_check_top(r);
    517 err:
    518 	if (arr) OPENSSL_free(arr);
    519 	return ret;
    520 	}
    521 
    522 
    523 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
    524 int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
    525 	{
    526 	int i, ret = 0;
    527 	BIGNUM *s;
    528 
    529 	bn_check_top(a);
    530 	BN_CTX_start(ctx);
    531 	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
    532 	if (!bn_wexpand(s, 2 * a->top)) goto err;
    533 
    534 	for (i = a->top - 1; i >= 0; i--)
    535 		{
    536 		s->d[2*i+1] = SQR1(a->d[i]);
    537 		s->d[2*i  ] = SQR0(a->d[i]);
    538 		}
    539 
    540 	s->top = 2 * a->top;
    541 	bn_correct_top(s);
    542 	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
    543 	bn_check_top(r);
    544 	ret = 1;
    545 err:
    546 	BN_CTX_end(ctx);
    547 	return ret;
    548 	}
    549 
    550 /* Square a, reduce the result mod p, and store it in a.  r could be a.
    551  *
    552  * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
    553  * function is only provided for convenience; for best performance, use the
    554  * BN_GF2m_mod_sqr_arr function.
    555  */
    556 int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    557 	{
    558 	int ret = 0;
    559 	const int max = BN_num_bits(p);
    560 	unsigned int *arr=NULL;
    561 
    562 	bn_check_top(a);
    563 	bn_check_top(p);
    564 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
    565 	ret = BN_GF2m_poly2arr(p, arr, max);
    566 	if (!ret || ret > max)
    567 		{
    568 		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
    569 		goto err;
    570 		}
    571 	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
    572 	bn_check_top(r);
    573 err:
    574 	if (arr) OPENSSL_free(arr);
    575 	return ret;
    576 	}
    577 
    578 
    579 /* Invert a, reduce modulo p, and store the result in r. r could be a.
    580  * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
    581  *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
    582  *     of Elliptic Curve Cryptography Over Binary Fields".
    583  */
    584 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    585 	{
    586 	BIGNUM *b, *c, *u, *v, *tmp;
    587 	int ret = 0;
    588 
    589 	bn_check_top(a);
    590 	bn_check_top(p);
    591 
    592 	BN_CTX_start(ctx);
    593 
    594 	b = BN_CTX_get(ctx);
    595 	c = BN_CTX_get(ctx);
    596 	u = BN_CTX_get(ctx);
    597 	v = BN_CTX_get(ctx);
    598 	if (v == NULL) goto err;
    599 
    600 	if (!BN_one(b)) goto err;
    601 	if (!BN_GF2m_mod(u, a, p)) goto err;
    602 	if (!BN_copy(v, p)) goto err;
    603 
    604 	if (BN_is_zero(u)) goto err;
    605 
    606 	while (1)
    607 		{
    608 		while (!BN_is_odd(u))
    609 			{
    610 			if (!BN_rshift1(u, u)) goto err;
    611 			if (BN_is_odd(b))
    612 				{
    613 				if (!BN_GF2m_add(b, b, p)) goto err;
    614 				}
    615 			if (!BN_rshift1(b, b)) goto err;
    616 			}
    617 
    618 		if (BN_abs_is_word(u, 1)) break;
    619 
    620 		if (BN_num_bits(u) < BN_num_bits(v))
    621 			{
    622 			tmp = u; u = v; v = tmp;
    623 			tmp = b; b = c; c = tmp;
    624 			}
    625 
    626 		if (!BN_GF2m_add(u, u, v)) goto err;
    627 		if (!BN_GF2m_add(b, b, c)) goto err;
    628 		}
    629 
    630 
    631 	if (!BN_copy(r, b)) goto err;
    632 	bn_check_top(r);
    633 	ret = 1;
    634 
    635 err:
    636   	BN_CTX_end(ctx);
    637 	return ret;
    638 	}
    639 
    640 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
    641  *
    642  * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
    643  * function is only provided for convenience; for best performance, use the
    644  * BN_GF2m_mod_inv function.
    645  */
    646 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
    647 	{
    648 	BIGNUM *field;
    649 	int ret = 0;
    650 
    651 	bn_check_top(xx);
    652 	BN_CTX_start(ctx);
    653 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
    654 	if (!BN_GF2m_arr2poly(p, field)) goto err;
    655 
    656 	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
    657 	bn_check_top(r);
    658 
    659 err:
    660 	BN_CTX_end(ctx);
    661 	return ret;
    662 	}
    663 
    664 
    665 #ifndef OPENSSL_SUN_GF2M_DIV
    666 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
    667  * or y, x could equal y.
    668  */
    669 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
    670 	{
    671 	BIGNUM *xinv = NULL;
    672 	int ret = 0;
    673 
    674 	bn_check_top(y);
    675 	bn_check_top(x);
    676 	bn_check_top(p);
    677 
    678 	BN_CTX_start(ctx);
    679 	xinv = BN_CTX_get(ctx);
    680 	if (xinv == NULL) goto err;
    681 
    682 	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
    683 	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
    684 	bn_check_top(r);
    685 	ret = 1;
    686 
    687 err:
    688 	BN_CTX_end(ctx);
    689 	return ret;
    690 	}
    691 #else
    692 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
    693  * or y, x could equal y.
    694  * Uses algorithm Modular_Division_GF(2^m) from
    695  *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
    696  *     the Great Divide".
    697  */
    698 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
    699 	{
    700 	BIGNUM *a, *b, *u, *v;
    701 	int ret = 0;
    702 
    703 	bn_check_top(y);
    704 	bn_check_top(x);
    705 	bn_check_top(p);
    706 
    707 	BN_CTX_start(ctx);
    708 
    709 	a = BN_CTX_get(ctx);
    710 	b = BN_CTX_get(ctx);
    711 	u = BN_CTX_get(ctx);
    712 	v = BN_CTX_get(ctx);
    713 	if (v == NULL) goto err;
    714 
    715 	/* reduce x and y mod p */
    716 	if (!BN_GF2m_mod(u, y, p)) goto err;
    717 	if (!BN_GF2m_mod(a, x, p)) goto err;
    718 	if (!BN_copy(b, p)) goto err;
    719 
    720 	while (!BN_is_odd(a))
    721 		{
    722 		if (!BN_rshift1(a, a)) goto err;
    723 		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
    724 		if (!BN_rshift1(u, u)) goto err;
    725 		}
    726 
    727 	do
    728 		{
    729 		if (BN_GF2m_cmp(b, a) > 0)
    730 			{
    731 			if (!BN_GF2m_add(b, b, a)) goto err;
    732 			if (!BN_GF2m_add(v, v, u)) goto err;
    733 			do
    734 				{
    735 				if (!BN_rshift1(b, b)) goto err;
    736 				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
    737 				if (!BN_rshift1(v, v)) goto err;
    738 				} while (!BN_is_odd(b));
    739 			}
    740 		else if (BN_abs_is_word(a, 1))
    741 			break;
    742 		else
    743 			{
    744 			if (!BN_GF2m_add(a, a, b)) goto err;
    745 			if (!BN_GF2m_add(u, u, v)) goto err;
    746 			do
    747 				{
    748 				if (!BN_rshift1(a, a)) goto err;
    749 				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
    750 				if (!BN_rshift1(u, u)) goto err;
    751 				} while (!BN_is_odd(a));
    752 			}
    753 		} while (1);
    754 
    755 	if (!BN_copy(r, u)) goto err;
    756 	bn_check_top(r);
    757 	ret = 1;
    758 
    759 err:
    760   	BN_CTX_end(ctx);
    761 	return ret;
    762 	}
    763 #endif
    764 
    765 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
    766  * or yy, xx could equal yy.
    767  *
    768  * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
    769  * function is only provided for convenience; for best performance, use the
    770  * BN_GF2m_mod_div function.
    771  */
    772 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
    773 	{
    774 	BIGNUM *field;
    775 	int ret = 0;
    776 
    777 	bn_check_top(yy);
    778 	bn_check_top(xx);
    779 
    780 	BN_CTX_start(ctx);
    781 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
    782 	if (!BN_GF2m_arr2poly(p, field)) goto err;
    783 
    784 	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
    785 	bn_check_top(r);
    786 
    787 err:
    788 	BN_CTX_end(ctx);
    789 	return ret;
    790 	}
    791 
    792 
    793 /* Compute the bth power of a, reduce modulo p, and store
    794  * the result in r.  r could be a.
    795  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
    796  */
    797 int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
    798 	{
    799 	int ret = 0, i, n;
    800 	BIGNUM *u;
    801 
    802 	bn_check_top(a);
    803 	bn_check_top(b);
    804 
    805 	if (BN_is_zero(b))
    806 		return(BN_one(r));
    807 
    808 	if (BN_abs_is_word(b, 1))
    809 		return (BN_copy(r, a) != NULL);
    810 
    811 	BN_CTX_start(ctx);
    812 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
    813 
    814 	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
    815 
    816 	n = BN_num_bits(b) - 1;
    817 	for (i = n - 1; i >= 0; i--)
    818 		{
    819 		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
    820 		if (BN_is_bit_set(b, i))
    821 			{
    822 			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
    823 			}
    824 		}
    825 	if (!BN_copy(r, u)) goto err;
    826 	bn_check_top(r);
    827 	ret = 1;
    828 err:
    829 	BN_CTX_end(ctx);
    830 	return ret;
    831 	}
    832 
    833 /* Compute the bth power of a, reduce modulo p, and store
    834  * the result in r.  r could be a.
    835  *
    836  * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
    837  * function is only provided for convenience; for best performance, use the
    838  * BN_GF2m_mod_exp_arr function.
    839  */
    840 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
    841 	{
    842 	int ret = 0;
    843 	const int max = BN_num_bits(p);
    844 	unsigned int *arr=NULL;
    845 	bn_check_top(a);
    846 	bn_check_top(b);
    847 	bn_check_top(p);
    848 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
    849 	ret = BN_GF2m_poly2arr(p, arr, max);
    850 	if (!ret || ret > max)
    851 		{
    852 		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
    853 		goto err;
    854 		}
    855 	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
    856 	bn_check_top(r);
    857 err:
    858 	if (arr) OPENSSL_free(arr);
    859 	return ret;
    860 	}
    861 
    862 /* Compute the square root of a, reduce modulo p, and store
    863  * the result in r.  r could be a.
    864  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
    865  */
    866 int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
    867 	{
    868 	int ret = 0;
    869 	BIGNUM *u;
    870 
    871 	bn_check_top(a);
    872 
    873 	if (!p[0])
    874 		{
    875 		/* reduction mod 1 => return 0 */
    876 		BN_zero(r);
    877 		return 1;
    878 		}
    879 
    880 	BN_CTX_start(ctx);
    881 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
    882 
    883 	if (!BN_set_bit(u, p[0] - 1)) goto err;
    884 	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
    885 	bn_check_top(r);
    886 
    887 err:
    888 	BN_CTX_end(ctx);
    889 	return ret;
    890 	}
    891 
    892 /* Compute the square root of a, reduce modulo p, and store
    893  * the result in r.  r could be a.
    894  *
    895  * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
    896  * function is only provided for convenience; for best performance, use the
    897  * BN_GF2m_mod_sqrt_arr function.
    898  */
    899 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
    900 	{
    901 	int ret = 0;
    902 	const int max = BN_num_bits(p);
    903 	unsigned int *arr=NULL;
    904 	bn_check_top(a);
    905 	bn_check_top(p);
    906 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
    907 	ret = BN_GF2m_poly2arr(p, arr, max);
    908 	if (!ret || ret > max)
    909 		{
    910 		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
    911 		goto err;
    912 		}
    913 	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
    914 	bn_check_top(r);
    915 err:
    916 	if (arr) OPENSSL_free(arr);
    917 	return ret;
    918 	}
    919 
    920 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
    921  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
    922  */
    923 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
    924 	{
    925 	int ret = 0, count = 0;
    926 	unsigned int j;
    927 	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
    928 
    929 	bn_check_top(a_);
    930 
    931 	if (!p[0])
    932 		{
    933 		/* reduction mod 1 => return 0 */
    934 		BN_zero(r);
    935 		return 1;
    936 		}
    937 
    938 	BN_CTX_start(ctx);
    939 	a = BN_CTX_get(ctx);
    940 	z = BN_CTX_get(ctx);
    941 	w = BN_CTX_get(ctx);
    942 	if (w == NULL) goto err;
    943 
    944 	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
    945 
    946 	if (BN_is_zero(a))
    947 		{
    948 		BN_zero(r);
    949 		ret = 1;
    950 		goto err;
    951 		}
    952 
    953 	if (p[0] & 0x1) /* m is odd */
    954 		{
    955 		/* compute half-trace of a */
    956 		if (!BN_copy(z, a)) goto err;
    957 		for (j = 1; j <= (p[0] - 1) / 2; j++)
    958 			{
    959 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
    960 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
    961 			if (!BN_GF2m_add(z, z, a)) goto err;
    962 			}
    963 
    964 		}
    965 	else /* m is even */
    966 		{
    967 		rho = BN_CTX_get(ctx);
    968 		w2 = BN_CTX_get(ctx);
    969 		tmp = BN_CTX_get(ctx);
    970 		if (tmp == NULL) goto err;
    971 		do
    972 			{
    973 			if (!BN_rand(rho, p[0], 0, 0)) goto err;
    974 			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
    975 			BN_zero(z);
    976 			if (!BN_copy(w, rho)) goto err;
    977 			for (j = 1; j <= p[0] - 1; j++)
    978 				{
    979 				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
    980 				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
    981 				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
    982 				if (!BN_GF2m_add(z, z, tmp)) goto err;
    983 				if (!BN_GF2m_add(w, w2, rho)) goto err;
    984 				}
    985 			count++;
    986 			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
    987 		if (BN_is_zero(w))
    988 			{
    989 			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
    990 			goto err;
    991 			}
    992 		}
    993 
    994 	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
    995 	if (!BN_GF2m_add(w, z, w)) goto err;
    996 	if (BN_GF2m_cmp(w, a))
    997 		{
    998 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
    999 		goto err;
   1000 		}
   1001 
   1002 	if (!BN_copy(r, z)) goto err;
   1003 	bn_check_top(r);
   1004 
   1005 	ret = 1;
   1006 
   1007 err:
   1008 	BN_CTX_end(ctx);
   1009 	return ret;
   1010 	}
   1011 
   1012 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
   1013  *
   1014  * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
   1015  * function is only provided for convenience; for best performance, use the
   1016  * BN_GF2m_mod_solve_quad_arr function.
   1017  */
   1018 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
   1019 	{
   1020 	int ret = 0;
   1021 	const int max = BN_num_bits(p);
   1022 	unsigned int *arr=NULL;
   1023 	bn_check_top(a);
   1024 	bn_check_top(p);
   1025 	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
   1026 						max)) == NULL) goto err;
   1027 	ret = BN_GF2m_poly2arr(p, arr, max);
   1028 	if (!ret || ret > max)
   1029 		{
   1030 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
   1031 		goto err;
   1032 		}
   1033 	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
   1034 	bn_check_top(r);
   1035 err:
   1036 	if (arr) OPENSSL_free(arr);
   1037 	return ret;
   1038 	}
   1039 
   1040 /* Convert the bit-string representation of a polynomial
   1041  * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
   1042  * of integers corresponding to the bits with non-zero coefficient.
   1043  * Up to max elements of the array will be filled.  Return value is total
   1044  * number of coefficients that would be extracted if array was large enough.
   1045  */
   1046 int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
   1047 	{
   1048 	int i, j, k = 0;
   1049 	BN_ULONG mask;
   1050 
   1051 	if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
   1052 		/* a_0 == 0 => return error (the unsigned int array
   1053 		 * must be terminated by 0)
   1054 		 */
   1055 		return 0;
   1056 
   1057 	for (i = a->top - 1; i >= 0; i--)
   1058 		{
   1059 		if (!a->d[i])
   1060 			/* skip word if a->d[i] == 0 */
   1061 			continue;
   1062 		mask = BN_TBIT;
   1063 		for (j = BN_BITS2 - 1; j >= 0; j--)
   1064 			{
   1065 			if (a->d[i] & mask)
   1066 				{
   1067 				if (k < max) p[k] = BN_BITS2 * i + j;
   1068 				k++;
   1069 				}
   1070 			mask >>= 1;
   1071 			}
   1072 		}
   1073 
   1074 	return k;
   1075 	}
   1076 
   1077 /* Convert the coefficient array representation of a polynomial to a
   1078  * bit-string.  The array must be terminated by 0.
   1079  */
   1080 int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
   1081 	{
   1082 	int i;
   1083 
   1084 	bn_check_top(a);
   1085 	BN_zero(a);
   1086 	for (i = 0; p[i] != 0; i++)
   1087 		{
   1088 		if (BN_set_bit(a, p[i]) == 0)
   1089 			return 0;
   1090 		}
   1091 	BN_set_bit(a, 0);
   1092 	bn_check_top(a);
   1093 
   1094 	return 1;
   1095 	}
   1096 
   1097