Home | History | Annotate | Download | only in include
      1 // Copyright 2007-2009 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 /** \mainpage V8 API Reference Guide
     29  *
     30  * V8 is Google's open source JavaScript engine.
     31  *
     32  * This set of documents provides reference material generated from the
     33  * V8 header file, include/v8.h.
     34  *
     35  * For other documentation see http://code.google.com/apis/v8/
     36  */
     37 
     38 #ifndef V8_H_
     39 #define V8_H_
     40 
     41 #include <stdio.h>
     42 
     43 #ifdef _WIN32
     44 // When compiling on MinGW stdint.h is available.
     45 #ifdef __MINGW32__
     46 #include <stdint.h>
     47 #else  // __MINGW32__
     48 typedef signed char int8_t;
     49 typedef unsigned char uint8_t;
     50 typedef short int16_t;  // NOLINT
     51 typedef unsigned short uint16_t;  // NOLINT
     52 typedef int int32_t;
     53 typedef unsigned int uint32_t;
     54 typedef __int64 int64_t;
     55 typedef unsigned __int64 uint64_t;
     56 // intptr_t and friends are defined in crtdefs.h through stdio.h.
     57 #endif  // __MINGW32__
     58 
     59 // Setup for Windows DLL export/import. When building the V8 DLL the
     60 // BUILDING_V8_SHARED needs to be defined. When building a program which uses
     61 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
     62 // static library or building a program which uses the V8 static library neither
     63 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
     64 // The reason for having both V8EXPORT and V8EXPORT_INLINE is that classes which
     65 // have their code inside this header file need to have __declspec(dllexport)
     66 // when building the DLL but cannot have __declspec(dllimport) when building
     67 // a program which uses the DLL.
     68 #if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
     69 #error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
     70   build configuration to ensure that at most one of these is set
     71 #endif
     72 
     73 #ifdef BUILDING_V8_SHARED
     74 #define V8EXPORT __declspec(dllexport)
     75 #define V8EXPORT_INLINE __declspec(dllexport)
     76 #elif USING_V8_SHARED
     77 #define V8EXPORT __declspec(dllimport)
     78 #define V8EXPORT_INLINE
     79 #else
     80 #define V8EXPORT
     81 #define V8EXPORT_INLINE
     82 #endif  // BUILDING_V8_SHARED
     83 
     84 #else  // _WIN32
     85 
     86 #include <stdint.h>
     87 
     88 // Setup for Linux shared library export. There is no need to distinguish
     89 // between building or using the V8 shared library, but we should not
     90 // export symbols when we are building a static library.
     91 #if defined(__GNUC__) && (__GNUC__ >= 4) && defined(V8_SHARED)
     92 #define V8EXPORT __attribute__ ((visibility("default")))
     93 #define V8EXPORT_INLINE __attribute__ ((visibility("default")))
     94 #else  // defined(__GNUC__) && (__GNUC__ >= 4)
     95 #define V8EXPORT
     96 #define V8EXPORT_INLINE
     97 #endif  // defined(__GNUC__) && (__GNUC__ >= 4)
     98 
     99 #endif  // _WIN32
    100 
    101 /**
    102  * The v8 JavaScript engine.
    103  */
    104 namespace v8 {
    105 
    106 class Context;
    107 class String;
    108 class Value;
    109 class Utils;
    110 class Number;
    111 class Object;
    112 class Array;
    113 class Int32;
    114 class Uint32;
    115 class External;
    116 class Primitive;
    117 class Boolean;
    118 class Integer;
    119 class Function;
    120 class Date;
    121 class ImplementationUtilities;
    122 class Signature;
    123 template <class T> class Handle;
    124 template <class T> class Local;
    125 template <class T> class Persistent;
    126 class FunctionTemplate;
    127 class ObjectTemplate;
    128 class Data;
    129 
    130 namespace internal {
    131 
    132 class Arguments;
    133 class Object;
    134 class Top;
    135 
    136 }
    137 
    138 
    139 // --- W e a k  H a n d l e s
    140 
    141 
    142 /**
    143  * A weak reference callback function.
    144  *
    145  * \param object the weak global object to be reclaimed by the garbage collector
    146  * \param parameter the value passed in when making the weak global object
    147  */
    148 typedef void (*WeakReferenceCallback)(Persistent<Value> object,
    149                                       void* parameter);
    150 
    151 
    152 // --- H a n d l e s ---
    153 
    154 #define TYPE_CHECK(T, S)                              \
    155   while (false) {                                     \
    156     *(static_cast<T**>(0)) = static_cast<S*>(0);      \
    157   }
    158 
    159 /**
    160  * An object reference managed by the v8 garbage collector.
    161  *
    162  * All objects returned from v8 have to be tracked by the garbage
    163  * collector so that it knows that the objects are still alive.  Also,
    164  * because the garbage collector may move objects, it is unsafe to
    165  * point directly to an object.  Instead, all objects are stored in
    166  * handles which are known by the garbage collector and updated
    167  * whenever an object moves.  Handles should always be passed by value
    168  * (except in cases like out-parameters) and they should never be
    169  * allocated on the heap.
    170  *
    171  * There are two types of handles: local and persistent handles.
    172  * Local handles are light-weight and transient and typically used in
    173  * local operations.  They are managed by HandleScopes.  Persistent
    174  * handles can be used when storing objects across several independent
    175  * operations and have to be explicitly deallocated when they're no
    176  * longer used.
    177  *
    178  * It is safe to extract the object stored in the handle by
    179  * dereferencing the handle (for instance, to extract the Object* from
    180  * an Handle<Object>); the value will still be governed by a handle
    181  * behind the scenes and the same rules apply to these values as to
    182  * their handles.
    183  */
    184 template <class T> class V8EXPORT_INLINE Handle {
    185  public:
    186 
    187   /**
    188    * Creates an empty handle.
    189    */
    190   inline Handle();
    191 
    192   /**
    193    * Creates a new handle for the specified value.
    194    */
    195   explicit Handle(T* val) : val_(val) { }
    196 
    197   /**
    198    * Creates a handle for the contents of the specified handle.  This
    199    * constructor allows you to pass handles as arguments by value and
    200    * to assign between handles.  However, if you try to assign between
    201    * incompatible handles, for instance from a Handle<String> to a
    202    * Handle<Number> it will cause a compiletime error.  Assigning
    203    * between compatible handles, for instance assigning a
    204    * Handle<String> to a variable declared as Handle<Value>, is legal
    205    * because String is a subclass of Value.
    206    */
    207   template <class S> inline Handle(Handle<S> that)
    208       : val_(reinterpret_cast<T*>(*that)) {
    209     /**
    210      * This check fails when trying to convert between incompatible
    211      * handles. For example, converting from a Handle<String> to a
    212      * Handle<Number>.
    213      */
    214     TYPE_CHECK(T, S);
    215   }
    216 
    217   /**
    218    * Returns true if the handle is empty.
    219    */
    220   bool IsEmpty() const { return val_ == 0; }
    221 
    222   T* operator->() const { return val_; }
    223 
    224   T* operator*() const { return val_; }
    225 
    226   /**
    227    * Sets the handle to be empty. IsEmpty() will then return true.
    228    */
    229   void Clear() { this->val_ = 0; }
    230 
    231   /**
    232    * Checks whether two handles are the same.
    233    * Returns true if both are empty, or if the objects
    234    * to which they refer are identical.
    235    * The handles' references are not checked.
    236    */
    237   template <class S> bool operator==(Handle<S> that) const {
    238     internal::Object** a = reinterpret_cast<internal::Object**>(**this);
    239     internal::Object** b = reinterpret_cast<internal::Object**>(*that);
    240     if (a == 0) return b == 0;
    241     if (b == 0) return false;
    242     return *a == *b;
    243   }
    244 
    245   /**
    246    * Checks whether two handles are different.
    247    * Returns true if only one of the handles is empty, or if
    248    * the objects to which they refer are different.
    249    * The handles' references are not checked.
    250    */
    251   template <class S> bool operator!=(Handle<S> that) const {
    252     return !operator==(that);
    253   }
    254 
    255   template <class S> static inline Handle<T> Cast(Handle<S> that) {
    256 #ifdef V8_ENABLE_CHECKS
    257     // If we're going to perform the type check then we have to check
    258     // that the handle isn't empty before doing the checked cast.
    259     if (that.IsEmpty()) return Handle<T>();
    260 #endif
    261     return Handle<T>(T::Cast(*that));
    262   }
    263 
    264  private:
    265   T* val_;
    266 };
    267 
    268 
    269 /**
    270  * A light-weight stack-allocated object handle.  All operations
    271  * that return objects from within v8 return them in local handles.  They
    272  * are created within HandleScopes, and all local handles allocated within a
    273  * handle scope are destroyed when the handle scope is destroyed.  Hence it
    274  * is not necessary to explicitly deallocate local handles.
    275  */
    276 template <class T> class V8EXPORT_INLINE Local : public Handle<T> {
    277  public:
    278   inline Local();
    279   template <class S> inline Local(Local<S> that)
    280       : Handle<T>(reinterpret_cast<T*>(*that)) {
    281     /**
    282      * This check fails when trying to convert between incompatible
    283      * handles. For example, converting from a Handle<String> to a
    284      * Handle<Number>.
    285      */
    286     TYPE_CHECK(T, S);
    287   }
    288   template <class S> inline Local(S* that) : Handle<T>(that) { }
    289   template <class S> static inline Local<T> Cast(Local<S> that) {
    290 #ifdef V8_ENABLE_CHECKS
    291     // If we're going to perform the type check then we have to check
    292     // that the handle isn't empty before doing the checked cast.
    293     if (that.IsEmpty()) return Local<T>();
    294 #endif
    295     return Local<T>(T::Cast(*that));
    296   }
    297 
    298   /** Create a local handle for the content of another handle.
    299    *  The referee is kept alive by the local handle even when
    300    *  the original handle is destroyed/disposed.
    301    */
    302   inline static Local<T> New(Handle<T> that);
    303 };
    304 
    305 
    306 /**
    307  * An object reference that is independent of any handle scope.  Where
    308  * a Local handle only lives as long as the HandleScope in which it was
    309  * allocated, a Persistent handle remains valid until it is explicitly
    310  * disposed.
    311  *
    312  * A persistent handle contains a reference to a storage cell within
    313  * the v8 engine which holds an object value and which is updated by
    314  * the garbage collector whenever the object is moved.  A new storage
    315  * cell can be created using Persistent::New and existing handles can
    316  * be disposed using Persistent::Dispose.  Since persistent handles
    317  * are passed by value you may have many persistent handle objects
    318  * that point to the same storage cell.  For instance, if you pass a
    319  * persistent handle as an argument to a function you will not get two
    320  * different storage cells but rather two references to the same
    321  * storage cell.
    322  */
    323 template <class T> class V8EXPORT_INLINE Persistent : public Handle<T> {
    324  public:
    325 
    326   /**
    327    * Creates an empty persistent handle that doesn't point to any
    328    * storage cell.
    329    */
    330   inline Persistent();
    331 
    332   /**
    333    * Creates a persistent handle for the same storage cell as the
    334    * specified handle.  This constructor allows you to pass persistent
    335    * handles as arguments by value and to assign between persistent
    336    * handles.  However, attempting to assign between incompatible
    337    * persistent handles, for instance from a Persistent<String> to a
    338    * Persistent<Number> will cause a compiletime error.  Assigning
    339    * between compatible persistent handles, for instance assigning a
    340    * Persistent<String> to a variable declared as Persistent<Value>,
    341    * is allowed as String is a subclass of Value.
    342    */
    343   template <class S> inline Persistent(Persistent<S> that)
    344       : Handle<T>(reinterpret_cast<T*>(*that)) {
    345     /**
    346      * This check fails when trying to convert between incompatible
    347      * handles. For example, converting from a Handle<String> to a
    348      * Handle<Number>.
    349      */
    350     TYPE_CHECK(T, S);
    351   }
    352 
    353   template <class S> inline Persistent(S* that) : Handle<T>(that) { }
    354 
    355   /**
    356    * "Casts" a plain handle which is known to be a persistent handle
    357    * to a persistent handle.
    358    */
    359   template <class S> explicit inline Persistent(Handle<S> that)
    360       : Handle<T>(*that) { }
    361 
    362   template <class S> static inline Persistent<T> Cast(Persistent<S> that) {
    363 #ifdef V8_ENABLE_CHECKS
    364     // If we're going to perform the type check then we have to check
    365     // that the handle isn't empty before doing the checked cast.
    366     if (that.IsEmpty()) return Persistent<T>();
    367 #endif
    368     return Persistent<T>(T::Cast(*that));
    369   }
    370 
    371   /**
    372    * Creates a new persistent handle for an existing local or
    373    * persistent handle.
    374    */
    375   inline static Persistent<T> New(Handle<T> that);
    376 
    377   /**
    378    * Releases the storage cell referenced by this persistent handle.
    379    * Does not remove the reference to the cell from any handles.
    380    * This handle's reference, and any any other references to the storage
    381    * cell remain and IsEmpty will still return false.
    382    */
    383   inline void Dispose();
    384 
    385   /**
    386    * Make the reference to this object weak.  When only weak handles
    387    * refer to the object, the garbage collector will perform a
    388    * callback to the given V8::WeakReferenceCallback function, passing
    389    * it the object reference and the given parameters.
    390    */
    391   inline void MakeWeak(void* parameters, WeakReferenceCallback callback);
    392 
    393   /** Clears the weak reference to this object.*/
    394   inline void ClearWeak();
    395 
    396   /**
    397    *Checks if the handle holds the only reference to an object.
    398    */
    399   inline bool IsNearDeath() const;
    400 
    401   /**
    402    * Returns true if the handle's reference is weak.
    403    */
    404   inline bool IsWeak() const;
    405 
    406  private:
    407   friend class ImplementationUtilities;
    408   friend class ObjectTemplate;
    409 };
    410 
    411 
    412  /**
    413  * A stack-allocated class that governs a number of local handles.
    414  * After a handle scope has been created, all local handles will be
    415  * allocated within that handle scope until either the handle scope is
    416  * deleted or another handle scope is created.  If there is already a
    417  * handle scope and a new one is created, all allocations will take
    418  * place in the new handle scope until it is deleted.  After that,
    419  * new handles will again be allocated in the original handle scope.
    420  *
    421  * After the handle scope of a local handle has been deleted the
    422  * garbage collector will no longer track the object stored in the
    423  * handle and may deallocate it.  The behavior of accessing a handle
    424  * for which the handle scope has been deleted is undefined.
    425  */
    426 class V8EXPORT HandleScope {
    427  public:
    428   HandleScope();
    429 
    430   ~HandleScope();
    431 
    432   /**
    433    * Closes the handle scope and returns the value as a handle in the
    434    * previous scope, which is the new current scope after the call.
    435    */
    436   template <class T> Local<T> Close(Handle<T> value);
    437 
    438   /**
    439    * Counts the number of allocated handles.
    440    */
    441   static int NumberOfHandles();
    442 
    443   /**
    444    * Creates a new handle with the given value.
    445    */
    446   static internal::Object** CreateHandle(internal::Object* value);
    447 
    448  private:
    449   // Make it impossible to create heap-allocated or illegal handle
    450   // scopes by disallowing certain operations.
    451   HandleScope(const HandleScope&);
    452   void operator=(const HandleScope&);
    453   void* operator new(size_t size);
    454   void operator delete(void*, size_t);
    455 
    456   // This Data class is accessible internally as HandleScopeData through a
    457   // typedef in the ImplementationUtilities class.
    458   class V8EXPORT Data {
    459    public:
    460     int extensions;
    461     internal::Object** next;
    462     internal::Object** limit;
    463     inline void Initialize() {
    464       extensions = -1;
    465       next = limit = NULL;
    466     }
    467   };
    468 
    469   Data previous_;
    470 
    471   // Allow for the active closing of HandleScopes which allows to pass a handle
    472   // from the HandleScope being closed to the next top most HandleScope.
    473   bool is_closed_;
    474   internal::Object** RawClose(internal::Object** value);
    475 
    476   friend class ImplementationUtilities;
    477 };
    478 
    479 
    480 // --- S p e c i a l   o b j e c t s ---
    481 
    482 
    483 /**
    484  * The superclass of values and API object templates.
    485  */
    486 class V8EXPORT Data {
    487  private:
    488   Data();
    489 };
    490 
    491 
    492 /**
    493  * Pre-compilation data that can be associated with a script.  This
    494  * data can be calculated for a script in advance of actually
    495  * compiling it, and can be stored between compilations.  When script
    496  * data is given to the compile method compilation will be faster.
    497  */
    498 class V8EXPORT ScriptData {  // NOLINT
    499  public:
    500   virtual ~ScriptData() { }
    501   static ScriptData* PreCompile(const char* input, int length);
    502   static ScriptData* New(unsigned* data, int length);
    503 
    504   virtual int Length() = 0;
    505   virtual unsigned* Data() = 0;
    506   virtual bool HasError() = 0;
    507 };
    508 
    509 
    510 /**
    511  * The origin, within a file, of a script.
    512  */
    513 class V8EXPORT ScriptOrigin {
    514  public:
    515   ScriptOrigin(Handle<Value> resource_name,
    516                Handle<Integer> resource_line_offset = Handle<Integer>(),
    517                Handle<Integer> resource_column_offset = Handle<Integer>())
    518       : resource_name_(resource_name),
    519         resource_line_offset_(resource_line_offset),
    520         resource_column_offset_(resource_column_offset) { }
    521   inline Handle<Value> ResourceName() const;
    522   inline Handle<Integer> ResourceLineOffset() const;
    523   inline Handle<Integer> ResourceColumnOffset() const;
    524  private:
    525   Handle<Value> resource_name_;
    526   Handle<Integer> resource_line_offset_;
    527   Handle<Integer> resource_column_offset_;
    528 };
    529 
    530 
    531 /**
    532  * A compiled JavaScript script.
    533  */
    534 class V8EXPORT Script {
    535  public:
    536 
    537   /**
    538    * Compiles the specified script (context-independent).
    539    *
    540    * \param source Script source code.
    541    * \param origin Script origin, owned by caller, no references are kept
    542    *   when New() returns
    543    * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
    544    *   using pre_data speeds compilation if it's done multiple times.
    545    *   Owned by caller, no references are kept when New() returns.
    546    * \param script_data Arbitrary data associated with script. Using
    547    *   this has same effect as calling SetData(), but allows data to be
    548    *   available to compile event handlers.
    549    * \return Compiled script object (context independent; when run it
    550    *   will use the currently entered context).
    551    */
    552   static Local<Script> New(Handle<String> source,
    553                            ScriptOrigin* origin = NULL,
    554                            ScriptData* pre_data = NULL,
    555                            Handle<String> script_data = Handle<String>());
    556 
    557   /**
    558    * Compiles the specified script using the specified file name
    559    * object (typically a string) as the script's origin.
    560    *
    561    * \param source Script source code.
    562    * \patam file_name file name object (typically a string) to be used
    563    *   as the script's origin.
    564    * \return Compiled script object (context independent; when run it
    565    *   will use the currently entered context).
    566    */
    567   static Local<Script> New(Handle<String> source,
    568                            Handle<Value> file_name);
    569 
    570   /**
    571    * Compiles the specified script (bound to current context).
    572    *
    573    * \param source Script source code.
    574    * \param origin Script origin, owned by caller, no references are kept
    575    *   when Compile() returns
    576    * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
    577    *   using pre_data speeds compilation if it's done multiple times.
    578    *   Owned by caller, no references are kept when Compile() returns.
    579    * \param script_data Arbitrary data associated with script. Using
    580    *   this has same effect as calling SetData(), but makes data available
    581    *   earlier (i.e. to compile event handlers).
    582    * \return Compiled script object, bound to the context that was active
    583    *   when this function was called.  When run it will always use this
    584    *   context.
    585    */
    586   static Local<Script> Compile(Handle<String> source,
    587                                ScriptOrigin* origin = NULL,
    588                                ScriptData* pre_data = NULL,
    589                                Handle<String> script_data = Handle<String>());
    590 
    591   /**
    592    * Compiles the specified script using the specified file name
    593    * object (typically a string) as the script's origin.
    594    *
    595    * \param source Script source code.
    596    * \param file_name File name to use as script's origin
    597    * \param script_data Arbitrary data associated with script. Using
    598    *   this has same effect as calling SetData(), but makes data available
    599    *   earlier (i.e. to compile event handlers).
    600    * \return Compiled script object, bound to the context that was active
    601    *   when this function was called.  When run it will always use this
    602    *   context.
    603    */
    604   static Local<Script> Compile(Handle<String> source,
    605                                Handle<Value> file_name,
    606                                Handle<String> script_data = Handle<String>());
    607 
    608   /**
    609    * Runs the script returning the resulting value.  If the script is
    610    * context independent (created using ::New) it will be run in the
    611    * currently entered context.  If it is context specific (created
    612    * using ::Compile) it will be run in the context in which it was
    613    * compiled.
    614    */
    615   Local<Value> Run();
    616 
    617   /**
    618    * Returns the script id value.
    619    */
    620   Local<Value> Id();
    621 
    622   /**
    623    * Associate an additional data object with the script. This is mainly used
    624    * with the debugger as this data object is only available through the
    625    * debugger API.
    626    */
    627   void SetData(Handle<String> data);
    628 };
    629 
    630 
    631 /**
    632  * An error message.
    633  */
    634 class V8EXPORT Message {
    635  public:
    636   Local<String> Get() const;
    637   Local<String> GetSourceLine() const;
    638 
    639   /**
    640    * Returns the resource name for the script from where the function causing
    641    * the error originates.
    642    */
    643   Handle<Value> GetScriptResourceName() const;
    644 
    645   /**
    646    * Returns the resource data for the script from where the function causing
    647    * the error originates.
    648    */
    649   Handle<Value> GetScriptData() const;
    650 
    651   /**
    652    * Returns the number, 1-based, of the line where the error occurred.
    653    */
    654   int GetLineNumber() const;
    655 
    656   /**
    657    * Returns the index within the script of the first character where
    658    * the error occurred.
    659    */
    660   int GetStartPosition() const;
    661 
    662   /**
    663    * Returns the index within the script of the last character where
    664    * the error occurred.
    665    */
    666   int GetEndPosition() const;
    667 
    668   /**
    669    * Returns the index within the line of the first character where
    670    * the error occurred.
    671    */
    672   int GetStartColumn() const;
    673 
    674   /**
    675    * Returns the index within the line of the last character where
    676    * the error occurred.
    677    */
    678   int GetEndColumn() const;
    679 
    680   // TODO(1245381): Print to a string instead of on a FILE.
    681   static void PrintCurrentStackTrace(FILE* out);
    682 };
    683 
    684 
    685 // --- V a l u e ---
    686 
    687 
    688 /**
    689  * The superclass of all JavaScript values and objects.
    690  */
    691 class V8EXPORT Value : public Data {
    692  public:
    693 
    694   /**
    695    * Returns true if this value is the undefined value.  See ECMA-262
    696    * 4.3.10.
    697    */
    698   bool IsUndefined() const;
    699 
    700   /**
    701    * Returns true if this value is the null value.  See ECMA-262
    702    * 4.3.11.
    703    */
    704   bool IsNull() const;
    705 
    706    /**
    707    * Returns true if this value is true.
    708    */
    709   bool IsTrue() const;
    710 
    711   /**
    712    * Returns true if this value is false.
    713    */
    714   bool IsFalse() const;
    715 
    716   /**
    717    * Returns true if this value is an instance of the String type.
    718    * See ECMA-262 8.4.
    719    */
    720   inline bool IsString() const;
    721 
    722   /**
    723    * Returns true if this value is a function.
    724    */
    725   bool IsFunction() const;
    726 
    727   /**
    728    * Returns true if this value is an array.
    729    */
    730   bool IsArray() const;
    731 
    732   /**
    733    * Returns true if this value is an object.
    734    */
    735   bool IsObject() const;
    736 
    737   /**
    738    * Returns true if this value is boolean.
    739    */
    740   bool IsBoolean() const;
    741 
    742   /**
    743    * Returns true if this value is a number.
    744    */
    745   bool IsNumber() const;
    746 
    747   /**
    748    * Returns true if this value is external.
    749    */
    750   bool IsExternal() const;
    751 
    752   /**
    753    * Returns true if this value is a 32-bit signed integer.
    754    */
    755   bool IsInt32() const;
    756 
    757   /**
    758    * Returns true if this value is a Date.
    759    */
    760   bool IsDate() const;
    761 
    762   Local<Boolean> ToBoolean() const;
    763   Local<Number> ToNumber() const;
    764   Local<String> ToString() const;
    765   Local<String> ToDetailString() const;
    766   Local<Object> ToObject() const;
    767   Local<Integer> ToInteger() const;
    768   Local<Uint32> ToUint32() const;
    769   Local<Int32> ToInt32() const;
    770 
    771   /**
    772    * Attempts to convert a string to an array index.
    773    * Returns an empty handle if the conversion fails.
    774    */
    775   Local<Uint32> ToArrayIndex() const;
    776 
    777   bool BooleanValue() const;
    778   double NumberValue() const;
    779   int64_t IntegerValue() const;
    780   uint32_t Uint32Value() const;
    781   int32_t Int32Value() const;
    782 
    783   /** JS == */
    784   bool Equals(Handle<Value> that) const;
    785   bool StrictEquals(Handle<Value> that) const;
    786 
    787  private:
    788   inline bool QuickIsString() const;
    789   bool FullIsString() const;
    790 };
    791 
    792 
    793 /**
    794  * The superclass of primitive values.  See ECMA-262 4.3.2.
    795  */
    796 class V8EXPORT Primitive : public Value { };
    797 
    798 
    799 /**
    800  * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
    801  * or false value.
    802  */
    803 class V8EXPORT Boolean : public Primitive {
    804  public:
    805   bool Value() const;
    806   static inline Handle<Boolean> New(bool value);
    807 };
    808 
    809 
    810 /**
    811  * A JavaScript string value (ECMA-262, 4.3.17).
    812  */
    813 class V8EXPORT String : public Primitive {
    814  public:
    815 
    816   /**
    817    * Returns the number of characters in this string.
    818    */
    819   int Length() const;
    820 
    821   /**
    822    * Returns the number of bytes in the UTF-8 encoded
    823    * representation of this string.
    824    */
    825   int Utf8Length() const;
    826 
    827   /**
    828    * Write the contents of the string to an external buffer.
    829    * If no arguments are given, expects the buffer to be large
    830    * enough to hold the entire string and NULL terminator. Copies
    831    * the contents of the string and the NULL terminator into the
    832    * buffer.
    833    *
    834    * Copies up to length characters into the output buffer.
    835    * Only null-terminates if there is enough space in the buffer.
    836    *
    837    * \param buffer The buffer into which the string will be copied.
    838    * \param start The starting position within the string at which
    839    * copying begins.
    840    * \param length The number of bytes to copy from the string.
    841    * \return The number of characters copied to the buffer
    842    * excluding the NULL terminator.
    843    */
    844   int Write(uint16_t* buffer, int start = 0, int length = -1) const;  // UTF-16
    845   int WriteAscii(char* buffer, int start = 0, int length = -1) const;  // ASCII
    846   int WriteUtf8(char* buffer, int length = -1) const; // UTF-8
    847 
    848   /**
    849    * A zero length string.
    850    */
    851   static v8::Local<v8::String> Empty();
    852 
    853   /**
    854    * Returns true if the string is external
    855    */
    856   bool IsExternal() const;
    857 
    858   /**
    859    * Returns true if the string is both external and ascii
    860    */
    861   bool IsExternalAscii() const;
    862 
    863   class V8EXPORT ExternalStringResourceBase {
    864    public:
    865     virtual ~ExternalStringResourceBase() {}
    866    protected:
    867     ExternalStringResourceBase() {}
    868    private:
    869     // Disallow copying and assigning.
    870     ExternalStringResourceBase(const ExternalStringResourceBase&);
    871     void operator=(const ExternalStringResourceBase&);
    872   };
    873 
    874   /**
    875    * An ExternalStringResource is a wrapper around a two-byte string
    876    * buffer that resides outside V8's heap. Implement an
    877    * ExternalStringResource to manage the life cycle of the underlying
    878    * buffer.  Note that the string data must be immutable.
    879    */
    880   class V8EXPORT ExternalStringResource
    881       : public ExternalStringResourceBase {
    882    public:
    883     /**
    884      * Override the destructor to manage the life cycle of the underlying
    885      * buffer.
    886      */
    887     virtual ~ExternalStringResource() {}
    888     /** The string data from the underlying buffer.*/
    889     virtual const uint16_t* data() const = 0;
    890     /** The length of the string. That is, the number of two-byte characters.*/
    891     virtual size_t length() const = 0;
    892    protected:
    893     ExternalStringResource() {}
    894   };
    895 
    896   /**
    897    * An ExternalAsciiStringResource is a wrapper around an ascii
    898    * string buffer that resides outside V8's heap. Implement an
    899    * ExternalAsciiStringResource to manage the life cycle of the
    900    * underlying buffer.  Note that the string data must be immutable
    901    * and that the data must be strict 7-bit ASCII, not Latin1 or
    902    * UTF-8, which would require special treatment internally in the
    903    * engine and, in the case of UTF-8, do not allow efficient indexing.
    904    * Use String::New or convert to 16 bit data for non-ASCII.
    905    */
    906 
    907   class V8EXPORT ExternalAsciiStringResource
    908       : public ExternalStringResourceBase {
    909    public:
    910     /**
    911      * Override the destructor to manage the life cycle of the underlying
    912      * buffer.
    913      */
    914     virtual ~ExternalAsciiStringResource() {}
    915     /** The string data from the underlying buffer.*/
    916     virtual const char* data() const = 0;
    917     /** The number of ascii characters in the string.*/
    918     virtual size_t length() const = 0;
    919    protected:
    920     ExternalAsciiStringResource() {}
    921   };
    922 
    923   /**
    924    * Get the ExternalStringResource for an external string.  Returns
    925    * NULL if IsExternal() doesn't return true.
    926    */
    927   inline ExternalStringResource* GetExternalStringResource() const;
    928 
    929   /**
    930    * Get the ExternalAsciiStringResource for an external ascii string.
    931    * Returns NULL if IsExternalAscii() doesn't return true.
    932    */
    933   ExternalAsciiStringResource* GetExternalAsciiStringResource() const;
    934 
    935   static inline String* Cast(v8::Value* obj);
    936 
    937   /**
    938    * Allocates a new string from either utf-8 encoded or ascii data.
    939    * The second parameter 'length' gives the buffer length.
    940    * If the data is utf-8 encoded, the caller must
    941    * be careful to supply the length parameter.
    942    * If it is not given, the function calls
    943    * 'strlen' to determine the buffer length, it might be
    944    * wrong if 'data' contains a null character.
    945    */
    946   static Local<String> New(const char* data, int length = -1);
    947 
    948   /** Allocates a new string from utf16 data.*/
    949   static Local<String> New(const uint16_t* data, int length = -1);
    950 
    951   /** Creates a symbol. Returns one if it exists already.*/
    952   static Local<String> NewSymbol(const char* data, int length = -1);
    953 
    954   /**
    955    * Creates a new string by concatenating the left and the right strings
    956    * passed in as parameters.
    957    */
    958   static Local<String> Concat(Handle<String> left, Handle<String>right);
    959 
    960   /**
    961    * Creates a new external string using the data defined in the given
    962    * resource. The resource is deleted when the external string is no
    963    * longer live on V8's heap. The caller of this function should not
    964    * delete or modify the resource. Neither should the underlying buffer be
    965    * deallocated or modified except through the destructor of the
    966    * external string resource.
    967    */
    968   static Local<String> NewExternal(ExternalStringResource* resource);
    969 
    970   /**
    971    * Associate an external string resource with this string by transforming it
    972    * in place so that existing references to this string in the JavaScript heap
    973    * will use the external string resource. The external string resource's
    974    * character contents needs to be equivalent to this string.
    975    * Returns true if the string has been changed to be an external string.
    976    * The string is not modified if the operation fails.
    977    */
    978   bool MakeExternal(ExternalStringResource* resource);
    979 
    980   /**
    981    * Creates a new external string using the ascii data defined in the given
    982    * resource. The resource is deleted when the external string is no
    983    * longer live on V8's heap. The caller of this function should not
    984    * delete or modify the resource. Neither should the underlying buffer be
    985    * deallocated or modified except through the destructor of the
    986    * external string resource.
    987    */
    988   static Local<String> NewExternal(ExternalAsciiStringResource* resource);
    989 
    990   /**
    991    * Associate an external string resource with this string by transforming it
    992    * in place so that existing references to this string in the JavaScript heap
    993    * will use the external string resource. The external string resource's
    994    * character contents needs to be equivalent to this string.
    995    * Returns true if the string has been changed to be an external string.
    996    * The string is not modified if the operation fails.
    997    */
    998   bool MakeExternal(ExternalAsciiStringResource* resource);
    999 
   1000   /**
   1001    * Returns true if this string can be made external.
   1002    */
   1003   bool CanMakeExternal();
   1004 
   1005   /** Creates an undetectable string from the supplied ascii or utf-8 data.*/
   1006   static Local<String> NewUndetectable(const char* data, int length = -1);
   1007 
   1008   /** Creates an undetectable string from the supplied utf-16 data.*/
   1009   static Local<String> NewUndetectable(const uint16_t* data, int length = -1);
   1010 
   1011   /**
   1012    * Converts an object to a utf8-encoded character array.  Useful if
   1013    * you want to print the object.  If conversion to a string fails
   1014    * (eg. due to an exception in the toString() method of the object)
   1015    * then the length() method returns 0 and the * operator returns
   1016    * NULL.
   1017    */
   1018   class V8EXPORT Utf8Value {
   1019    public:
   1020     explicit Utf8Value(Handle<v8::Value> obj);
   1021     ~Utf8Value();
   1022     char* operator*() { return str_; }
   1023     const char* operator*() const { return str_; }
   1024     int length() const { return length_; }
   1025    private:
   1026     char* str_;
   1027     int length_;
   1028 
   1029     // Disallow copying and assigning.
   1030     Utf8Value(const Utf8Value&);
   1031     void operator=(const Utf8Value&);
   1032   };
   1033 
   1034   /**
   1035    * Converts an object to an ascii string.
   1036    * Useful if you want to print the object.
   1037    * If conversion to a string fails (eg. due to an exception in the toString()
   1038    * method of the object) then the length() method returns 0 and the * operator
   1039    * returns NULL.
   1040    */
   1041   class V8EXPORT AsciiValue {
   1042    public:
   1043     explicit AsciiValue(Handle<v8::Value> obj);
   1044     ~AsciiValue();
   1045     char* operator*() { return str_; }
   1046     const char* operator*() const { return str_; }
   1047     int length() const { return length_; }
   1048    private:
   1049     char* str_;
   1050     int length_;
   1051 
   1052     // Disallow copying and assigning.
   1053     AsciiValue(const AsciiValue&);
   1054     void operator=(const AsciiValue&);
   1055   };
   1056 
   1057   /**
   1058    * Converts an object to a two-byte string.
   1059    * If conversion to a string fails (eg. due to an exception in the toString()
   1060    * method of the object) then the length() method returns 0 and the * operator
   1061    * returns NULL.
   1062    */
   1063   class V8EXPORT Value {
   1064    public:
   1065     explicit Value(Handle<v8::Value> obj);
   1066     ~Value();
   1067     uint16_t* operator*() { return str_; }
   1068     const uint16_t* operator*() const { return str_; }
   1069     int length() const { return length_; }
   1070    private:
   1071     uint16_t* str_;
   1072     int length_;
   1073 
   1074     // Disallow copying and assigning.
   1075     Value(const Value&);
   1076     void operator=(const Value&);
   1077   };
   1078 
   1079  private:
   1080   void VerifyExternalStringResource(ExternalStringResource* val) const;
   1081   static void CheckCast(v8::Value* obj);
   1082 };
   1083 
   1084 
   1085 /**
   1086  * A JavaScript number value (ECMA-262, 4.3.20)
   1087  */
   1088 class V8EXPORT Number : public Primitive {
   1089  public:
   1090   double Value() const;
   1091   static Local<Number> New(double value);
   1092   static inline Number* Cast(v8::Value* obj);
   1093  private:
   1094   Number();
   1095   static void CheckCast(v8::Value* obj);
   1096 };
   1097 
   1098 
   1099 /**
   1100  * A JavaScript value representing a signed integer.
   1101  */
   1102 class V8EXPORT Integer : public Number {
   1103  public:
   1104   static Local<Integer> New(int32_t value);
   1105   static Local<Integer> NewFromUnsigned(uint32_t value);
   1106   int64_t Value() const;
   1107   static inline Integer* Cast(v8::Value* obj);
   1108  private:
   1109   Integer();
   1110   static void CheckCast(v8::Value* obj);
   1111 };
   1112 
   1113 
   1114 /**
   1115  * A JavaScript value representing a 32-bit signed integer.
   1116  */
   1117 class V8EXPORT Int32 : public Integer {
   1118  public:
   1119   int32_t Value() const;
   1120  private:
   1121   Int32();
   1122 };
   1123 
   1124 
   1125 /**
   1126  * A JavaScript value representing a 32-bit unsigned integer.
   1127  */
   1128 class V8EXPORT Uint32 : public Integer {
   1129  public:
   1130   uint32_t Value() const;
   1131  private:
   1132   Uint32();
   1133 };
   1134 
   1135 
   1136 /**
   1137  * An instance of the built-in Date constructor (ECMA-262, 15.9).
   1138  */
   1139 class V8EXPORT Date : public Value {
   1140  public:
   1141   static Local<Value> New(double time);
   1142 
   1143   /**
   1144    * A specialization of Value::NumberValue that is more efficient
   1145    * because we know the structure of this object.
   1146    */
   1147   double NumberValue() const;
   1148 
   1149   static inline Date* Cast(v8::Value* obj);
   1150  private:
   1151   static void CheckCast(v8::Value* obj);
   1152 };
   1153 
   1154 
   1155 enum PropertyAttribute {
   1156   None       = 0,
   1157   ReadOnly   = 1 << 0,
   1158   DontEnum   = 1 << 1,
   1159   DontDelete = 1 << 2
   1160 };
   1161 
   1162 enum ExternalArrayType {
   1163   kExternalByteArray = 1,
   1164   kExternalUnsignedByteArray,
   1165   kExternalShortArray,
   1166   kExternalUnsignedShortArray,
   1167   kExternalIntArray,
   1168   kExternalUnsignedIntArray,
   1169   kExternalFloatArray
   1170 };
   1171 
   1172 /**
   1173  * A JavaScript object (ECMA-262, 4.3.3)
   1174  */
   1175 class V8EXPORT Object : public Value {
   1176  public:
   1177   bool Set(Handle<Value> key,
   1178            Handle<Value> value,
   1179            PropertyAttribute attribs = None);
   1180 
   1181   // Sets a local property on this object bypassing interceptors and
   1182   // overriding accessors or read-only properties.
   1183   //
   1184   // Note that if the object has an interceptor the property will be set
   1185   // locally, but since the interceptor takes precedence the local property
   1186   // will only be returned if the interceptor doesn't return a value.
   1187   //
   1188   // Note also that this only works for named properties.
   1189   bool ForceSet(Handle<Value> key,
   1190                 Handle<Value> value,
   1191                 PropertyAttribute attribs = None);
   1192 
   1193   Local<Value> Get(Handle<Value> key);
   1194 
   1195   // TODO(1245389): Replace the type-specific versions of these
   1196   // functions with generic ones that accept a Handle<Value> key.
   1197   bool Has(Handle<String> key);
   1198 
   1199   bool Delete(Handle<String> key);
   1200 
   1201   // Delete a property on this object bypassing interceptors and
   1202   // ignoring dont-delete attributes.
   1203   bool ForceDelete(Handle<Value> key);
   1204 
   1205   bool Has(uint32_t index);
   1206 
   1207   bool Delete(uint32_t index);
   1208 
   1209   /**
   1210    * Returns an array containing the names of the enumerable properties
   1211    * of this object, including properties from prototype objects.  The
   1212    * array returned by this method contains the same values as would
   1213    * be enumerated by a for-in statement over this object.
   1214    */
   1215   Local<Array> GetPropertyNames();
   1216 
   1217   /**
   1218    * Get the prototype object.  This does not skip objects marked to
   1219    * be skipped by __proto__ and it does not consult the security
   1220    * handler.
   1221    */
   1222   Local<Value> GetPrototype();
   1223 
   1224   /**
   1225    * Set the prototype object.  This does not skip objects marked to
   1226    * be skipped by __proto__ and it does not consult the security
   1227    * handler.
   1228    */
   1229   bool SetPrototype(Handle<Value> prototype);
   1230 
   1231   /**
   1232    * Finds an instance of the given function template in the prototype
   1233    * chain.
   1234    */
   1235   Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
   1236 
   1237   /**
   1238    * Call builtin Object.prototype.toString on this object.
   1239    * This is different from Value::ToString() that may call
   1240    * user-defined toString function. This one does not.
   1241    */
   1242   Local<String> ObjectProtoToString();
   1243 
   1244   /** Gets the number of internal fields for this Object. */
   1245   int InternalFieldCount();
   1246   /** Gets the value in an internal field. */
   1247   inline Local<Value> GetInternalField(int index);
   1248   /** Sets the value in an internal field. */
   1249   void SetInternalField(int index, Handle<Value> value);
   1250 
   1251   /** Gets a native pointer from an internal field. */
   1252   inline void* GetPointerFromInternalField(int index);
   1253 
   1254   /** Sets a native pointer in an internal field. */
   1255   void SetPointerInInternalField(int index, void* value);
   1256 
   1257   // Testers for local properties.
   1258   bool HasRealNamedProperty(Handle<String> key);
   1259   bool HasRealIndexedProperty(uint32_t index);
   1260   bool HasRealNamedCallbackProperty(Handle<String> key);
   1261 
   1262   /**
   1263    * If result.IsEmpty() no real property was located in the prototype chain.
   1264    * This means interceptors in the prototype chain are not called.
   1265    */
   1266   Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
   1267 
   1268   /**
   1269    * If result.IsEmpty() no real property was located on the object or
   1270    * in the prototype chain.
   1271    * This means interceptors in the prototype chain are not called.
   1272    */
   1273   Local<Value> GetRealNamedProperty(Handle<String> key);
   1274 
   1275   /** Tests for a named lookup interceptor.*/
   1276   bool HasNamedLookupInterceptor();
   1277 
   1278   /** Tests for an index lookup interceptor.*/
   1279   bool HasIndexedLookupInterceptor();
   1280 
   1281   /**
   1282    * Turns on access check on the object if the object is an instance of
   1283    * a template that has access check callbacks. If an object has no
   1284    * access check info, the object cannot be accessed by anyone.
   1285    */
   1286   void TurnOnAccessCheck();
   1287 
   1288   /**
   1289    * Returns the identity hash for this object. The current implemenation uses
   1290    * a hidden property on the object to store the identity hash.
   1291    *
   1292    * The return value will never be 0. Also, it is not guaranteed to be
   1293    * unique.
   1294    */
   1295   int GetIdentityHash();
   1296 
   1297   /**
   1298    * Access hidden properties on JavaScript objects. These properties are
   1299    * hidden from the executing JavaScript and only accessible through the V8
   1300    * C++ API. Hidden properties introduced by V8 internally (for example the
   1301    * identity hash) are prefixed with "v8::".
   1302    */
   1303   bool SetHiddenValue(Handle<String> key, Handle<Value> value);
   1304   Local<Value> GetHiddenValue(Handle<String> key);
   1305   bool DeleteHiddenValue(Handle<String> key);
   1306 
   1307   /**
   1308    * Returns true if this is an instance of an api function (one
   1309    * created from a function created from a function template) and has
   1310    * been modified since it was created.  Note that this method is
   1311    * conservative and may return true for objects that haven't actually
   1312    * been modified.
   1313    */
   1314   bool IsDirty();
   1315 
   1316   /**
   1317    * Clone this object with a fast but shallow copy.  Values will point
   1318    * to the same values as the original object.
   1319    */
   1320   Local<Object> Clone();
   1321 
   1322   /**
   1323    * Set the backing store of the indexed properties to be managed by the
   1324    * embedding layer. Access to the indexed properties will follow the rules
   1325    * spelled out in CanvasPixelArray.
   1326    * Note: The embedding program still owns the data and needs to ensure that
   1327    *       the backing store is preserved while V8 has a reference.
   1328    */
   1329   void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
   1330 
   1331   /**
   1332    * Set the backing store of the indexed properties to be managed by the
   1333    * embedding layer. Access to the indexed properties will follow the rules
   1334    * spelled out for the CanvasArray subtypes in the WebGL specification.
   1335    * Note: The embedding program still owns the data and needs to ensure that
   1336    *       the backing store is preserved while V8 has a reference.
   1337    */
   1338   void SetIndexedPropertiesToExternalArrayData(void* data,
   1339                                                ExternalArrayType array_type,
   1340                                                int number_of_elements);
   1341 
   1342   static Local<Object> New();
   1343   static inline Object* Cast(Value* obj);
   1344  private:
   1345   Object();
   1346   static void CheckCast(Value* obj);
   1347   Local<Value> CheckedGetInternalField(int index);
   1348   void* SlowGetPointerFromInternalField(int index);
   1349 
   1350   /**
   1351    * If quick access to the internal field is possible this method
   1352    * returns the value.  Otherwise an empty handle is returned.
   1353    */
   1354   inline Local<Value> UncheckedGetInternalField(int index);
   1355 };
   1356 
   1357 
   1358 /**
   1359  * An instance of the built-in array constructor (ECMA-262, 15.4.2).
   1360  */
   1361 class V8EXPORT Array : public Object {
   1362  public:
   1363   uint32_t Length() const;
   1364 
   1365   /**
   1366    * Clones an element at index |index|.  Returns an empty
   1367    * handle if cloning fails (for any reason).
   1368    */
   1369   Local<Object> CloneElementAt(uint32_t index);
   1370 
   1371   static Local<Array> New(int length = 0);
   1372   static inline Array* Cast(Value* obj);
   1373  private:
   1374   Array();
   1375   static void CheckCast(Value* obj);
   1376 };
   1377 
   1378 
   1379 /**
   1380  * A JavaScript function object (ECMA-262, 15.3).
   1381  */
   1382 class V8EXPORT Function : public Object {
   1383  public:
   1384   Local<Object> NewInstance() const;
   1385   Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
   1386   Local<Value> Call(Handle<Object> recv, int argc, Handle<Value> argv[]);
   1387   void SetName(Handle<String> name);
   1388   Handle<Value> GetName() const;
   1389 
   1390   /**
   1391    * Returns zero based line number of function body and
   1392    * kLineOffsetNotFound if no information available.
   1393    */
   1394   int GetScriptLineNumber() const;
   1395   ScriptOrigin GetScriptOrigin() const;
   1396   static inline Function* Cast(Value* obj);
   1397   static const int kLineOffsetNotFound;
   1398  private:
   1399   Function();
   1400   static void CheckCast(Value* obj);
   1401 };
   1402 
   1403 
   1404 /**
   1405  * A JavaScript value that wraps a C++ void*.  This type of value is
   1406  * mainly used to associate C++ data structures with JavaScript
   1407  * objects.
   1408  *
   1409  * The Wrap function V8 will return the most optimal Value object wrapping the
   1410  * C++ void*. The type of the value is not guaranteed to be an External object
   1411  * and no assumptions about its type should be made. To access the wrapped
   1412  * value Unwrap should be used, all other operations on that object will lead
   1413  * to unpredictable results.
   1414  */
   1415 class V8EXPORT External : public Value {
   1416  public:
   1417   static Local<Value> Wrap(void* data);
   1418   static inline void* Unwrap(Handle<Value> obj);
   1419 
   1420   static Local<External> New(void* value);
   1421   static inline External* Cast(Value* obj);
   1422   void* Value() const;
   1423  private:
   1424   External();
   1425   static void CheckCast(v8::Value* obj);
   1426   static inline void* QuickUnwrap(Handle<v8::Value> obj);
   1427   static void* FullUnwrap(Handle<v8::Value> obj);
   1428 };
   1429 
   1430 
   1431 // --- T e m p l a t e s ---
   1432 
   1433 
   1434 /**
   1435  * The superclass of object and function templates.
   1436  */
   1437 class V8EXPORT Template : public Data {
   1438  public:
   1439   /** Adds a property to each instance created by this template.*/
   1440   void Set(Handle<String> name, Handle<Data> value,
   1441            PropertyAttribute attributes = None);
   1442   inline void Set(const char* name, Handle<Data> value);
   1443  private:
   1444   Template();
   1445 
   1446   friend class ObjectTemplate;
   1447   friend class FunctionTemplate;
   1448 };
   1449 
   1450 
   1451 /**
   1452  * The argument information given to function call callbacks.  This
   1453  * class provides access to information about the context of the call,
   1454  * including the receiver, the number and values of arguments, and
   1455  * the holder of the function.
   1456  */
   1457 class V8EXPORT Arguments {
   1458  public:
   1459   inline int Length() const;
   1460   inline Local<Value> operator[](int i) const;
   1461   inline Local<Function> Callee() const;
   1462   inline Local<Object> This() const;
   1463   inline Local<Object> Holder() const;
   1464   inline bool IsConstructCall() const;
   1465   inline Local<Value> Data() const;
   1466  private:
   1467   Arguments();
   1468   friend class ImplementationUtilities;
   1469   inline Arguments(Local<Value> data,
   1470                    Local<Object> holder,
   1471                    Local<Function> callee,
   1472                    bool is_construct_call,
   1473                    void** values, int length);
   1474   Local<Value> data_;
   1475   Local<Object> holder_;
   1476   Local<Function> callee_;
   1477   bool is_construct_call_;
   1478   void** values_;
   1479   int length_;
   1480 };
   1481 
   1482 
   1483 /**
   1484  * The information passed to an accessor callback about the context
   1485  * of the property access.
   1486  */
   1487 class V8EXPORT AccessorInfo {
   1488  public:
   1489   inline AccessorInfo(internal::Object** args)
   1490       : args_(args) { }
   1491   inline Local<Value> Data() const;
   1492   inline Local<Object> This() const;
   1493   inline Local<Object> Holder() const;
   1494  private:
   1495   internal::Object** args_;
   1496 };
   1497 
   1498 
   1499 typedef Handle<Value> (*InvocationCallback)(const Arguments& args);
   1500 
   1501 typedef int (*LookupCallback)(Local<Object> self, Local<String> name);
   1502 
   1503 /**
   1504  * Accessor[Getter|Setter] are used as callback functions when
   1505  * setting|getting a particular property. See objectTemplate::SetAccessor.
   1506  */
   1507 typedef Handle<Value> (*AccessorGetter)(Local<String> property,
   1508                                         const AccessorInfo& info);
   1509 
   1510 
   1511 typedef void (*AccessorSetter)(Local<String> property,
   1512                                Local<Value> value,
   1513                                const AccessorInfo& info);
   1514 
   1515 
   1516 /**
   1517  * NamedProperty[Getter|Setter] are used as interceptors on object.
   1518  * See ObjectTemplate::SetNamedPropertyHandler.
   1519  */
   1520 typedef Handle<Value> (*NamedPropertyGetter)(Local<String> property,
   1521                                              const AccessorInfo& info);
   1522 
   1523 
   1524 /**
   1525  * Returns the value if the setter intercepts the request.
   1526  * Otherwise, returns an empty handle.
   1527  */
   1528 typedef Handle<Value> (*NamedPropertySetter)(Local<String> property,
   1529                                              Local<Value> value,
   1530                                              const AccessorInfo& info);
   1531 
   1532 
   1533 /**
   1534  * Returns a non-empty handle if the interceptor intercepts the request.
   1535  * The result is true if the property exists and false otherwise.
   1536  */
   1537 typedef Handle<Boolean> (*NamedPropertyQuery)(Local<String> property,
   1538                                               const AccessorInfo& info);
   1539 
   1540 
   1541 /**
   1542  * Returns a non-empty handle if the deleter intercepts the request.
   1543  * The return value is true if the property could be deleted and false
   1544  * otherwise.
   1545  */
   1546 typedef Handle<Boolean> (*NamedPropertyDeleter)(Local<String> property,
   1547                                                 const AccessorInfo& info);
   1548 
   1549 /**
   1550  * Returns an array containing the names of the properties the named
   1551  * property getter intercepts.
   1552  */
   1553 typedef Handle<Array> (*NamedPropertyEnumerator)(const AccessorInfo& info);
   1554 
   1555 
   1556 /**
   1557  * Returns the value of the property if the getter intercepts the
   1558  * request.  Otherwise, returns an empty handle.
   1559  */
   1560 typedef Handle<Value> (*IndexedPropertyGetter)(uint32_t index,
   1561                                                const AccessorInfo& info);
   1562 
   1563 
   1564 /**
   1565  * Returns the value if the setter intercepts the request.
   1566  * Otherwise, returns an empty handle.
   1567  */
   1568 typedef Handle<Value> (*IndexedPropertySetter)(uint32_t index,
   1569                                                Local<Value> value,
   1570                                                const AccessorInfo& info);
   1571 
   1572 
   1573 /**
   1574  * Returns a non-empty handle if the interceptor intercepts the request.
   1575  * The result is true if the property exists and false otherwise.
   1576  */
   1577 typedef Handle<Boolean> (*IndexedPropertyQuery)(uint32_t index,
   1578                                                 const AccessorInfo& info);
   1579 
   1580 /**
   1581  * Returns a non-empty handle if the deleter intercepts the request.
   1582  * The return value is true if the property could be deleted and false
   1583  * otherwise.
   1584  */
   1585 typedef Handle<Boolean> (*IndexedPropertyDeleter)(uint32_t index,
   1586                                                   const AccessorInfo& info);
   1587 
   1588 /**
   1589  * Returns an array containing the indices of the properties the
   1590  * indexed property getter intercepts.
   1591  */
   1592 typedef Handle<Array> (*IndexedPropertyEnumerator)(const AccessorInfo& info);
   1593 
   1594 
   1595 /**
   1596  * Access control specifications.
   1597  *
   1598  * Some accessors should be accessible across contexts.  These
   1599  * accessors have an explicit access control parameter which specifies
   1600  * the kind of cross-context access that should be allowed.
   1601  *
   1602  * Additionally, for security, accessors can prohibit overwriting by
   1603  * accessors defined in JavaScript.  For objects that have such
   1604  * accessors either locally or in their prototype chain it is not
   1605  * possible to overwrite the accessor by using __defineGetter__ or
   1606  * __defineSetter__ from JavaScript code.
   1607  */
   1608 enum AccessControl {
   1609   DEFAULT               = 0,
   1610   ALL_CAN_READ          = 1,
   1611   ALL_CAN_WRITE         = 1 << 1,
   1612   PROHIBITS_OVERWRITING = 1 << 2
   1613 };
   1614 
   1615 
   1616 /**
   1617  * Access type specification.
   1618  */
   1619 enum AccessType {
   1620   ACCESS_GET,
   1621   ACCESS_SET,
   1622   ACCESS_HAS,
   1623   ACCESS_DELETE,
   1624   ACCESS_KEYS
   1625 };
   1626 
   1627 
   1628 /**
   1629  * Returns true if cross-context access should be allowed to the named
   1630  * property with the given key on the host object.
   1631  */
   1632 typedef bool (*NamedSecurityCallback)(Local<Object> host,
   1633                                       Local<Value> key,
   1634                                       AccessType type,
   1635                                       Local<Value> data);
   1636 
   1637 
   1638 /**
   1639  * Returns true if cross-context access should be allowed to the indexed
   1640  * property with the given index on the host object.
   1641  */
   1642 typedef bool (*IndexedSecurityCallback)(Local<Object> host,
   1643                                         uint32_t index,
   1644                                         AccessType type,
   1645                                         Local<Value> data);
   1646 
   1647 
   1648 /**
   1649  * A FunctionTemplate is used to create functions at runtime. There
   1650  * can only be one function created from a FunctionTemplate in a
   1651  * context.  The lifetime of the created function is equal to the
   1652  * lifetime of the context.  So in case the embedder needs to create
   1653  * temporary functions that can be collected using Scripts is
   1654  * preferred.
   1655  *
   1656  * A FunctionTemplate can have properties, these properties are added to the
   1657  * function object when it is created.
   1658  *
   1659  * A FunctionTemplate has a corresponding instance template which is
   1660  * used to create object instances when the function is used as a
   1661  * constructor. Properties added to the instance template are added to
   1662  * each object instance.
   1663  *
   1664  * A FunctionTemplate can have a prototype template. The prototype template
   1665  * is used to create the prototype object of the function.
   1666  *
   1667  * The following example shows how to use a FunctionTemplate:
   1668  *
   1669  * \code
   1670  *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
   1671  *    t->Set("func_property", v8::Number::New(1));
   1672  *
   1673  *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
   1674  *    proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
   1675  *    proto_t->Set("proto_const", v8::Number::New(2));
   1676  *
   1677  *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
   1678  *    instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
   1679  *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
   1680  *    instance_t->Set("instance_property", Number::New(3));
   1681  *
   1682  *    v8::Local<v8::Function> function = t->GetFunction();
   1683  *    v8::Local<v8::Object> instance = function->NewInstance();
   1684  * \endcode
   1685  *
   1686  * Let's use "function" as the JS variable name of the function object
   1687  * and "instance" for the instance object created above.  The function
   1688  * and the instance will have the following properties:
   1689  *
   1690  * \code
   1691  *   func_property in function == true;
   1692  *   function.func_property == 1;
   1693  *
   1694  *   function.prototype.proto_method() invokes 'InvokeCallback'
   1695  *   function.prototype.proto_const == 2;
   1696  *
   1697  *   instance instanceof function == true;
   1698  *   instance.instance_accessor calls 'InstanceAccessorCallback'
   1699  *   instance.instance_property == 3;
   1700  * \endcode
   1701  *
   1702  * A FunctionTemplate can inherit from another one by calling the
   1703  * FunctionTemplate::Inherit method.  The following graph illustrates
   1704  * the semantics of inheritance:
   1705  *
   1706  * \code
   1707  *   FunctionTemplate Parent  -> Parent() . prototype -> { }
   1708  *     ^                                                  ^
   1709  *     | Inherit(Parent)                                  | .__proto__
   1710  *     |                                                  |
   1711  *   FunctionTemplate Child   -> Child()  . prototype -> { }
   1712  * \endcode
   1713  *
   1714  * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
   1715  * object of the Child() function has __proto__ pointing to the
   1716  * Parent() function's prototype object. An instance of the Child
   1717  * function has all properties on Parent's instance templates.
   1718  *
   1719  * Let Parent be the FunctionTemplate initialized in the previous
   1720  * section and create a Child FunctionTemplate by:
   1721  *
   1722  * \code
   1723  *   Local<FunctionTemplate> parent = t;
   1724  *   Local<FunctionTemplate> child = FunctionTemplate::New();
   1725  *   child->Inherit(parent);
   1726  *
   1727  *   Local<Function> child_function = child->GetFunction();
   1728  *   Local<Object> child_instance = child_function->NewInstance();
   1729  * \endcode
   1730  *
   1731  * The Child function and Child instance will have the following
   1732  * properties:
   1733  *
   1734  * \code
   1735  *   child_func.prototype.__proto__ == function.prototype;
   1736  *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
   1737  *   child_instance.instance_property == 3;
   1738  * \endcode
   1739  */
   1740 class V8EXPORT FunctionTemplate : public Template {
   1741  public:
   1742   /** Creates a function template.*/
   1743   static Local<FunctionTemplate> New(
   1744       InvocationCallback callback = 0,
   1745       Handle<Value> data = Handle<Value>(),
   1746       Handle<Signature> signature = Handle<Signature>());
   1747   /** Returns the unique function instance in the current execution context.*/
   1748   Local<Function> GetFunction();
   1749 
   1750   /**
   1751    * Set the call-handler callback for a FunctionTemplate.  This
   1752    * callback is called whenever the function created from this
   1753    * FunctionTemplate is called.
   1754    */
   1755   void SetCallHandler(InvocationCallback callback,
   1756                       Handle<Value> data = Handle<Value>());
   1757 
   1758   /** Get the InstanceTemplate. */
   1759   Local<ObjectTemplate> InstanceTemplate();
   1760 
   1761   /** Causes the function template to inherit from a parent function template.*/
   1762   void Inherit(Handle<FunctionTemplate> parent);
   1763 
   1764   /**
   1765    * A PrototypeTemplate is the template used to create the prototype object
   1766    * of the function created by this template.
   1767    */
   1768   Local<ObjectTemplate> PrototypeTemplate();
   1769 
   1770 
   1771   /**
   1772    * Set the class name of the FunctionTemplate.  This is used for
   1773    * printing objects created with the function created from the
   1774    * FunctionTemplate as its constructor.
   1775    */
   1776   void SetClassName(Handle<String> name);
   1777 
   1778   /**
   1779    * Determines whether the __proto__ accessor ignores instances of
   1780    * the function template.  If instances of the function template are
   1781    * ignored, __proto__ skips all instances and instead returns the
   1782    * next object in the prototype chain.
   1783    *
   1784    * Call with a value of true to make the __proto__ accessor ignore
   1785    * instances of the function template.  Call with a value of false
   1786    * to make the __proto__ accessor not ignore instances of the
   1787    * function template.  By default, instances of a function template
   1788    * are not ignored.
   1789    */
   1790   void SetHiddenPrototype(bool value);
   1791 
   1792   /**
   1793    * Returns true if the given object is an instance of this function
   1794    * template.
   1795    */
   1796   bool HasInstance(Handle<Value> object);
   1797 
   1798  private:
   1799   FunctionTemplate();
   1800   void AddInstancePropertyAccessor(Handle<String> name,
   1801                                    AccessorGetter getter,
   1802                                    AccessorSetter setter,
   1803                                    Handle<Value> data,
   1804                                    AccessControl settings,
   1805                                    PropertyAttribute attributes);
   1806   void SetNamedInstancePropertyHandler(NamedPropertyGetter getter,
   1807                                        NamedPropertySetter setter,
   1808                                        NamedPropertyQuery query,
   1809                                        NamedPropertyDeleter remover,
   1810                                        NamedPropertyEnumerator enumerator,
   1811                                        Handle<Value> data);
   1812   void SetIndexedInstancePropertyHandler(IndexedPropertyGetter getter,
   1813                                          IndexedPropertySetter setter,
   1814                                          IndexedPropertyQuery query,
   1815                                          IndexedPropertyDeleter remover,
   1816                                          IndexedPropertyEnumerator enumerator,
   1817                                          Handle<Value> data);
   1818   void SetInstanceCallAsFunctionHandler(InvocationCallback callback,
   1819                                         Handle<Value> data);
   1820 
   1821   friend class Context;
   1822   friend class ObjectTemplate;
   1823 };
   1824 
   1825 
   1826 /**
   1827  * An ObjectTemplate is used to create objects at runtime.
   1828  *
   1829  * Properties added to an ObjectTemplate are added to each object
   1830  * created from the ObjectTemplate.
   1831  */
   1832 class V8EXPORT ObjectTemplate : public Template {
   1833  public:
   1834   /** Creates an ObjectTemplate. */
   1835   static Local<ObjectTemplate> New();
   1836 
   1837   /** Creates a new instance of this template.*/
   1838   Local<Object> NewInstance();
   1839 
   1840   /**
   1841    * Sets an accessor on the object template.
   1842    *
   1843    * Whenever the property with the given name is accessed on objects
   1844    * created from this ObjectTemplate the getter and setter callbacks
   1845    * are called instead of getting and setting the property directly
   1846    * on the JavaScript object.
   1847    *
   1848    * \param name The name of the property for which an accessor is added.
   1849    * \param getter The callback to invoke when getting the property.
   1850    * \param setter The callback to invoke when setting the property.
   1851    * \param data A piece of data that will be passed to the getter and setter
   1852    *   callbacks whenever they are invoked.
   1853    * \param settings Access control settings for the accessor. This is a bit
   1854    *   field consisting of one of more of
   1855    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
   1856    *   The default is to not allow cross-context access.
   1857    *   ALL_CAN_READ means that all cross-context reads are allowed.
   1858    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
   1859    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
   1860    *   cross-context access.
   1861    * \param attribute The attributes of the property for which an accessor
   1862    *   is added.
   1863    */
   1864   void SetAccessor(Handle<String> name,
   1865                    AccessorGetter getter,
   1866                    AccessorSetter setter = 0,
   1867                    Handle<Value> data = Handle<Value>(),
   1868                    AccessControl settings = DEFAULT,
   1869                    PropertyAttribute attribute = None);
   1870 
   1871   /**
   1872    * Sets a named property handler on the object template.
   1873    *
   1874    * Whenever a named property is accessed on objects created from
   1875    * this object template, the provided callback is invoked instead of
   1876    * accessing the property directly on the JavaScript object.
   1877    *
   1878    * \param getter The callback to invoke when getting a property.
   1879    * \param setter The callback to invoke when setting a property.
   1880    * \param query The callback to invoke to check is an object has a property.
   1881    * \param deleter The callback to invoke when deleting a property.
   1882    * \param enumerator The callback to invoke to enumerate all the named
   1883    *   properties of an object.
   1884    * \param data A piece of data that will be passed to the callbacks
   1885    *   whenever they are invoked.
   1886    */
   1887   void SetNamedPropertyHandler(NamedPropertyGetter getter,
   1888                                NamedPropertySetter setter = 0,
   1889                                NamedPropertyQuery query = 0,
   1890                                NamedPropertyDeleter deleter = 0,
   1891                                NamedPropertyEnumerator enumerator = 0,
   1892                                Handle<Value> data = Handle<Value>());
   1893 
   1894   /**
   1895    * Sets an indexed property handler on the object template.
   1896    *
   1897    * Whenever an indexed property is accessed on objects created from
   1898    * this object template, the provided callback is invoked instead of
   1899    * accessing the property directly on the JavaScript object.
   1900    *
   1901    * \param getter The callback to invoke when getting a property.
   1902    * \param setter The callback to invoke when setting a property.
   1903    * \param query The callback to invoke to check is an object has a property.
   1904    * \param deleter The callback to invoke when deleting a property.
   1905    * \param enumerator The callback to invoke to enumerate all the indexed
   1906    *   properties of an object.
   1907    * \param data A piece of data that will be passed to the callbacks
   1908    *   whenever they are invoked.
   1909    */
   1910   void SetIndexedPropertyHandler(IndexedPropertyGetter getter,
   1911                                  IndexedPropertySetter setter = 0,
   1912                                  IndexedPropertyQuery query = 0,
   1913                                  IndexedPropertyDeleter deleter = 0,
   1914                                  IndexedPropertyEnumerator enumerator = 0,
   1915                                  Handle<Value> data = Handle<Value>());
   1916   /**
   1917    * Sets the callback to be used when calling instances created from
   1918    * this template as a function.  If no callback is set, instances
   1919    * behave like normal JavaScript objects that cannot be called as a
   1920    * function.
   1921    */
   1922   void SetCallAsFunctionHandler(InvocationCallback callback,
   1923                                 Handle<Value> data = Handle<Value>());
   1924 
   1925   /**
   1926    * Mark object instances of the template as undetectable.
   1927    *
   1928    * In many ways, undetectable objects behave as though they are not
   1929    * there.  They behave like 'undefined' in conditionals and when
   1930    * printed.  However, properties can be accessed and called as on
   1931    * normal objects.
   1932    */
   1933   void MarkAsUndetectable();
   1934 
   1935   /**
   1936    * Sets access check callbacks on the object template.
   1937    *
   1938    * When accessing properties on instances of this object template,
   1939    * the access check callback will be called to determine whether or
   1940    * not to allow cross-context access to the properties.
   1941    * The last parameter specifies whether access checks are turned
   1942    * on by default on instances. If access checks are off by default,
   1943    * they can be turned on on individual instances by calling
   1944    * Object::TurnOnAccessCheck().
   1945    */
   1946   void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
   1947                                IndexedSecurityCallback indexed_handler,
   1948                                Handle<Value> data = Handle<Value>(),
   1949                                bool turned_on_by_default = true);
   1950 
   1951   /**
   1952    * Gets the number of internal fields for objects generated from
   1953    * this template.
   1954    */
   1955   int InternalFieldCount();
   1956 
   1957   /**
   1958    * Sets the number of internal fields for objects generated from
   1959    * this template.
   1960    */
   1961   void SetInternalFieldCount(int value);
   1962 
   1963  private:
   1964   ObjectTemplate();
   1965   static Local<ObjectTemplate> New(Handle<FunctionTemplate> constructor);
   1966   friend class FunctionTemplate;
   1967 };
   1968 
   1969 
   1970 /**
   1971  * A Signature specifies which receivers and arguments a function can
   1972  * legally be called with.
   1973  */
   1974 class V8EXPORT Signature : public Data {
   1975  public:
   1976   static Local<Signature> New(Handle<FunctionTemplate> receiver =
   1977                                   Handle<FunctionTemplate>(),
   1978                               int argc = 0,
   1979                               Handle<FunctionTemplate> argv[] = 0);
   1980  private:
   1981   Signature();
   1982 };
   1983 
   1984 
   1985 /**
   1986  * A utility for determining the type of objects based on the template
   1987  * they were constructed from.
   1988  */
   1989 class V8EXPORT TypeSwitch : public Data {
   1990  public:
   1991   static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
   1992   static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
   1993   int match(Handle<Value> value);
   1994  private:
   1995   TypeSwitch();
   1996 };
   1997 
   1998 
   1999 // --- E x t e n s i o n s ---
   2000 
   2001 
   2002 /**
   2003  * Ignore
   2004  */
   2005 class V8EXPORT Extension {  // NOLINT
   2006  public:
   2007   Extension(const char* name,
   2008             const char* source = 0,
   2009             int dep_count = 0,
   2010             const char** deps = 0);
   2011   virtual ~Extension() { }
   2012   virtual v8::Handle<v8::FunctionTemplate>
   2013       GetNativeFunction(v8::Handle<v8::String> name) {
   2014     return v8::Handle<v8::FunctionTemplate>();
   2015   }
   2016 
   2017   const char* name() { return name_; }
   2018   const char* source() { return source_; }
   2019   int dependency_count() { return dep_count_; }
   2020   const char** dependencies() { return deps_; }
   2021   void set_auto_enable(bool value) { auto_enable_ = value; }
   2022   bool auto_enable() { return auto_enable_; }
   2023 
   2024  private:
   2025   const char* name_;
   2026   const char* source_;
   2027   int dep_count_;
   2028   const char** deps_;
   2029   bool auto_enable_;
   2030 
   2031   // Disallow copying and assigning.
   2032   Extension(const Extension&);
   2033   void operator=(const Extension&);
   2034 };
   2035 
   2036 
   2037 void V8EXPORT RegisterExtension(Extension* extension);
   2038 
   2039 
   2040 /**
   2041  * Ignore
   2042  */
   2043 class V8EXPORT DeclareExtension {
   2044  public:
   2045   inline DeclareExtension(Extension* extension) {
   2046     RegisterExtension(extension);
   2047   }
   2048 };
   2049 
   2050 
   2051 // --- S t a t i c s ---
   2052 
   2053 
   2054 Handle<Primitive> V8EXPORT Undefined();
   2055 Handle<Primitive> V8EXPORT Null();
   2056 Handle<Boolean> V8EXPORT True();
   2057 Handle<Boolean> V8EXPORT False();
   2058 
   2059 
   2060 /**
   2061  * A set of constraints that specifies the limits of the runtime's memory use.
   2062  * You must set the heap size before initializing the VM - the size cannot be
   2063  * adjusted after the VM is initialized.
   2064  *
   2065  * If you are using threads then you should hold the V8::Locker lock while
   2066  * setting the stack limit and you must set a non-default stack limit separately
   2067  * for each thread.
   2068  */
   2069 class V8EXPORT ResourceConstraints {
   2070  public:
   2071   ResourceConstraints();
   2072   int max_young_space_size() const { return max_young_space_size_; }
   2073   void set_max_young_space_size(int value) { max_young_space_size_ = value; }
   2074   int max_old_space_size() const { return max_old_space_size_; }
   2075   void set_max_old_space_size(int value) { max_old_space_size_ = value; }
   2076   uint32_t* stack_limit() const { return stack_limit_; }
   2077   // Sets an address beyond which the VM's stack may not grow.
   2078   void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
   2079  private:
   2080   int max_young_space_size_;
   2081   int max_old_space_size_;
   2082   uint32_t* stack_limit_;
   2083 };
   2084 
   2085 
   2086 bool SetResourceConstraints(ResourceConstraints* constraints);
   2087 
   2088 
   2089 // --- E x c e p t i o n s ---
   2090 
   2091 
   2092 typedef void (*FatalErrorCallback)(const char* location, const char* message);
   2093 
   2094 
   2095 typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> data);
   2096 
   2097 
   2098 /**
   2099  * Schedules an exception to be thrown when returning to JavaScript.  When an
   2100  * exception has been scheduled it is illegal to invoke any JavaScript
   2101  * operation; the caller must return immediately and only after the exception
   2102  * has been handled does it become legal to invoke JavaScript operations.
   2103  */
   2104 Handle<Value> V8EXPORT ThrowException(Handle<Value> exception);
   2105 
   2106 /**
   2107  * Create new error objects by calling the corresponding error object
   2108  * constructor with the message.
   2109  */
   2110 class V8EXPORT Exception {
   2111  public:
   2112   static Local<Value> RangeError(Handle<String> message);
   2113   static Local<Value> ReferenceError(Handle<String> message);
   2114   static Local<Value> SyntaxError(Handle<String> message);
   2115   static Local<Value> TypeError(Handle<String> message);
   2116   static Local<Value> Error(Handle<String> message);
   2117 };
   2118 
   2119 
   2120 // --- C o u n t e r s  C a l l b a c k s ---
   2121 
   2122 typedef int* (*CounterLookupCallback)(const char* name);
   2123 
   2124 typedef void* (*CreateHistogramCallback)(const char* name,
   2125                                          int min,
   2126                                          int max,
   2127                                          size_t buckets);
   2128 
   2129 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
   2130 
   2131 // --- F a i l e d A c c e s s C h e c k C a l l b a c k ---
   2132 typedef void (*FailedAccessCheckCallback)(Local<Object> target,
   2133                                           AccessType type,
   2134                                           Local<Value> data);
   2135 
   2136 // --- G a r b a g e C o l l e c t i o n  C a l l b a c k s
   2137 
   2138 /**
   2139  * Applications can register a callback function which is called
   2140  * before and after a major garbage collection.  Allocations are not
   2141  * allowed in the callback function, you therefore cannot manipulate
   2142  * objects (set or delete properties for example) since it is possible
   2143  * such operations will result in the allocation of objects.
   2144  */
   2145 typedef void (*GCCallback)();
   2146 
   2147 
   2148 // --- C o n t e x t  G e n e r a t o r ---
   2149 
   2150 /**
   2151  * Applications must provide a callback function which is called to generate
   2152  * a context if a context was not deserialized from the snapshot.
   2153  */
   2154 typedef Persistent<Context> (*ContextGenerator)();
   2155 
   2156 
   2157 /**
   2158  * Profiler modules.
   2159  *
   2160  * In V8, profiler consists of several modules: CPU profiler, and different
   2161  * kinds of heap profiling. Each can be turned on / off independently.
   2162  * When PROFILER_MODULE_HEAP_SNAPSHOT flag is passed to ResumeProfilerEx,
   2163  * modules are enabled only temporarily for making a snapshot of the heap.
   2164  */
   2165 enum ProfilerModules {
   2166   PROFILER_MODULE_NONE            = 0,
   2167   PROFILER_MODULE_CPU             = 1,
   2168   PROFILER_MODULE_HEAP_STATS      = 1 << 1,
   2169   PROFILER_MODULE_JS_CONSTRUCTORS = 1 << 2,
   2170   PROFILER_MODULE_HEAP_SNAPSHOT   = 1 << 16
   2171 };
   2172 
   2173 
   2174 /**
   2175  * Collection of V8 heap information.
   2176  *
   2177  * Instances of this class can be passed to v8::V8::HeapStatistics to
   2178  * get heap statistics from V8.
   2179  */
   2180 class V8EXPORT HeapStatistics {
   2181  public:
   2182   HeapStatistics();
   2183   size_t total_heap_size() { return total_heap_size_; }
   2184   size_t used_heap_size() { return used_heap_size_; }
   2185 
   2186  private:
   2187   void set_total_heap_size(size_t size) { total_heap_size_ = size; }
   2188   void set_used_heap_size(size_t size) { used_heap_size_ = size; }
   2189 
   2190   size_t total_heap_size_;
   2191   size_t used_heap_size_;
   2192 
   2193   friend class V8;
   2194 };
   2195 
   2196 
   2197 /**
   2198  * Container class for static utility functions.
   2199  */
   2200 class V8EXPORT V8 {
   2201  public:
   2202   /** Set the callback to invoke in case of fatal errors. */
   2203   static void SetFatalErrorHandler(FatalErrorCallback that);
   2204 
   2205   /**
   2206    * Ignore out-of-memory exceptions.
   2207    *
   2208    * V8 running out of memory is treated as a fatal error by default.
   2209    * This means that the fatal error handler is called and that V8 is
   2210    * terminated.
   2211    *
   2212    * IgnoreOutOfMemoryException can be used to not treat a
   2213    * out-of-memory situation as a fatal error.  This way, the contexts
   2214    * that did not cause the out of memory problem might be able to
   2215    * continue execution.
   2216    */
   2217   static void IgnoreOutOfMemoryException();
   2218 
   2219   /**
   2220    * Check if V8 is dead and therefore unusable.  This is the case after
   2221    * fatal errors such as out-of-memory situations.
   2222    */
   2223   static bool IsDead();
   2224 
   2225   /**
   2226    * Adds a message listener.
   2227    *
   2228    * The same message listener can be added more than once and it that
   2229    * case it will be called more than once for each message.
   2230    */
   2231   static bool AddMessageListener(MessageCallback that,
   2232                                  Handle<Value> data = Handle<Value>());
   2233 
   2234   /**
   2235    * Remove all message listeners from the specified callback function.
   2236    */
   2237   static void RemoveMessageListeners(MessageCallback that);
   2238 
   2239   /**
   2240    * Sets V8 flags from a string.
   2241    */
   2242   static void SetFlagsFromString(const char* str, int length);
   2243 
   2244   /**
   2245    * Sets V8 flags from the command line.
   2246    */
   2247   static void SetFlagsFromCommandLine(int* argc,
   2248                                       char** argv,
   2249                                       bool remove_flags);
   2250 
   2251   /** Get the version string. */
   2252   static const char* GetVersion();
   2253 
   2254   /**
   2255    * Enables the host application to provide a mechanism for recording
   2256    * statistics counters.
   2257    */
   2258   static void SetCounterFunction(CounterLookupCallback);
   2259 
   2260   /**
   2261    * Enables the host application to provide a mechanism for recording
   2262    * histograms. The CreateHistogram function returns a
   2263    * histogram which will later be passed to the AddHistogramSample
   2264    * function.
   2265    */
   2266   static void SetCreateHistogramFunction(CreateHistogramCallback);
   2267   static void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
   2268 
   2269   /**
   2270    * Enables the computation of a sliding window of states. The sliding
   2271    * window information is recorded in statistics counters.
   2272    */
   2273   static void EnableSlidingStateWindow();
   2274 
   2275   /** Callback function for reporting failed access checks.*/
   2276   static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
   2277 
   2278   /**
   2279    * Enables the host application to receive a notification before a
   2280    * major garbage colletion.  Allocations are not allowed in the
   2281    * callback function, you therefore cannot manipulate objects (set
   2282    * or delete properties for example) since it is possible such
   2283    * operations will result in the allocation of objects.
   2284    */
   2285   static void SetGlobalGCPrologueCallback(GCCallback);
   2286 
   2287   /**
   2288    * Enables the host application to receive a notification after a
   2289    * major garbage collection.  Allocations are not allowed in the
   2290    * callback function, you therefore cannot manipulate objects (set
   2291    * or delete properties for example) since it is possible such
   2292    * operations will result in the allocation of objects.
   2293    */
   2294   static void SetGlobalGCEpilogueCallback(GCCallback);
   2295 
   2296   /**
   2297    * Allows the host application to group objects together. If one
   2298    * object in the group is alive, all objects in the group are alive.
   2299    * After each garbage collection, object groups are removed. It is
   2300    * intended to be used in the before-garbage-collection callback
   2301    * function, for instance to simulate DOM tree connections among JS
   2302    * wrapper objects.
   2303    */
   2304   static void AddObjectGroup(Persistent<Value>* objects, size_t length);
   2305 
   2306   /**
   2307    * Initializes from snapshot if possible. Otherwise, attempts to
   2308    * initialize from scratch.  This function is called implicitly if
   2309    * you use the API without calling it first.
   2310    */
   2311   static bool Initialize();
   2312 
   2313   /**
   2314    * Adjusts the amount of registered external memory.  Used to give
   2315    * V8 an indication of the amount of externally allocated memory
   2316    * that is kept alive by JavaScript objects.  V8 uses this to decide
   2317    * when to perform global garbage collections.  Registering
   2318    * externally allocated memory will trigger global garbage
   2319    * collections more often than otherwise in an attempt to garbage
   2320    * collect the JavaScript objects keeping the externally allocated
   2321    * memory alive.
   2322    *
   2323    * \param change_in_bytes the change in externally allocated memory
   2324    *   that is kept alive by JavaScript objects.
   2325    * \returns the adjusted value.
   2326    */
   2327   static int AdjustAmountOfExternalAllocatedMemory(int change_in_bytes);
   2328 
   2329   /**
   2330    * Suspends recording of tick samples in the profiler.
   2331    * When the V8 profiling mode is enabled (usually via command line
   2332    * switches) this function suspends recording of tick samples.
   2333    * Profiling ticks are discarded until ResumeProfiler() is called.
   2334    *
   2335    * See also the --prof and --prof_auto command line switches to
   2336    * enable V8 profiling.
   2337    */
   2338   static void PauseProfiler();
   2339 
   2340   /**
   2341    * Resumes recording of tick samples in the profiler.
   2342    * See also PauseProfiler().
   2343    */
   2344   static void ResumeProfiler();
   2345 
   2346   /**
   2347    * Return whether profiler is currently paused.
   2348    */
   2349   static bool IsProfilerPaused();
   2350 
   2351   /**
   2352    * Resumes specified profiler modules. Can be called several times to
   2353    * mark the opening of a profiler events block with the given tag.
   2354    *
   2355    * "ResumeProfiler" is equivalent to "ResumeProfilerEx(PROFILER_MODULE_CPU)".
   2356    * See ProfilerModules enum.
   2357    *
   2358    * \param flags Flags specifying profiler modules.
   2359    * \param tag Profile tag.
   2360    */
   2361   static void ResumeProfilerEx(int flags, int tag = 0);
   2362 
   2363   /**
   2364    * Pauses specified profiler modules. Each call to "PauseProfilerEx" closes
   2365    * a block of profiler events opened by a call to "ResumeProfilerEx" with the
   2366    * same tag value. There is no need for blocks to be properly nested.
   2367    * The profiler is paused when the last opened block is closed.
   2368    *
   2369    * "PauseProfiler" is equivalent to "PauseProfilerEx(PROFILER_MODULE_CPU)".
   2370    * See ProfilerModules enum.
   2371    *
   2372    * \param flags Flags specifying profiler modules.
   2373    * \param tag Profile tag.
   2374    */
   2375   static void PauseProfilerEx(int flags, int tag = 0);
   2376 
   2377   /**
   2378    * Returns active (resumed) profiler modules.
   2379    * See ProfilerModules enum.
   2380    *
   2381    * \returns active profiler modules.
   2382    */
   2383   static int GetActiveProfilerModules();
   2384 
   2385   /**
   2386    * If logging is performed into a memory buffer (via --logfile=*), allows to
   2387    * retrieve previously written messages. This can be used for retrieving
   2388    * profiler log data in the application. This function is thread-safe.
   2389    *
   2390    * Caller provides a destination buffer that must exist during GetLogLines
   2391    * call. Only whole log lines are copied into the buffer.
   2392    *
   2393    * \param from_pos specified a point in a buffer to read from, 0 is the
   2394    *   beginning of a buffer. It is assumed that caller updates its current
   2395    *   position using returned size value from the previous call.
   2396    * \param dest_buf destination buffer for log data.
   2397    * \param max_size size of the destination buffer.
   2398    * \returns actual size of log data copied into buffer.
   2399    */
   2400   static int GetLogLines(int from_pos, char* dest_buf, int max_size);
   2401 
   2402   /**
   2403    * Retrieve the V8 thread id of the calling thread.
   2404    *
   2405    * The thread id for a thread should only be retrieved after the V8
   2406    * lock has been acquired with a Locker object with that thread.
   2407    */
   2408   static int GetCurrentThreadId();
   2409 
   2410   /**
   2411    * Forcefully terminate execution of a JavaScript thread.  This can
   2412    * be used to terminate long-running scripts.
   2413    *
   2414    * TerminateExecution should only be called when then V8 lock has
   2415    * been acquired with a Locker object.  Therefore, in order to be
   2416    * able to terminate long-running threads, preemption must be
   2417    * enabled to allow the user of TerminateExecution to acquire the
   2418    * lock.
   2419    *
   2420    * The termination is achieved by throwing an exception that is
   2421    * uncatchable by JavaScript exception handlers.  Termination
   2422    * exceptions act as if they were caught by a C++ TryCatch exception
   2423    * handlers.  If forceful termination is used, any C++ TryCatch
   2424    * exception handler that catches an exception should check if that
   2425    * exception is a termination exception and immediately return if
   2426    * that is the case.  Returning immediately in that case will
   2427    * continue the propagation of the termination exception if needed.
   2428    *
   2429    * The thread id passed to TerminateExecution must have been
   2430    * obtained by calling GetCurrentThreadId on the thread in question.
   2431    *
   2432    * \param thread_id The thread id of the thread to terminate.
   2433    */
   2434   static void TerminateExecution(int thread_id);
   2435 
   2436   /**
   2437    * Forcefully terminate the current thread of JavaScript execution.
   2438    *
   2439    * This method can be used by any thread even if that thread has not
   2440    * acquired the V8 lock with a Locker object.
   2441    */
   2442   static void TerminateExecution();
   2443 
   2444   /**
   2445    * Releases any resources used by v8 and stops any utility threads
   2446    * that may be running.  Note that disposing v8 is permanent, it
   2447    * cannot be reinitialized.
   2448    *
   2449    * It should generally not be necessary to dispose v8 before exiting
   2450    * a process, this should happen automatically.  It is only necessary
   2451    * to use if the process needs the resources taken up by v8.
   2452    */
   2453   static bool Dispose();
   2454 
   2455   /**
   2456    * Get statistics about the heap memory usage.
   2457    */
   2458   static void GetHeapStatistics(HeapStatistics* heap_statistics);
   2459 
   2460   /**
   2461    * Optional notification that the embedder is idle.
   2462    * V8 uses the notification to reduce memory footprint.
   2463    * This call can be used repeatedly if the embedder remains idle.
   2464    * Returns true if the embedder should stop calling IdleNotification
   2465    * until real work has been done.  This indicates that V8 has done
   2466    * as much cleanup as it will be able to do.
   2467    */
   2468   static bool IdleNotification();
   2469 
   2470   /**
   2471    * Optional notification that the system is running low on memory.
   2472    * V8 uses these notifications to attempt to free memory.
   2473    */
   2474   static void LowMemoryNotification();
   2475 
   2476  private:
   2477   V8();
   2478 
   2479   static internal::Object** GlobalizeReference(internal::Object** handle);
   2480   static void DisposeGlobal(internal::Object** global_handle);
   2481   static void MakeWeak(internal::Object** global_handle,
   2482                        void* data,
   2483                        WeakReferenceCallback);
   2484   static void ClearWeak(internal::Object** global_handle);
   2485   static bool IsGlobalNearDeath(internal::Object** global_handle);
   2486   static bool IsGlobalWeak(internal::Object** global_handle);
   2487 
   2488   template <class T> friend class Handle;
   2489   template <class T> friend class Local;
   2490   template <class T> friend class Persistent;
   2491   friend class Context;
   2492 };
   2493 
   2494 
   2495 /**
   2496  * An external exception handler.
   2497  */
   2498 class V8EXPORT TryCatch {
   2499  public:
   2500 
   2501   /**
   2502    * Creates a new try/catch block and registers it with v8.
   2503    */
   2504   TryCatch();
   2505 
   2506   /**
   2507    * Unregisters and deletes this try/catch block.
   2508    */
   2509   ~TryCatch();
   2510 
   2511   /**
   2512    * Returns true if an exception has been caught by this try/catch block.
   2513    */
   2514   bool HasCaught() const;
   2515 
   2516   /**
   2517    * For certain types of exceptions, it makes no sense to continue
   2518    * execution.
   2519    *
   2520    * Currently, the only type of exception that can be caught by a
   2521    * TryCatch handler and for which it does not make sense to continue
   2522    * is termination exception.  Such exceptions are thrown when the
   2523    * TerminateExecution methods are called to terminate a long-running
   2524    * script.
   2525    *
   2526    * If CanContinue returns false, the correct action is to perform
   2527    * any C++ cleanup needed and then return.
   2528    */
   2529   bool CanContinue() const;
   2530 
   2531   /**
   2532    * Throws the exception caught by this TryCatch in a way that avoids
   2533    * it being caught again by this same TryCatch.  As with ThrowException
   2534    * it is illegal to execute any JavaScript operations after calling
   2535    * ReThrow; the caller must return immediately to where the exception
   2536    * is caught.
   2537    */
   2538   Handle<Value> ReThrow();
   2539 
   2540   /**
   2541    * Returns the exception caught by this try/catch block.  If no exception has
   2542    * been caught an empty handle is returned.
   2543    *
   2544    * The returned handle is valid until this TryCatch block has been destroyed.
   2545    */
   2546   Local<Value> Exception() const;
   2547 
   2548   /**
   2549    * Returns the .stack property of the thrown object.  If no .stack
   2550    * property is present an empty handle is returned.
   2551    */
   2552   Local<Value> StackTrace() const;
   2553 
   2554   /**
   2555    * Returns the message associated with this exception.  If there is
   2556    * no message associated an empty handle is returned.
   2557    *
   2558    * The returned handle is valid until this TryCatch block has been
   2559    * destroyed.
   2560    */
   2561   Local<v8::Message> Message() const;
   2562 
   2563   /**
   2564    * Clears any exceptions that may have been caught by this try/catch block.
   2565    * After this method has been called, HasCaught() will return false.
   2566    *
   2567    * It is not necessary to clear a try/catch block before using it again; if
   2568    * another exception is thrown the previously caught exception will just be
   2569    * overwritten.  However, it is often a good idea since it makes it easier
   2570    * to determine which operation threw a given exception.
   2571    */
   2572   void Reset();
   2573 
   2574   /**
   2575    * Set verbosity of the external exception handler.
   2576    *
   2577    * By default, exceptions that are caught by an external exception
   2578    * handler are not reported.  Call SetVerbose with true on an
   2579    * external exception handler to have exceptions caught by the
   2580    * handler reported as if they were not caught.
   2581    */
   2582   void SetVerbose(bool value);
   2583 
   2584   /**
   2585    * Set whether or not this TryCatch should capture a Message object
   2586    * which holds source information about where the exception
   2587    * occurred.  True by default.
   2588    */
   2589   void SetCaptureMessage(bool value);
   2590 
   2591  private:
   2592   void* next_;
   2593   void* exception_;
   2594   void* message_;
   2595   bool is_verbose_ : 1;
   2596   bool can_continue_ : 1;
   2597   bool capture_message_ : 1;
   2598   bool rethrow_ : 1;
   2599 
   2600   friend class v8::internal::Top;
   2601 };
   2602 
   2603 
   2604 // --- C o n t e x t ---
   2605 
   2606 
   2607 /**
   2608  * Ignore
   2609  */
   2610 class V8EXPORT ExtensionConfiguration {
   2611  public:
   2612   ExtensionConfiguration(int name_count, const char* names[])
   2613       : name_count_(name_count), names_(names) { }
   2614  private:
   2615   friend class ImplementationUtilities;
   2616   int name_count_;
   2617   const char** names_;
   2618 };
   2619 
   2620 
   2621 /**
   2622  * A sandboxed execution context with its own set of built-in objects
   2623  * and functions.
   2624  */
   2625 class V8EXPORT Context {
   2626  public:
   2627   /** Returns the global object of the context. */
   2628   Local<Object> Global();
   2629 
   2630   /**
   2631    * Detaches the global object from its context before
   2632    * the global object can be reused to create a new context.
   2633    */
   2634   void DetachGlobal();
   2635 
   2636   /**
   2637    * Reattaches a global object to a context.  This can be used to
   2638    * restore the connection between a global object and a context
   2639    * after DetachGlobal has been called.
   2640    *
   2641    * \param global_object The global object to reattach to the
   2642    *   context.  For this to work, the global object must be the global
   2643    *   object that was associated with this context before a call to
   2644    *   DetachGlobal.
   2645    */
   2646   void ReattachGlobal(Handle<Object> global_object);
   2647 
   2648   /** Creates a new context. */
   2649   static Persistent<Context> New(
   2650       ExtensionConfiguration* extensions = NULL,
   2651       Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
   2652       Handle<Value> global_object = Handle<Value>());
   2653 
   2654   /** Returns the last entered context. */
   2655   static Local<Context> GetEntered();
   2656 
   2657   /** Returns the context that is on the top of the stack. */
   2658   static Local<Context> GetCurrent();
   2659 
   2660   /**
   2661    * Returns the context of the calling JavaScript code.  That is the
   2662    * context of the top-most JavaScript frame.  If there are no
   2663    * JavaScript frames an empty handle is returned.
   2664    */
   2665   static Local<Context> GetCalling();
   2666 
   2667   /**
   2668    * Sets the security token for the context.  To access an object in
   2669    * another context, the security tokens must match.
   2670    */
   2671   void SetSecurityToken(Handle<Value> token);
   2672 
   2673   /** Restores the security token to the default value. */
   2674   void UseDefaultSecurityToken();
   2675 
   2676   /** Returns the security token of this context.*/
   2677   Handle<Value> GetSecurityToken();
   2678 
   2679   /**
   2680    * Enter this context.  After entering a context, all code compiled
   2681    * and run is compiled and run in this context.  If another context
   2682    * is already entered, this old context is saved so it can be
   2683    * restored when the new context is exited.
   2684    */
   2685   void Enter();
   2686 
   2687   /**
   2688    * Exit this context.  Exiting the current context restores the
   2689    * context that was in place when entering the current context.
   2690    */
   2691   void Exit();
   2692 
   2693   /** Returns true if the context has experienced an out of memory situation. */
   2694   bool HasOutOfMemoryException();
   2695 
   2696   /** Returns true if V8 has a current context. */
   2697   static bool InContext();
   2698 
   2699   /**
   2700    * Associate an additional data object with the context. This is mainly used
   2701    * with the debugger to provide additional information on the context through
   2702    * the debugger API.
   2703    */
   2704   void SetData(Handle<String> data);
   2705   Local<Value> GetData();
   2706 
   2707   /**
   2708    * Stack-allocated class which sets the execution context for all
   2709    * operations executed within a local scope.
   2710    */
   2711   class V8EXPORT Scope {
   2712    public:
   2713     inline Scope(Handle<Context> context) : context_(context) {
   2714       context_->Enter();
   2715     }
   2716     inline ~Scope() { context_->Exit(); }
   2717    private:
   2718     Handle<Context> context_;
   2719   };
   2720 
   2721  private:
   2722   friend class Value;
   2723   friend class Script;
   2724   friend class Object;
   2725   friend class Function;
   2726 };
   2727 
   2728 
   2729 /**
   2730  * Multiple threads in V8 are allowed, but only one thread at a time
   2731  * is allowed to use V8.  The definition of 'using V8' includes
   2732  * accessing handles or holding onto object pointers obtained from V8
   2733  * handles.  It is up to the user of V8 to ensure (perhaps with
   2734  * locking) that this constraint is not violated.
   2735  *
   2736  * If you wish to start using V8 in a thread you can do this by constructing
   2737  * a v8::Locker object.  After the code using V8 has completed for the
   2738  * current thread you can call the destructor.  This can be combined
   2739  * with C++ scope-based construction as follows:
   2740  *
   2741  * \code
   2742  * ...
   2743  * {
   2744  *   v8::Locker locker;
   2745  *   ...
   2746  *   // Code using V8 goes here.
   2747  *   ...
   2748  * } // Destructor called here
   2749  * \endcode
   2750  *
   2751  * If you wish to stop using V8 in a thread A you can do this by either
   2752  * by destroying the v8::Locker object as above or by constructing a
   2753  * v8::Unlocker object:
   2754  *
   2755  * \code
   2756  * {
   2757  *   v8::Unlocker unlocker;
   2758  *   ...
   2759  *   // Code not using V8 goes here while V8 can run in another thread.
   2760  *   ...
   2761  * } // Destructor called here.
   2762  * \endcode
   2763  *
   2764  * The Unlocker object is intended for use in a long-running callback
   2765  * from V8, where you want to release the V8 lock for other threads to
   2766  * use.
   2767  *
   2768  * The v8::Locker is a recursive lock.  That is, you can lock more than
   2769  * once in a given thread.  This can be useful if you have code that can
   2770  * be called either from code that holds the lock or from code that does
   2771  * not.  The Unlocker is not recursive so you can not have several
   2772  * Unlockers on the stack at once, and you can not use an Unlocker in a
   2773  * thread that is not inside a Locker's scope.
   2774  *
   2775  * An unlocker will unlock several lockers if it has to and reinstate
   2776  * the correct depth of locking on its destruction. eg.:
   2777  *
   2778  * \code
   2779  * // V8 not locked.
   2780  * {
   2781  *   v8::Locker locker;
   2782  *   // V8 locked.
   2783  *   {
   2784  *     v8::Locker another_locker;
   2785  *     // V8 still locked (2 levels).
   2786  *     {
   2787  *       v8::Unlocker unlocker;
   2788  *       // V8 not locked.
   2789  *     }
   2790  *     // V8 locked again (2 levels).
   2791  *   }
   2792  *   // V8 still locked (1 level).
   2793  * }
   2794  * // V8 Now no longer locked.
   2795  * \endcode
   2796  */
   2797 class V8EXPORT Unlocker {
   2798  public:
   2799   Unlocker();
   2800   ~Unlocker();
   2801 };
   2802 
   2803 
   2804 class V8EXPORT Locker {
   2805  public:
   2806   Locker();
   2807   ~Locker();
   2808 
   2809   /**
   2810    * Start preemption.
   2811    *
   2812    * When preemption is started, a timer is fired every n milli seconds
   2813    * that will switch between multiple threads that are in contention
   2814    * for the V8 lock.
   2815    */
   2816   static void StartPreemption(int every_n_ms);
   2817 
   2818   /**
   2819    * Stop preemption.
   2820    */
   2821   static void StopPreemption();
   2822 
   2823   /**
   2824    * Returns whether or not the locker is locked by the current thread.
   2825    */
   2826   static bool IsLocked();
   2827 
   2828   /**
   2829    * Returns whether v8::Locker is being used by this V8 instance.
   2830    */
   2831   static bool IsActive() { return active_; }
   2832 
   2833  private:
   2834   bool has_lock_;
   2835   bool top_level_;
   2836 
   2837   static bool active_;
   2838 
   2839   // Disallow copying and assigning.
   2840   Locker(const Locker&);
   2841   void operator=(const Locker&);
   2842 };
   2843 
   2844 
   2845 
   2846 // --- I m p l e m e n t a t i o n ---
   2847 
   2848 
   2849 namespace internal {
   2850 
   2851 
   2852 // Tag information for HeapObject.
   2853 const int kHeapObjectTag = 1;
   2854 const int kHeapObjectTagSize = 2;
   2855 const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
   2856 
   2857 // Tag information for Smi.
   2858 const int kSmiTag = 0;
   2859 const int kSmiTagSize = 1;
   2860 const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
   2861 
   2862 template <size_t ptr_size> struct SmiConstants;
   2863 
   2864 // Smi constants for 32-bit systems.
   2865 template <> struct SmiConstants<4> {
   2866   static const int kSmiShiftSize = 0;
   2867   static const int kSmiValueSize = 31;
   2868   static inline int SmiToInt(internal::Object* value) {
   2869     int shift_bits = kSmiTagSize + kSmiShiftSize;
   2870     // Throw away top 32 bits and shift down (requires >> to be sign extending).
   2871     return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
   2872   }
   2873 };
   2874 
   2875 // Smi constants for 64-bit systems.
   2876 template <> struct SmiConstants<8> {
   2877   static const int kSmiShiftSize = 31;
   2878   static const int kSmiValueSize = 32;
   2879   static inline int SmiToInt(internal::Object* value) {
   2880     int shift_bits = kSmiTagSize + kSmiShiftSize;
   2881     // Shift down and throw away top 32 bits.
   2882     return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
   2883   }
   2884 };
   2885 
   2886 const int kSmiShiftSize = SmiConstants<sizeof(void*)>::kSmiShiftSize;
   2887 const int kSmiValueSize = SmiConstants<sizeof(void*)>::kSmiValueSize;
   2888 
   2889 template <size_t ptr_size> struct InternalConstants;
   2890 
   2891 // Internal constants for 32-bit systems.
   2892 template <> struct InternalConstants<4> {
   2893   static const int kStringResourceOffset = 3 * sizeof(void*);
   2894 };
   2895 
   2896 // Internal constants for 64-bit systems.
   2897 template <> struct InternalConstants<8> {
   2898   static const int kStringResourceOffset = 2 * sizeof(void*);
   2899 };
   2900 
   2901 /**
   2902  * This class exports constants and functionality from within v8 that
   2903  * is necessary to implement inline functions in the v8 api.  Don't
   2904  * depend on functions and constants defined here.
   2905  */
   2906 class Internals {
   2907  public:
   2908 
   2909   // These values match non-compiler-dependent values defined within
   2910   // the implementation of v8.
   2911   static const int kHeapObjectMapOffset = 0;
   2912   static const int kMapInstanceTypeOffset = sizeof(void*) + sizeof(int);
   2913   static const int kStringResourceOffset =
   2914       InternalConstants<sizeof(void*)>::kStringResourceOffset;
   2915 
   2916   static const int kProxyProxyOffset = sizeof(void*);
   2917   static const int kJSObjectHeaderSize = 3 * sizeof(void*);
   2918   static const int kFullStringRepresentationMask = 0x07;
   2919   static const int kExternalTwoByteRepresentationTag = 0x03;
   2920 
   2921   // These constants are compiler dependent so their values must be
   2922   // defined within the implementation.
   2923   V8EXPORT static int kJSObjectType;
   2924   V8EXPORT static int kFirstNonstringType;
   2925   V8EXPORT static int kProxyType;
   2926 
   2927   static inline bool HasHeapObjectTag(internal::Object* value) {
   2928     return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
   2929             kHeapObjectTag);
   2930   }
   2931 
   2932   static inline bool HasSmiTag(internal::Object* value) {
   2933     return ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag);
   2934   }
   2935 
   2936   static inline int SmiValue(internal::Object* value) {
   2937     return SmiConstants<sizeof(void*)>::SmiToInt(value);
   2938   }
   2939 
   2940   static inline int GetInstanceType(internal::Object* obj) {
   2941     typedef internal::Object O;
   2942     O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
   2943     return ReadField<uint8_t>(map, kMapInstanceTypeOffset);
   2944   }
   2945 
   2946   static inline void* GetExternalPointer(internal::Object* obj) {
   2947     if (HasSmiTag(obj)) {
   2948       return obj;
   2949     } else if (GetInstanceType(obj) == kProxyType) {
   2950       return ReadField<void*>(obj, kProxyProxyOffset);
   2951     } else {
   2952       return NULL;
   2953     }
   2954   }
   2955 
   2956   static inline bool IsExternalTwoByteString(int instance_type) {
   2957     int representation = (instance_type & kFullStringRepresentationMask);
   2958     return representation == kExternalTwoByteRepresentationTag;
   2959   }
   2960 
   2961   template <typename T>
   2962   static inline T ReadField(Object* ptr, int offset) {
   2963     uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag;
   2964     return *reinterpret_cast<T*>(addr);
   2965   }
   2966 
   2967 };
   2968 
   2969 }
   2970 
   2971 
   2972 template <class T>
   2973 Handle<T>::Handle() : val_(0) { }
   2974 
   2975 
   2976 template <class T>
   2977 Local<T>::Local() : Handle<T>() { }
   2978 
   2979 
   2980 template <class T>
   2981 Local<T> Local<T>::New(Handle<T> that) {
   2982   if (that.IsEmpty()) return Local<T>();
   2983   internal::Object** p = reinterpret_cast<internal::Object**>(*that);
   2984   return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(*p)));
   2985 }
   2986 
   2987 
   2988 template <class T>
   2989 Persistent<T> Persistent<T>::New(Handle<T> that) {
   2990   if (that.IsEmpty()) return Persistent<T>();
   2991   internal::Object** p = reinterpret_cast<internal::Object**>(*that);
   2992   return Persistent<T>(reinterpret_cast<T*>(V8::GlobalizeReference(p)));
   2993 }
   2994 
   2995 
   2996 template <class T>
   2997 bool Persistent<T>::IsNearDeath() const {
   2998   if (this->IsEmpty()) return false;
   2999   return V8::IsGlobalNearDeath(reinterpret_cast<internal::Object**>(**this));
   3000 }
   3001 
   3002 
   3003 template <class T>
   3004 bool Persistent<T>::IsWeak() const {
   3005   if (this->IsEmpty()) return false;
   3006   return V8::IsGlobalWeak(reinterpret_cast<internal::Object**>(**this));
   3007 }
   3008 
   3009 
   3010 template <class T>
   3011 void Persistent<T>::Dispose() {
   3012   if (this->IsEmpty()) return;
   3013   V8::DisposeGlobal(reinterpret_cast<internal::Object**>(**this));
   3014 }
   3015 
   3016 
   3017 template <class T>
   3018 Persistent<T>::Persistent() : Handle<T>() { }
   3019 
   3020 template <class T>
   3021 void Persistent<T>::MakeWeak(void* parameters, WeakReferenceCallback callback) {
   3022   V8::MakeWeak(reinterpret_cast<internal::Object**>(**this),
   3023                parameters,
   3024                callback);
   3025 }
   3026 
   3027 template <class T>
   3028 void Persistent<T>::ClearWeak() {
   3029   V8::ClearWeak(reinterpret_cast<internal::Object**>(**this));
   3030 }
   3031 
   3032 Local<Value> Arguments::operator[](int i) const {
   3033   if (i < 0 || length_ <= i) return Local<Value>(*Undefined());
   3034   return Local<Value>(reinterpret_cast<Value*>(values_ - i));
   3035 }
   3036 
   3037 
   3038 Local<Function> Arguments::Callee() const {
   3039   return callee_;
   3040 }
   3041 
   3042 
   3043 Local<Object> Arguments::This() const {
   3044   return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
   3045 }
   3046 
   3047 
   3048 Local<Object> Arguments::Holder() const {
   3049   return holder_;
   3050 }
   3051 
   3052 
   3053 Local<Value> Arguments::Data() const {
   3054   return data_;
   3055 }
   3056 
   3057 
   3058 bool Arguments::IsConstructCall() const {
   3059   return is_construct_call_;
   3060 }
   3061 
   3062 
   3063 int Arguments::Length() const {
   3064   return length_;
   3065 }
   3066 
   3067 
   3068 template <class T>
   3069 Local<T> HandleScope::Close(Handle<T> value) {
   3070   internal::Object** before = reinterpret_cast<internal::Object**>(*value);
   3071   internal::Object** after = RawClose(before);
   3072   return Local<T>(reinterpret_cast<T*>(after));
   3073 }
   3074 
   3075 Handle<Value> ScriptOrigin::ResourceName() const {
   3076   return resource_name_;
   3077 }
   3078 
   3079 
   3080 Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
   3081   return resource_line_offset_;
   3082 }
   3083 
   3084 
   3085 Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
   3086   return resource_column_offset_;
   3087 }
   3088 
   3089 
   3090 Handle<Boolean> Boolean::New(bool value) {
   3091   return value ? True() : False();
   3092 }
   3093 
   3094 
   3095 void Template::Set(const char* name, v8::Handle<Data> value) {
   3096   Set(v8::String::New(name), value);
   3097 }
   3098 
   3099 
   3100 Local<Value> Object::GetInternalField(int index) {
   3101 #ifndef V8_ENABLE_CHECKS
   3102   Local<Value> quick_result = UncheckedGetInternalField(index);
   3103   if (!quick_result.IsEmpty()) return quick_result;
   3104 #endif
   3105   return CheckedGetInternalField(index);
   3106 }
   3107 
   3108 
   3109 Local<Value> Object::UncheckedGetInternalField(int index) {
   3110   typedef internal::Object O;
   3111   typedef internal::Internals I;
   3112   O* obj = *reinterpret_cast<O**>(this);
   3113   if (I::GetInstanceType(obj) == I::kJSObjectType) {
   3114     // If the object is a plain JSObject, which is the common case,
   3115     // we know where to find the internal fields and can return the
   3116     // value directly.
   3117     int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index);
   3118     O* value = I::ReadField<O*>(obj, offset);
   3119     O** result = HandleScope::CreateHandle(value);
   3120     return Local<Value>(reinterpret_cast<Value*>(result));
   3121   } else {
   3122     return Local<Value>();
   3123   }
   3124 }
   3125 
   3126 
   3127 void* External::Unwrap(Handle<v8::Value> obj) {
   3128 #ifdef V8_ENABLE_CHECKS
   3129   return FullUnwrap(obj);
   3130 #else
   3131   return QuickUnwrap(obj);
   3132 #endif
   3133 }
   3134 
   3135 
   3136 void* External::QuickUnwrap(Handle<v8::Value> wrapper) {
   3137   typedef internal::Object O;
   3138   O* obj = *reinterpret_cast<O**>(const_cast<v8::Value*>(*wrapper));
   3139   return internal::Internals::GetExternalPointer(obj);
   3140 }
   3141 
   3142 
   3143 void* Object::GetPointerFromInternalField(int index) {
   3144   typedef internal::Object O;
   3145   typedef internal::Internals I;
   3146 
   3147   O* obj = *reinterpret_cast<O**>(this);
   3148 
   3149   if (I::GetInstanceType(obj) == I::kJSObjectType) {
   3150     // If the object is a plain JSObject, which is the common case,
   3151     // we know where to find the internal fields and can return the
   3152     // value directly.
   3153     int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index);
   3154     O* value = I::ReadField<O*>(obj, offset);
   3155     return I::GetExternalPointer(value);
   3156   }
   3157 
   3158   return SlowGetPointerFromInternalField(index);
   3159 }
   3160 
   3161 
   3162 String* String::Cast(v8::Value* value) {
   3163 #ifdef V8_ENABLE_CHECKS
   3164   CheckCast(value);
   3165 #endif
   3166   return static_cast<String*>(value);
   3167 }
   3168 
   3169 
   3170 String::ExternalStringResource* String::GetExternalStringResource() const {
   3171   typedef internal::Object O;
   3172   typedef internal::Internals I;
   3173   O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
   3174   String::ExternalStringResource* result;
   3175   if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
   3176     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
   3177     result = reinterpret_cast<String::ExternalStringResource*>(value);
   3178   } else {
   3179     result = NULL;
   3180   }
   3181 #ifdef V8_ENABLE_CHECKS
   3182   VerifyExternalStringResource(result);
   3183 #endif
   3184   return result;
   3185 }
   3186 
   3187 
   3188 bool Value::IsString() const {
   3189 #ifdef V8_ENABLE_CHECKS
   3190   return FullIsString();
   3191 #else
   3192   return QuickIsString();
   3193 #endif
   3194 }
   3195 
   3196 bool Value::QuickIsString() const {
   3197   typedef internal::Object O;
   3198   typedef internal::Internals I;
   3199   O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
   3200   if (!I::HasHeapObjectTag(obj)) return false;
   3201   return (I::GetInstanceType(obj) < I::kFirstNonstringType);
   3202 }
   3203 
   3204 
   3205 Number* Number::Cast(v8::Value* value) {
   3206 #ifdef V8_ENABLE_CHECKS
   3207   CheckCast(value);
   3208 #endif
   3209   return static_cast<Number*>(value);
   3210 }
   3211 
   3212 
   3213 Integer* Integer::Cast(v8::Value* value) {
   3214 #ifdef V8_ENABLE_CHECKS
   3215   CheckCast(value);
   3216 #endif
   3217   return static_cast<Integer*>(value);
   3218 }
   3219 
   3220 
   3221 Date* Date::Cast(v8::Value* value) {
   3222 #ifdef V8_ENABLE_CHECKS
   3223   CheckCast(value);
   3224 #endif
   3225   return static_cast<Date*>(value);
   3226 }
   3227 
   3228 
   3229 Object* Object::Cast(v8::Value* value) {
   3230 #ifdef V8_ENABLE_CHECKS
   3231   CheckCast(value);
   3232 #endif
   3233   return static_cast<Object*>(value);
   3234 }
   3235 
   3236 
   3237 Array* Array::Cast(v8::Value* value) {
   3238 #ifdef V8_ENABLE_CHECKS
   3239   CheckCast(value);
   3240 #endif
   3241   return static_cast<Array*>(value);
   3242 }
   3243 
   3244 
   3245 Function* Function::Cast(v8::Value* value) {
   3246 #ifdef V8_ENABLE_CHECKS
   3247   CheckCast(value);
   3248 #endif
   3249   return static_cast<Function*>(value);
   3250 }
   3251 
   3252 
   3253 External* External::Cast(v8::Value* value) {
   3254 #ifdef V8_ENABLE_CHECKS
   3255   CheckCast(value);
   3256 #endif
   3257   return static_cast<External*>(value);
   3258 }
   3259 
   3260 
   3261 Local<Value> AccessorInfo::Data() const {
   3262   return Local<Value>(reinterpret_cast<Value*>(&args_[-3]));
   3263 }
   3264 
   3265 
   3266 Local<Object> AccessorInfo::This() const {
   3267   return Local<Object>(reinterpret_cast<Object*>(&args_[0]));
   3268 }
   3269 
   3270 
   3271 Local<Object> AccessorInfo::Holder() const {
   3272   return Local<Object>(reinterpret_cast<Object*>(&args_[-1]));
   3273 }
   3274 
   3275 
   3276 /**
   3277  * \example shell.cc
   3278  * A simple shell that takes a list of expressions on the
   3279  * command-line and executes them.
   3280  */
   3281 
   3282 
   3283 /**
   3284  * \example process.cc
   3285  */
   3286 
   3287 
   3288 }  // namespace v8
   3289 
   3290 
   3291 #undef V8EXPORT
   3292 #undef V8EXPORT_INLINE
   3293 #undef TYPE_CHECK
   3294 
   3295 
   3296 #endif  // V8_H_
   3297