Home | History | Annotate | Download | only in src
      1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_HEAP_INL_H_
     29 #define V8_HEAP_INL_H_
     30 
     31 #include "log.h"
     32 #include "v8-counters.h"
     33 
     34 namespace v8 {
     35 namespace internal {
     36 
     37 int Heap::MaxObjectSizeInPagedSpace() {
     38   return Page::kMaxHeapObjectSize;
     39 }
     40 
     41 
     42 Object* Heap::AllocateSymbol(Vector<const char> str,
     43                              int chars,
     44                              uint32_t hash_field) {
     45   unibrow::Utf8InputBuffer<> buffer(str.start(),
     46                                     static_cast<unsigned>(str.length()));
     47   return AllocateInternalSymbol(&buffer, chars, hash_field);
     48 }
     49 
     50 
     51 Object* Heap::AllocateRaw(int size_in_bytes,
     52                           AllocationSpace space,
     53                           AllocationSpace retry_space) {
     54   ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
     55   ASSERT(space != NEW_SPACE ||
     56          retry_space == OLD_POINTER_SPACE ||
     57          retry_space == OLD_DATA_SPACE ||
     58          retry_space == LO_SPACE);
     59 #ifdef DEBUG
     60   if (FLAG_gc_interval >= 0 &&
     61       !disallow_allocation_failure_ &&
     62       Heap::allocation_timeout_-- <= 0) {
     63     return Failure::RetryAfterGC(size_in_bytes, space);
     64   }
     65   Counters::objs_since_last_full.Increment();
     66   Counters::objs_since_last_young.Increment();
     67 #endif
     68   Object* result;
     69   if (NEW_SPACE == space) {
     70     result = new_space_.AllocateRaw(size_in_bytes);
     71     if (always_allocate() && result->IsFailure()) {
     72       space = retry_space;
     73     } else {
     74       return result;
     75     }
     76   }
     77 
     78   if (OLD_POINTER_SPACE == space) {
     79     result = old_pointer_space_->AllocateRaw(size_in_bytes);
     80   } else if (OLD_DATA_SPACE == space) {
     81     result = old_data_space_->AllocateRaw(size_in_bytes);
     82   } else if (CODE_SPACE == space) {
     83     result = code_space_->AllocateRaw(size_in_bytes);
     84   } else if (LO_SPACE == space) {
     85     result = lo_space_->AllocateRaw(size_in_bytes);
     86   } else if (CELL_SPACE == space) {
     87     result = cell_space_->AllocateRaw(size_in_bytes);
     88   } else {
     89     ASSERT(MAP_SPACE == space);
     90     result = map_space_->AllocateRaw(size_in_bytes);
     91   }
     92   if (result->IsFailure()) old_gen_exhausted_ = true;
     93   return result;
     94 }
     95 
     96 
     97 Object* Heap::NumberFromInt32(int32_t value) {
     98   if (Smi::IsValid(value)) return Smi::FromInt(value);
     99   // Bypass NumberFromDouble to avoid various redundant checks.
    100   return AllocateHeapNumber(FastI2D(value));
    101 }
    102 
    103 
    104 Object* Heap::NumberFromUint32(uint32_t value) {
    105   if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) {
    106     return Smi::FromInt((int32_t)value);
    107   }
    108   // Bypass NumberFromDouble to avoid various redundant checks.
    109   return AllocateHeapNumber(FastUI2D(value));
    110 }
    111 
    112 
    113 void Heap::FinalizeExternalString(String* string) {
    114   ASSERT(string->IsExternalString());
    115   v8::String::ExternalStringResourceBase** resource_addr =
    116       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
    117           reinterpret_cast<byte*>(string) +
    118           ExternalString::kResourceOffset -
    119           kHeapObjectTag);
    120   delete *resource_addr;
    121   // Clear the resource pointer in the string.
    122   *resource_addr = NULL;
    123 }
    124 
    125 
    126 Object* Heap::AllocateRawMap() {
    127 #ifdef DEBUG
    128   Counters::objs_since_last_full.Increment();
    129   Counters::objs_since_last_young.Increment();
    130 #endif
    131   Object* result = map_space_->AllocateRaw(Map::kSize);
    132   if (result->IsFailure()) old_gen_exhausted_ = true;
    133 #ifdef DEBUG
    134   if (!result->IsFailure()) {
    135     // Maps have their own alignment.
    136     CHECK((OffsetFrom(result) & kMapAlignmentMask) == kHeapObjectTag);
    137   }
    138 #endif
    139   return result;
    140 }
    141 
    142 
    143 Object* Heap::AllocateRawCell() {
    144 #ifdef DEBUG
    145   Counters::objs_since_last_full.Increment();
    146   Counters::objs_since_last_young.Increment();
    147 #endif
    148   Object* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize);
    149   if (result->IsFailure()) old_gen_exhausted_ = true;
    150   return result;
    151 }
    152 
    153 
    154 bool Heap::InNewSpace(Object* object) {
    155   bool result = new_space_.Contains(object);
    156   ASSERT(!result ||                  // Either not in new space
    157          gc_state_ != NOT_IN_GC ||   // ... or in the middle of GC
    158          InToSpace(object));         // ... or in to-space (where we allocate).
    159   return result;
    160 }
    161 
    162 
    163 bool Heap::InFromSpace(Object* object) {
    164   return new_space_.FromSpaceContains(object);
    165 }
    166 
    167 
    168 bool Heap::InToSpace(Object* object) {
    169   return new_space_.ToSpaceContains(object);
    170 }
    171 
    172 
    173 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
    174   // An object should be promoted if:
    175   // - the object has survived a scavenge operation or
    176   // - to space is already 25% full.
    177   return old_address < new_space_.age_mark()
    178       || (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2);
    179 }
    180 
    181 
    182 void Heap::RecordWrite(Address address, int offset) {
    183   if (new_space_.Contains(address)) return;
    184   ASSERT(!new_space_.FromSpaceContains(address));
    185   SLOW_ASSERT(Contains(address + offset));
    186   Page::SetRSet(address, offset);
    187 }
    188 
    189 
    190 OldSpace* Heap::TargetSpace(HeapObject* object) {
    191   InstanceType type = object->map()->instance_type();
    192   AllocationSpace space = TargetSpaceId(type);
    193   return (space == OLD_POINTER_SPACE)
    194       ? old_pointer_space_
    195       : old_data_space_;
    196 }
    197 
    198 
    199 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
    200   // Heap numbers and sequential strings are promoted to old data space, all
    201   // other object types are promoted to old pointer space.  We do not use
    202   // object->IsHeapNumber() and object->IsSeqString() because we already
    203   // know that object has the heap object tag.
    204 
    205   // These objects are never allocated in new space.
    206   ASSERT(type != MAP_TYPE);
    207   ASSERT(type != CODE_TYPE);
    208   ASSERT(type != ODDBALL_TYPE);
    209   ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE);
    210 
    211   if (type < FIRST_NONSTRING_TYPE) {
    212     // There are three string representations: sequential strings, cons
    213     // strings, and external strings.  Only cons strings contain
    214     // non-map-word pointers to heap objects.
    215     return ((type & kStringRepresentationMask) == kConsStringTag)
    216         ? OLD_POINTER_SPACE
    217         : OLD_DATA_SPACE;
    218   } else {
    219     return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
    220   }
    221 }
    222 
    223 
    224 void Heap::CopyBlock(Object** dst, Object** src, int byte_size) {
    225   ASSERT(IsAligned(byte_size, kPointerSize));
    226 
    227   // Use block copying memcpy if the segment we're copying is
    228   // enough to justify the extra call/setup overhead.
    229   static const int kBlockCopyLimit = 16 * kPointerSize;
    230 
    231   if (byte_size >= kBlockCopyLimit) {
    232     memcpy(dst, src, byte_size);
    233   } else {
    234     int remaining = byte_size / kPointerSize;
    235     do {
    236       remaining--;
    237       *dst++ = *src++;
    238     } while (remaining > 0);
    239   }
    240 }
    241 
    242 
    243 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
    244   ASSERT(InFromSpace(object));
    245 
    246   // We use the first word (where the map pointer usually is) of a heap
    247   // object to record the forwarding pointer.  A forwarding pointer can
    248   // point to an old space, the code space, or the to space of the new
    249   // generation.
    250   MapWord first_word = object->map_word();
    251 
    252   // If the first word is a forwarding address, the object has already been
    253   // copied.
    254   if (first_word.IsForwardingAddress()) {
    255     *p = first_word.ToForwardingAddress();
    256     return;
    257   }
    258 
    259   // Call the slow part of scavenge object.
    260   return ScavengeObjectSlow(p, object);
    261 }
    262 
    263 
    264 int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) {
    265   ASSERT(HasBeenSetup());
    266   int amount = amount_of_external_allocated_memory_ + change_in_bytes;
    267   if (change_in_bytes >= 0) {
    268     // Avoid overflow.
    269     if (amount > amount_of_external_allocated_memory_) {
    270       amount_of_external_allocated_memory_ = amount;
    271     }
    272     int amount_since_last_global_gc =
    273         amount_of_external_allocated_memory_ -
    274         amount_of_external_allocated_memory_at_last_global_gc_;
    275     if (amount_since_last_global_gc > external_allocation_limit_) {
    276       CollectAllGarbage(false);
    277     }
    278   } else {
    279     // Avoid underflow.
    280     if (amount >= 0) {
    281       amount_of_external_allocated_memory_ = amount;
    282     }
    283   }
    284   ASSERT(amount_of_external_allocated_memory_ >= 0);
    285   return amount_of_external_allocated_memory_;
    286 }
    287 
    288 
    289 void Heap::SetLastScriptId(Object* last_script_id) {
    290   roots_[kLastScriptIdRootIndex] = last_script_id;
    291 }
    292 
    293 
    294 #define GC_GREEDY_CHECK() \
    295   ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck())
    296 
    297 
    298 // Calls the FUNCTION_CALL function and retries it up to three times
    299 // to guarantee that any allocations performed during the call will
    300 // succeed if there's enough memory.
    301 
    302 // Warning: Do not use the identifiers __object__ or __scope__ in a
    303 // call to this macro.
    304 
    305 #define CALL_AND_RETRY(FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)         \
    306   do {                                                                    \
    307     GC_GREEDY_CHECK();                                                    \
    308     Object* __object__ = FUNCTION_CALL;                                   \
    309     if (!__object__->IsFailure()) RETURN_VALUE;                           \
    310     if (__object__->IsOutOfMemoryFailure()) {                             \
    311       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0");      \
    312     }                                                                     \
    313     if (!__object__->IsRetryAfterGC()) RETURN_EMPTY;                      \
    314     Heap::CollectGarbage(Failure::cast(__object__)->requested(),          \
    315                          Failure::cast(__object__)->allocation_space());  \
    316     __object__ = FUNCTION_CALL;                                           \
    317     if (!__object__->IsFailure()) RETURN_VALUE;                           \
    318     if (__object__->IsOutOfMemoryFailure()) {                             \
    319       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1");      \
    320     }                                                                     \
    321     if (!__object__->IsRetryAfterGC()) RETURN_EMPTY;                      \
    322     Counters::gc_last_resort_from_handles.Increment();                    \
    323     Heap::CollectAllGarbage(false);                                       \
    324     {                                                                     \
    325       AlwaysAllocateScope __scope__;                                      \
    326       __object__ = FUNCTION_CALL;                                         \
    327     }                                                                     \
    328     if (!__object__->IsFailure()) RETURN_VALUE;                           \
    329     if (__object__->IsOutOfMemoryFailure() ||                             \
    330         __object__->IsRetryAfterGC()) {                                   \
    331       /* TODO(1181417): Fix this. */                                      \
    332       v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2");      \
    333     }                                                                     \
    334     RETURN_EMPTY;                                                         \
    335   } while (false)
    336 
    337 
    338 #define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE)                \
    339   CALL_AND_RETRY(FUNCTION_CALL,                                \
    340                  return Handle<TYPE>(TYPE::cast(__object__)),  \
    341                  return Handle<TYPE>())
    342 
    343 
    344 #define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \
    345   CALL_AND_RETRY(FUNCTION_CALL, return, return)
    346 
    347 
    348 #ifdef DEBUG
    349 
    350 inline bool Heap::allow_allocation(bool new_state) {
    351   bool old = allocation_allowed_;
    352   allocation_allowed_ = new_state;
    353   return old;
    354 }
    355 
    356 #endif
    357 
    358 
    359 void ExternalStringTable::AddString(String* string) {
    360   ASSERT(string->IsExternalString());
    361   if (Heap::InNewSpace(string)) {
    362     new_space_strings_.Add(string);
    363   } else {
    364     old_space_strings_.Add(string);
    365   }
    366 }
    367 
    368 
    369 void ExternalStringTable::Iterate(ObjectVisitor* v) {
    370   if (!new_space_strings_.is_empty()) {
    371     Object** start = &new_space_strings_[0];
    372     v->VisitPointers(start, start + new_space_strings_.length());
    373   }
    374   if (!old_space_strings_.is_empty()) {
    375     Object** start = &old_space_strings_[0];
    376     v->VisitPointers(start, start + old_space_strings_.length());
    377   }
    378 }
    379 
    380 
    381 // Verify() is inline to avoid ifdef-s around its calls in release
    382 // mode.
    383 void ExternalStringTable::Verify() {
    384 #ifdef DEBUG
    385   for (int i = 0; i < new_space_strings_.length(); ++i) {
    386     ASSERT(Heap::InNewSpace(new_space_strings_[i]));
    387     ASSERT(new_space_strings_[i] != Heap::raw_unchecked_null_value());
    388   }
    389   for (int i = 0; i < old_space_strings_.length(); ++i) {
    390     ASSERT(!Heap::InNewSpace(old_space_strings_[i]));
    391     ASSERT(old_space_strings_[i] != Heap::raw_unchecked_null_value());
    392   }
    393 #endif
    394 }
    395 
    396 
    397 void ExternalStringTable::AddOldString(String* string) {
    398   ASSERT(string->IsExternalString());
    399   ASSERT(!Heap::InNewSpace(string));
    400   old_space_strings_.Add(string);
    401 }
    402 
    403 
    404 void ExternalStringTable::ShrinkNewStrings(int position) {
    405   new_space_strings_.Rewind(position);
    406   Verify();
    407 }
    408 
    409 } }  // namespace v8::internal
    410 
    411 #endif  // V8_HEAP_INL_H_
    412