Home | History | Annotate | Download | only in fpu
      1 /*============================================================================
      2 
      3 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
      4 Package, Release 2b.
      5 
      6 Written by John R. Hauser.  This work was made possible in part by the
      7 International Computer Science Institute, located at Suite 600, 1947 Center
      8 Street, Berkeley, California 94704.  Funding was partially provided by the
      9 National Science Foundation under grant MIP-9311980.  The original version
     10 of this code was written as part of a project to build a fixed-point vector
     11 processor in collaboration with the University of California at Berkeley,
     12 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     13 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
     14 arithmetic/SoftFloat.html'.
     15 
     16 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
     17 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
     18 RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
     19 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
     20 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
     21 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
     22 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
     23 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
     24 
     25 Derivative works are acceptable, even for commercial purposes, so long as
     26 (1) the source code for the derivative work includes prominent notice that
     27 the work is derivative, and (2) the source code includes prominent notice with
     28 these four paragraphs for those parts of this code that are retained.
     29 
     30 =============================================================================*/
     31 
     32 #ifndef SOFTFLOAT_H
     33 #define SOFTFLOAT_H
     34 
     35 #if defined(HOST_SOLARIS) && defined(NEEDS_LIBSUNMATH)
     36 #include <sunmath.h>
     37 #endif
     38 
     39 #include <inttypes.h>
     40 #include "config.h"
     41 
     42 /*----------------------------------------------------------------------------
     43 | Each of the following `typedef's defines the most convenient type that holds
     44 | integers of at least as many bits as specified.  For example, `uint8' should
     45 | be the most convenient type that can hold unsigned integers of as many as
     46 | 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
     47 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
     48 | to the same as `int'.
     49 *----------------------------------------------------------------------------*/
     50 typedef uint8_t flag;
     51 typedef uint8_t uint8;
     52 typedef int8_t int8;
     53 #ifndef _AIX
     54 typedef int uint16;
     55 typedef int int16;
     56 #endif
     57 typedef unsigned int uint32;
     58 typedef signed int int32;
     59 typedef uint64_t uint64;
     60 typedef int64_t int64;
     61 
     62 /*----------------------------------------------------------------------------
     63 | Each of the following `typedef's defines a type that holds integers
     64 | of _exactly_ the number of bits specified.  For instance, for most
     65 | implementation of C, `bits16' and `sbits16' should be `typedef'ed to
     66 | `unsigned short int' and `signed short int' (or `short int'), respectively.
     67 *----------------------------------------------------------------------------*/
     68 typedef uint8_t bits8;
     69 typedef int8_t sbits8;
     70 typedef uint16_t bits16;
     71 typedef int16_t sbits16;
     72 typedef uint32_t bits32;
     73 typedef int32_t sbits32;
     74 typedef uint64_t bits64;
     75 typedef int64_t sbits64;
     76 
     77 #define LIT64( a ) a##LL
     78 #define INLINE static inline
     79 
     80 /*----------------------------------------------------------------------------
     81 | The macro `FLOATX80' must be defined to enable the extended double-precision
     82 | floating-point format `floatx80'.  If this macro is not defined, the
     83 | `floatx80' type will not be defined, and none of the functions that either
     84 | input or output the `floatx80' type will be defined.  The same applies to
     85 | the `FLOAT128' macro and the quadruple-precision format `float128'.
     86 *----------------------------------------------------------------------------*/
     87 #ifdef CONFIG_SOFTFLOAT
     88 /* bit exact soft float support */
     89 #define FLOATX80
     90 #define FLOAT128
     91 #else
     92 /* native float support */
     93 #if (defined(__i386__) || defined(__x86_64__)) && !defined(HOST_BSD)
     94 #define FLOATX80
     95 #endif
     96 #endif /* !CONFIG_SOFTFLOAT */
     97 
     98 #define STATUS_PARAM , float_status *status
     99 #define STATUS(field) status->field
    100 #define STATUS_VAR , status
    101 
    102 /*----------------------------------------------------------------------------
    103 | Software IEC/IEEE floating-point ordering relations
    104 *----------------------------------------------------------------------------*/
    105 enum {
    106     float_relation_less      = -1,
    107     float_relation_equal     =  0,
    108     float_relation_greater   =  1,
    109     float_relation_unordered =  2
    110 };
    111 
    112 #ifdef CONFIG_SOFTFLOAT
    113 /*----------------------------------------------------------------------------
    114 | Software IEC/IEEE floating-point types.
    115 *----------------------------------------------------------------------------*/
    116 /* Use structures for soft-float types.  This prevents accidentally mixing
    117    them with native int/float types.  A sufficiently clever compiler and
    118    sane ABI should be able to see though these structs.  However
    119    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
    120 //#define USE_SOFTFLOAT_STRUCT_TYPES
    121 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
    122 typedef struct {
    123     uint32_t v;
    124 } float32;
    125 /* The cast ensures an error if the wrong type is passed.  */
    126 #define float32_val(x) (((float32)(x)).v)
    127 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
    128 typedef struct {
    129     uint64_t v;
    130 } float64;
    131 #define float64_val(x) (((float64)(x)).v)
    132 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
    133 #else
    134 typedef uint32_t float32;
    135 typedef uint64_t float64;
    136 #define float32_val(x) (x)
    137 #define float64_val(x) (x)
    138 #define make_float32(x) (x)
    139 #define make_float64(x) (x)
    140 #endif
    141 #ifdef FLOATX80
    142 typedef struct {
    143     uint64_t low;
    144     uint16_t high;
    145 } floatx80;
    146 #endif
    147 #ifdef FLOAT128
    148 typedef struct {
    149 #ifdef WORDS_BIGENDIAN
    150     uint64_t high, low;
    151 #else
    152     uint64_t low, high;
    153 #endif
    154 } float128;
    155 #endif
    156 
    157 /*----------------------------------------------------------------------------
    158 | Software IEC/IEEE floating-point underflow tininess-detection mode.
    159 *----------------------------------------------------------------------------*/
    160 enum {
    161     float_tininess_after_rounding  = 0,
    162     float_tininess_before_rounding = 1
    163 };
    164 
    165 /*----------------------------------------------------------------------------
    166 | Software IEC/IEEE floating-point rounding mode.
    167 *----------------------------------------------------------------------------*/
    168 enum {
    169     float_round_nearest_even = 0,
    170     float_round_down         = 1,
    171     float_round_up           = 2,
    172     float_round_to_zero      = 3
    173 };
    174 
    175 /*----------------------------------------------------------------------------
    176 | Software IEC/IEEE floating-point exception flags.
    177 *----------------------------------------------------------------------------*/
    178 enum {
    179     float_flag_invalid   =  1,
    180     float_flag_divbyzero =  4,
    181     float_flag_overflow  =  8,
    182     float_flag_underflow = 16,
    183     float_flag_inexact   = 32
    184 };
    185 
    186 typedef struct float_status {
    187     signed char float_detect_tininess;
    188     signed char float_rounding_mode;
    189     signed char float_exception_flags;
    190 #ifdef FLOATX80
    191     signed char floatx80_rounding_precision;
    192 #endif
    193     flag flush_to_zero;
    194     flag default_nan_mode;
    195 } float_status;
    196 
    197 void set_float_rounding_mode(int val STATUS_PARAM);
    198 void set_float_exception_flags(int val STATUS_PARAM);
    199 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
    200 {
    201     STATUS(flush_to_zero) = val;
    202 }
    203 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
    204 {
    205     STATUS(default_nan_mode) = val;
    206 }
    207 INLINE int get_float_exception_flags(float_status *status)
    208 {
    209     return STATUS(float_exception_flags);
    210 }
    211 #ifdef FLOATX80
    212 void set_floatx80_rounding_precision(int val STATUS_PARAM);
    213 #endif
    214 
    215 /*----------------------------------------------------------------------------
    216 | Routine to raise any or all of the software IEC/IEEE floating-point
    217 | exception flags.
    218 *----------------------------------------------------------------------------*/
    219 void float_raise( int8 flags STATUS_PARAM);
    220 
    221 /*----------------------------------------------------------------------------
    222 | Software IEC/IEEE integer-to-floating-point conversion routines.
    223 *----------------------------------------------------------------------------*/
    224 float32 int32_to_float32( int STATUS_PARAM );
    225 float64 int32_to_float64( int STATUS_PARAM );
    226 float32 uint32_to_float32( unsigned int STATUS_PARAM );
    227 float64 uint32_to_float64( unsigned int STATUS_PARAM );
    228 #ifdef FLOATX80
    229 floatx80 int32_to_floatx80( int STATUS_PARAM );
    230 #endif
    231 #ifdef FLOAT128
    232 float128 int32_to_float128( int STATUS_PARAM );
    233 #endif
    234 float32 int64_to_float32( int64_t STATUS_PARAM );
    235 float32 uint64_to_float32( uint64_t STATUS_PARAM );
    236 float64 int64_to_float64( int64_t STATUS_PARAM );
    237 float64 uint64_to_float64( uint64_t STATUS_PARAM );
    238 #ifdef FLOATX80
    239 floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
    240 #endif
    241 #ifdef FLOAT128
    242 float128 int64_to_float128( int64_t STATUS_PARAM );
    243 #endif
    244 
    245 /*----------------------------------------------------------------------------
    246 | Software IEC/IEEE single-precision conversion routines.
    247 *----------------------------------------------------------------------------*/
    248 int float32_to_int32( float32 STATUS_PARAM );
    249 int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
    250 unsigned int float32_to_uint32( float32 STATUS_PARAM );
    251 unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
    252 int64_t float32_to_int64( float32 STATUS_PARAM );
    253 int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
    254 float64 float32_to_float64( float32 STATUS_PARAM );
    255 #ifdef FLOATX80
    256 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
    257 #endif
    258 #ifdef FLOAT128
    259 float128 float32_to_float128( float32 STATUS_PARAM );
    260 #endif
    261 
    262 /*----------------------------------------------------------------------------
    263 | Software IEC/IEEE single-precision operations.
    264 *----------------------------------------------------------------------------*/
    265 float32 float32_round_to_int( float32 STATUS_PARAM );
    266 float32 float32_add( float32, float32 STATUS_PARAM );
    267 float32 float32_sub( float32, float32 STATUS_PARAM );
    268 float32 float32_mul( float32, float32 STATUS_PARAM );
    269 float32 float32_div( float32, float32 STATUS_PARAM );
    270 float32 float32_rem( float32, float32 STATUS_PARAM );
    271 float32 float32_sqrt( float32 STATUS_PARAM );
    272 float32 float32_log2( float32 STATUS_PARAM );
    273 int float32_eq( float32, float32 STATUS_PARAM );
    274 int float32_le( float32, float32 STATUS_PARAM );
    275 int float32_lt( float32, float32 STATUS_PARAM );
    276 int float32_eq_signaling( float32, float32 STATUS_PARAM );
    277 int float32_le_quiet( float32, float32 STATUS_PARAM );
    278 int float32_lt_quiet( float32, float32 STATUS_PARAM );
    279 int float32_compare( float32, float32 STATUS_PARAM );
    280 int float32_compare_quiet( float32, float32 STATUS_PARAM );
    281 int float32_is_nan( float32 );
    282 int float32_is_signaling_nan( float32 );
    283 float32 float32_scalbn( float32, int STATUS_PARAM );
    284 
    285 INLINE float32 float32_abs(float32 a)
    286 {
    287     return make_float32(float32_val(a) & 0x7fffffff);
    288 }
    289 
    290 INLINE float32 float32_chs(float32 a)
    291 {
    292     return make_float32(float32_val(a) ^ 0x80000000);
    293 }
    294 
    295 INLINE int float32_is_infinity(float32 a)
    296 {
    297     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
    298 }
    299 
    300 INLINE int float32_is_neg(float32 a)
    301 {
    302     return float32_val(a) >> 31;
    303 }
    304 
    305 INLINE int float32_is_zero(float32 a)
    306 {
    307     return (float32_val(a) & 0x7fffffff) == 0;
    308 }
    309 
    310 #define float32_zero make_float32(0)
    311 #define float32_one make_float32(0x3f800000)
    312 
    313 /*----------------------------------------------------------------------------
    314 | Software IEC/IEEE double-precision conversion routines.
    315 *----------------------------------------------------------------------------*/
    316 int float64_to_int32( float64 STATUS_PARAM );
    317 int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
    318 unsigned int float64_to_uint32( float64 STATUS_PARAM );
    319 unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
    320 int64_t float64_to_int64( float64 STATUS_PARAM );
    321 int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
    322 uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
    323 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
    324 float32 float64_to_float32( float64 STATUS_PARAM );
    325 #ifdef FLOATX80
    326 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
    327 #endif
    328 #ifdef FLOAT128
    329 float128 float64_to_float128( float64 STATUS_PARAM );
    330 #endif
    331 
    332 /*----------------------------------------------------------------------------
    333 | Software IEC/IEEE double-precision operations.
    334 *----------------------------------------------------------------------------*/
    335 float64 float64_round_to_int( float64 STATUS_PARAM );
    336 float64 float64_trunc_to_int( float64 STATUS_PARAM );
    337 float64 float64_add( float64, float64 STATUS_PARAM );
    338 float64 float64_sub( float64, float64 STATUS_PARAM );
    339 float64 float64_mul( float64, float64 STATUS_PARAM );
    340 float64 float64_div( float64, float64 STATUS_PARAM );
    341 float64 float64_rem( float64, float64 STATUS_PARAM );
    342 float64 float64_sqrt( float64 STATUS_PARAM );
    343 float64 float64_log2( float64 STATUS_PARAM );
    344 int float64_eq( float64, float64 STATUS_PARAM );
    345 int float64_le( float64, float64 STATUS_PARAM );
    346 int float64_lt( float64, float64 STATUS_PARAM );
    347 int float64_eq_signaling( float64, float64 STATUS_PARAM );
    348 int float64_le_quiet( float64, float64 STATUS_PARAM );
    349 int float64_lt_quiet( float64, float64 STATUS_PARAM );
    350 int float64_compare( float64, float64 STATUS_PARAM );
    351 int float64_compare_quiet( float64, float64 STATUS_PARAM );
    352 int float64_is_nan( float64 a );
    353 int float64_is_signaling_nan( float64 );
    354 float64 float64_scalbn( float64, int STATUS_PARAM );
    355 
    356 INLINE float64 float64_abs(float64 a)
    357 {
    358     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
    359 }
    360 
    361 INLINE float64 float64_chs(float64 a)
    362 {
    363     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
    364 }
    365 
    366 INLINE int float64_is_infinity(float64 a)
    367 {
    368     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
    369 }
    370 
    371 INLINE int float64_is_neg(float64 a)
    372 {
    373     return float64_val(a) >> 63;
    374 }
    375 
    376 INLINE int float64_is_zero(float64 a)
    377 {
    378     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
    379 }
    380 
    381 #define float64_zero make_float64(0)
    382 #define float64_one make_float64(0x3ff0000000000000LL)
    383 
    384 #ifdef FLOATX80
    385 
    386 /*----------------------------------------------------------------------------
    387 | Software IEC/IEEE extended double-precision conversion routines.
    388 *----------------------------------------------------------------------------*/
    389 int floatx80_to_int32( floatx80 STATUS_PARAM );
    390 int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
    391 int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
    392 int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
    393 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
    394 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
    395 #ifdef FLOAT128
    396 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
    397 #endif
    398 
    399 /*----------------------------------------------------------------------------
    400 | Software IEC/IEEE extended double-precision operations.
    401 *----------------------------------------------------------------------------*/
    402 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
    403 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
    404 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
    405 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
    406 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
    407 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
    408 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
    409 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
    410 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
    411 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
    412 int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
    413 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
    414 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
    415 int floatx80_is_nan( floatx80 );
    416 int floatx80_is_signaling_nan( floatx80 );
    417 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
    418 
    419 INLINE floatx80 floatx80_abs(floatx80 a)
    420 {
    421     a.high &= 0x7fff;
    422     return a;
    423 }
    424 
    425 INLINE floatx80 floatx80_chs(floatx80 a)
    426 {
    427     a.high ^= 0x8000;
    428     return a;
    429 }
    430 
    431 INLINE int floatx80_is_infinity(floatx80 a)
    432 {
    433     return (a.high & 0x7fff) == 0x7fff && a.low == 0;
    434 }
    435 
    436 INLINE int floatx80_is_neg(floatx80 a)
    437 {
    438     return a.high >> 15;
    439 }
    440 
    441 INLINE int floatx80_is_zero(floatx80 a)
    442 {
    443     return (a.high & 0x7fff) == 0 && a.low == 0;
    444 }
    445 
    446 #endif
    447 
    448 #ifdef FLOAT128
    449 
    450 /*----------------------------------------------------------------------------
    451 | Software IEC/IEEE quadruple-precision conversion routines.
    452 *----------------------------------------------------------------------------*/
    453 int float128_to_int32( float128 STATUS_PARAM );
    454 int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
    455 int64_t float128_to_int64( float128 STATUS_PARAM );
    456 int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
    457 float32 float128_to_float32( float128 STATUS_PARAM );
    458 float64 float128_to_float64( float128 STATUS_PARAM );
    459 #ifdef FLOATX80
    460 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
    461 #endif
    462 
    463 /*----------------------------------------------------------------------------
    464 | Software IEC/IEEE quadruple-precision operations.
    465 *----------------------------------------------------------------------------*/
    466 float128 float128_round_to_int( float128 STATUS_PARAM );
    467 float128 float128_add( float128, float128 STATUS_PARAM );
    468 float128 float128_sub( float128, float128 STATUS_PARAM );
    469 float128 float128_mul( float128, float128 STATUS_PARAM );
    470 float128 float128_div( float128, float128 STATUS_PARAM );
    471 float128 float128_rem( float128, float128 STATUS_PARAM );
    472 float128 float128_sqrt( float128 STATUS_PARAM );
    473 int float128_eq( float128, float128 STATUS_PARAM );
    474 int float128_le( float128, float128 STATUS_PARAM );
    475 int float128_lt( float128, float128 STATUS_PARAM );
    476 int float128_eq_signaling( float128, float128 STATUS_PARAM );
    477 int float128_le_quiet( float128, float128 STATUS_PARAM );
    478 int float128_lt_quiet( float128, float128 STATUS_PARAM );
    479 int float128_compare( float128, float128 STATUS_PARAM );
    480 int float128_compare_quiet( float128, float128 STATUS_PARAM );
    481 int float128_is_nan( float128 );
    482 int float128_is_signaling_nan( float128 );
    483 float128 float128_scalbn( float128, int STATUS_PARAM );
    484 
    485 INLINE float128 float128_abs(float128 a)
    486 {
    487     a.high &= 0x7fffffffffffffffLL;
    488     return a;
    489 }
    490 
    491 INLINE float128 float128_chs(float128 a)
    492 {
    493     a.high ^= 0x8000000000000000LL;
    494     return a;
    495 }
    496 
    497 INLINE int float128_is_infinity(float128 a)
    498 {
    499     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
    500 }
    501 
    502 INLINE int float128_is_neg(float128 a)
    503 {
    504     return a.high >> 63;
    505 }
    506 
    507 INLINE int float128_is_zero(float128 a)
    508 {
    509     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
    510 }
    511 
    512 #endif
    513 
    514 #else /* CONFIG_SOFTFLOAT */
    515 
    516 #include "softfloat-native.h"
    517 
    518 #endif /* !CONFIG_SOFTFLOAT */
    519 
    520 #endif /* !SOFTFLOAT_H */
    521