Home | History | Annotate | Download | only in ciphers
      1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
      2  *
      3  * LibTomCrypt is a library that provides various cryptographic
      4  * algorithms in a highly modular and flexible manner.
      5  *
      6  * The library is free for all purposes without any express
      7  * guarantee it works.
      8  *
      9  * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com
     10  */
     11 
     12 /**
     13    @file rc5.c
     14    RC5 code by Tom St Denis
     15 */
     16 
     17 #include "tomcrypt.h"
     18 
     19 #ifdef RC5
     20 
     21 const struct ltc_cipher_descriptor rc5_desc =
     22 {
     23     "rc5",
     24     2,
     25     8, 128, 8, 12,
     26     &rc5_setup,
     27     &rc5_ecb_encrypt,
     28     &rc5_ecb_decrypt,
     29     &rc5_test,
     30     &rc5_done,
     31     &rc5_keysize,
     32     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
     33 };
     34 
     35 static const ulong32 stab[50] = {
     36 0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL,
     37 0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL,
     38 0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL,
     39 0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL,
     40 0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL,
     41 0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL, 0xe96a3d2fUL, 0x87a1b6e8UL, 0x25d930a1UL, 0xc410aa5aUL,
     42 0x62482413UL, 0x007f9dccUL
     43 };
     44 
     45  /**
     46     Initialize the RC5 block cipher
     47     @param key The symmetric key you wish to pass
     48     @param keylen The key length in bytes
     49     @param num_rounds The number of rounds desired (0 for default)
     50     @param skey The key in as scheduled by this function.
     51     @return CRYPT_OK if successful
     52  */
     53 #ifdef LTC_CLEAN_STACK
     54 static int _rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
     55 #else
     56 int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
     57 #endif
     58 {
     59     ulong32 L[64], *S, A, B, i, j, v, s, t, l;
     60 
     61     LTC_ARGCHK(skey != NULL);
     62     LTC_ARGCHK(key  != NULL);
     63 
     64     /* test parameters */
     65     if (num_rounds == 0) {
     66        num_rounds = rc5_desc.default_rounds;
     67     }
     68 
     69     if (num_rounds < 12 || num_rounds > 24) {
     70        return CRYPT_INVALID_ROUNDS;
     71     }
     72 
     73     /* key must be between 64 and 1024 bits */
     74     if (keylen < 8 || keylen > 128) {
     75        return CRYPT_INVALID_KEYSIZE;
     76     }
     77 
     78     skey->rc5.rounds = num_rounds;
     79     S = skey->rc5.K;
     80 
     81     /* copy the key into the L array */
     82     for (A = i = j = 0; i < (ulong32)keylen; ) {
     83         A = (A << 8) | ((ulong32)(key[i++] & 255));
     84         if ((i & 3) == 0) {
     85            L[j++] = BSWAP(A);
     86            A = 0;
     87         }
     88     }
     89 
     90     if ((keylen & 3) != 0) {
     91        A <<= (ulong32)((8 * (4 - (keylen&3))));
     92        L[j++] = BSWAP(A);
     93     }
     94 
     95     /* setup the S array */
     96     t = (ulong32)(2 * (num_rounds + 1));
     97     XMEMCPY(S, stab, t * sizeof(*S));
     98 
     99     /* mix buffer */
    100     s = 3 * MAX(t, j);
    101     l = j;
    102     for (A = B = i = j = v = 0; v < s; v++) {
    103         A = S[i] = ROLc(S[i] + A + B, 3);
    104         B = L[j] = ROL(L[j] + A + B, (A+B));
    105         if (++i == t) { i = 0; }
    106         if (++j == l) { j = 0; }
    107     }
    108     return CRYPT_OK;
    109 }
    110 
    111 #ifdef LTC_CLEAN_STACK
    112 int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
    113 {
    114    int x;
    115    x = _rc5_setup(key, keylen, num_rounds, skey);
    116    burn_stack(sizeof(ulong32) * 122 + sizeof(int));
    117    return x;
    118 }
    119 #endif
    120 
    121 /**
    122   Encrypts a block of text with RC5
    123   @param pt The input plaintext (8 bytes)
    124   @param ct The output ciphertext (8 bytes)
    125   @param skey The key as scheduled
    126   @return CRYPT_OK if successful
    127 */
    128 #ifdef LTC_CLEAN_STACK
    129 static int _rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    130 #else
    131 int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    132 #endif
    133 {
    134    ulong32 A, B, *K;
    135    int r;
    136    LTC_ARGCHK(skey != NULL);
    137    LTC_ARGCHK(pt   != NULL);
    138    LTC_ARGCHK(ct   != NULL);
    139 
    140    LOAD32L(A, &pt[0]);
    141    LOAD32L(B, &pt[4]);
    142    A += skey->rc5.K[0];
    143    B += skey->rc5.K[1];
    144    K  = skey->rc5.K + 2;
    145 
    146    if ((skey->rc5.rounds & 1) == 0) {
    147       for (r = 0; r < skey->rc5.rounds; r += 2) {
    148           A = ROL(A ^ B, B) + K[0];
    149           B = ROL(B ^ A, A) + K[1];
    150           A = ROL(A ^ B, B) + K[2];
    151           B = ROL(B ^ A, A) + K[3];
    152           K += 4;
    153       }
    154    } else {
    155       for (r = 0; r < skey->rc5.rounds; r++) {
    156           A = ROL(A ^ B, B) + K[0];
    157           B = ROL(B ^ A, A) + K[1];
    158           K += 2;
    159       }
    160    }
    161    STORE32L(A, &ct[0]);
    162    STORE32L(B, &ct[4]);
    163 
    164    return CRYPT_OK;
    165 }
    166 
    167 #ifdef LTC_CLEAN_STACK
    168 int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    169 {
    170    int err = _rc5_ecb_encrypt(pt, ct, skey);
    171    burn_stack(sizeof(ulong32) * 2 + sizeof(int));
    172    return err;
    173 }
    174 #endif
    175 
    176 /**
    177   Decrypts a block of text with RC5
    178   @param ct The input ciphertext (8 bytes)
    179   @param pt The output plaintext (8 bytes)
    180   @param skey The key as scheduled
    181   @return CRYPT_OK if successful
    182 */
    183 #ifdef LTC_CLEAN_STACK
    184 static int _rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    185 #else
    186 int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    187 #endif
    188 {
    189    ulong32 A, B, *K;
    190    int r;
    191    LTC_ARGCHK(skey != NULL);
    192    LTC_ARGCHK(pt   != NULL);
    193    LTC_ARGCHK(ct   != NULL);
    194 
    195    LOAD32L(A, &ct[0]);
    196    LOAD32L(B, &ct[4]);
    197    K = skey->rc5.K + (skey->rc5.rounds << 1);
    198 
    199    if ((skey->rc5.rounds & 1) == 0) {
    200        K -= 2;
    201        for (r = skey->rc5.rounds - 1; r >= 0; r -= 2) {
    202           B = ROR(B - K[3], A) ^ A;
    203           A = ROR(A - K[2], B) ^ B;
    204           B = ROR(B - K[1], A) ^ A;
    205           A = ROR(A - K[0], B) ^ B;
    206           K -= 4;
    207         }
    208    } else {
    209       for (r = skey->rc5.rounds - 1; r >= 0; r--) {
    210           B = ROR(B - K[1], A) ^ A;
    211           A = ROR(A - K[0], B) ^ B;
    212           K -= 2;
    213       }
    214    }
    215    A -= skey->rc5.K[0];
    216    B -= skey->rc5.K[1];
    217    STORE32L(A, &pt[0]);
    218    STORE32L(B, &pt[4]);
    219 
    220    return CRYPT_OK;
    221 }
    222 
    223 #ifdef LTC_CLEAN_STACK
    224 int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    225 {
    226    int err = _rc5_ecb_decrypt(ct, pt, skey);
    227    burn_stack(sizeof(ulong32) * 2 + sizeof(int));
    228    return err;
    229 }
    230 #endif
    231 
    232 /**
    233   Performs a self-test of the RC5 block cipher
    234   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
    235 */
    236 int rc5_test(void)
    237 {
    238  #ifndef LTC_TEST
    239     return CRYPT_NOP;
    240  #else
    241    static const struct {
    242        unsigned char key[16], pt[8], ct[8];
    243    } tests[] = {
    244    {
    245        { 0x91, 0x5f, 0x46, 0x19, 0xbe, 0x41, 0xb2, 0x51,
    246          0x63, 0x55, 0xa5, 0x01, 0x10, 0xa9, 0xce, 0x91 },
    247        { 0x21, 0xa5, 0xdb, 0xee, 0x15, 0x4b, 0x8f, 0x6d },
    248        { 0xf7, 0xc0, 0x13, 0xac, 0x5b, 0x2b, 0x89, 0x52 }
    249    },
    250    {
    251        { 0x78, 0x33, 0x48, 0xe7, 0x5a, 0xeb, 0x0f, 0x2f,
    252          0xd7, 0xb1, 0x69, 0xbb, 0x8d, 0xc1, 0x67, 0x87 },
    253        { 0xF7, 0xC0, 0x13, 0xAC, 0x5B, 0x2B, 0x89, 0x52 },
    254        { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 }
    255    },
    256    {
    257        { 0xDC, 0x49, 0xdb, 0x13, 0x75, 0xa5, 0x58, 0x4f,
    258          0x64, 0x85, 0xb4, 0x13, 0xb5, 0xf1, 0x2b, 0xaf },
    259        { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 },
    260        { 0x65, 0xc1, 0x78, 0xb2, 0x84, 0xd1, 0x97, 0xcc }
    261    }
    262    };
    263    unsigned char tmp[2][8];
    264    int x, y, err;
    265    symmetric_key key;
    266 
    267    for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
    268       /* setup key */
    269       if ((err = rc5_setup(tests[x].key, 16, 12, &key)) != CRYPT_OK) {
    270          return err;
    271       }
    272 
    273       /* encrypt and decrypt */
    274       rc5_ecb_encrypt(tests[x].pt, tmp[0], &key);
    275       rc5_ecb_decrypt(tmp[0], tmp[1], &key);
    276 
    277       /* compare */
    278       if (XMEMCMP(tmp[0], tests[x].ct, 8) != 0 || XMEMCMP(tmp[1], tests[x].pt, 8) != 0) {
    279          return CRYPT_FAIL_TESTVECTOR;
    280       }
    281 
    282       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
    283       for (y = 0; y < 8; y++) tmp[0][y] = 0;
    284       for (y = 0; y < 1000; y++) rc5_ecb_encrypt(tmp[0], tmp[0], &key);
    285       for (y = 0; y < 1000; y++) rc5_ecb_decrypt(tmp[0], tmp[0], &key);
    286       for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
    287    }
    288    return CRYPT_OK;
    289   #endif
    290 }
    291 
    292 /** Terminate the context
    293    @param skey    The scheduled key
    294 */
    295 void rc5_done(symmetric_key *skey)
    296 {
    297 }
    298 
    299 /**
    300   Gets suitable key size
    301   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
    302   @return CRYPT_OK if the input key size is acceptable.
    303 */
    304 int rc5_keysize(int *keysize)
    305 {
    306    LTC_ARGCHK(keysize != NULL);
    307    if (*keysize < 8) {
    308       return CRYPT_INVALID_KEYSIZE;
    309    } else if (*keysize > 128) {
    310       *keysize = 128;
    311    }
    312    return CRYPT_OK;
    313 }
    314 
    315 #endif
    316 
    317 
    318 
    319 
    320 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/rc5.c,v $ */
    321 /* $Revision: 1.12 $ */
    322 /* $Date: 2006/11/08 23:01:06 $ */
    323