Home | History | Annotate | Download | only in math
      1 /*
      2  *  Licensed to the Apache Software Foundation (ASF) under one or more
      3  *  contributor license agreements.  See the NOTICE file distributed with
      4  *  this work for additional information regarding copyright ownership.
      5  *  The ASF licenses this file to You under the Apache License, Version 2.0
      6  *  (the "License"); you may not use this file except in compliance with
      7  *  the License.  You may obtain a copy of the License at
      8  *
      9  *     http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  *  Unless required by applicable law or agreed to in writing, software
     12  *  distributed under the License is distributed on an "AS IS" BASIS,
     13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  *  See the License for the specific language governing permissions and
     15  *  limitations under the License.
     16  */
     17 
     18 // BEGIN android-note
     19 // Since the original Harmony Code of the BigInteger class was strongly modified,
     20 // in order to use the more efficient OpenSSL BIGNUM implementation,
     21 // no android-modification-tags were placed, at all.
     22 // END android-note
     23 
     24 package java.math;
     25 
     26 import java.util.Arrays;
     27 
     28 /**
     29  * Provides primality probabilistic methods.
     30  */
     31 class Primality {
     32 
     33     /** Just to denote that this class can't be instantiated. */
     34     private Primality() {}
     35 
     36     /** All prime numbers with bit length lesser than 10 bits. */
     37     private static final int primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
     38             31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
     39             103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
     40             173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239,
     41             241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
     42             317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
     43             401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,
     44             479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569,
     45             571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643,
     46             647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733,
     47             739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823,
     48             827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
     49             919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009,
     50             1013, 1019, 1021 };
     51 
     52     /** All {@code BigInteger} prime numbers with bit length lesser than 10 bits. */
     53     private static final BigInteger BIprimes[] = new BigInteger[primes.length];
     54 
     55 //    /**
     56 //     * It encodes how many iterations of Miller-Rabin test are need to get an
     57 //     * error bound not greater than {@code 2<sup>(-100)</sup>}. For example:
     58 //     * for a {@code 1000}-bit number we need {@code 4} iterations, since
     59 //     * {@code BITS[3] < 1000 <= BITS[4]}.
     60 //     */
     61 //    private static final int[] BITS = { 0, 0, 1854, 1233, 927, 747, 627, 543,
     62 //            480, 431, 393, 361, 335, 314, 295, 279, 265, 253, 242, 232, 223,
     63 //            216, 181, 169, 158, 150, 145, 140, 136, 132, 127, 123, 119, 114,
     64 //            110, 105, 101, 96, 92, 87, 83, 78, 73, 69, 64, 59, 54, 49, 44, 38,
     65 //            32, 26, 1 };
     66 //
     67 //    /**
     68 //     * It encodes how many i-bit primes there are in the table for
     69 //     * {@code i=2,...,10}. For example {@code offsetPrimes[6]} says that from
     70 //     * index {@code 11} exists {@code 7} consecutive {@code 6}-bit prime
     71 //     * numbers in the array.
     72 //     */
     73 //    private static final int[][] offsetPrimes = { null, null, { 0, 2 },
     74 //            { 2, 2 }, { 4, 2 }, { 6, 5 }, { 11, 7 }, { 18, 13 }, { 31, 23 },
     75 //            { 54, 43 }, { 97, 75 } };
     76 
     77     static {// To initialize the dual table of BigInteger primes
     78         for (int i = 0; i < primes.length; i++) {
     79             BIprimes[i] = BigInteger.valueOf(primes[i]);
     80         }
     81     }
     82 
     83     /**
     84      * It uses the sieve of Eratosthenes to discard several composite numbers in
     85      * some appropriate range (at the moment {@code [this, this + 1024]}). After
     86      * this process it applies the Miller-Rabin test to the numbers that were
     87      * not discarded in the sieve.
     88      *
     89      * @see BigInteger#nextProbablePrime()
     90      * @see #millerRabin(BigInteger, int)
     91      */
     92     static BigInteger nextProbablePrime(BigInteger n) {
     93         // PRE: n >= 0
     94         int i, j;
     95 //        int certainty;
     96         int gapSize = 1024; // for searching of the next probable prime number
     97         int modules[] = new int[primes.length];
     98         boolean isDivisible[] = new boolean[gapSize];
     99         BigInt ni = n.bigInt;
    100         // If n < "last prime of table" searches next prime in the table
    101         if (ni.bitLength() <= 10) {
    102             int l = (int)ni.longInt();
    103             if (l < primes[primes.length - 1]) {
    104                 for (i = 0; l >= primes[i]; i++) {}
    105                 return BIprimes[i];
    106             }
    107         }
    108 
    109         BigInt startPoint = ni.copy();
    110         BigInt probPrime = new BigInt();
    111 
    112         // Fix startPoint to "next odd number":
    113         startPoint.addPositiveInt(BigInt.remainderByPositiveInt(ni, 2) + 1);
    114 
    115 //        // To set the improved certainty of Miller-Rabin
    116 //        j = startPoint.bitLength();
    117 //        for (certainty = 2; j < BITS[certainty]; certainty++) {
    118 //            ;
    119 //        }
    120 
    121         // To calculate modules: N mod p1, N mod p2, ... for first primes.
    122         for (i = 0; i < primes.length; i++) {
    123             modules[i] = BigInt.remainderByPositiveInt(startPoint, primes[i]) - gapSize;
    124         }
    125         while (true) {
    126             // At this point, all numbers in the gap are initialized as
    127             // probably primes
    128             Arrays.fill(isDivisible, false);
    129             // To discard multiples of first primes
    130             for (i = 0; i < primes.length; i++) {
    131                 modules[i] = (modules[i] + gapSize) % primes[i];
    132                 j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]);
    133                 for (; j < gapSize; j += primes[i]) {
    134                     isDivisible[j] = true;
    135                 }
    136             }
    137             // To execute Miller-Rabin for non-divisible numbers by all first
    138             // primes
    139             for (j = 0; j < gapSize; j++) {
    140                 if (!isDivisible[j]) {
    141                     probPrime.putCopy(startPoint);
    142                     probPrime.addPositiveInt(j);
    143                     if (probPrime.isPrime(100, null, null)) {
    144                         return new BigInteger(probPrime);
    145                     }
    146                 }
    147             }
    148             startPoint.addPositiveInt(gapSize);
    149         }
    150     }
    151 
    152 }
    153