Home | History | Annotate | Download | only in twofish
      1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
      2  *
      3  * LibTomCrypt is a library that provides various cryptographic
      4  * algorithms in a highly modular and flexible manner.
      5  *
      6  * The library is free for all purposes without any express
      7  * guarantee it works.
      8  *
      9  * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com
     10  */
     11 
     12  /**
     13    @file twofish.c
     14    Implementation of Twofish by Tom St Denis
     15  */
     16 #include "tomcrypt.h"
     17 
     18 #ifdef TWOFISH
     19 
     20 /* first TWOFISH_ALL_TABLES must ensure TWOFISH_TABLES is defined */
     21 #ifdef TWOFISH_ALL_TABLES
     22 #ifndef TWOFISH_TABLES
     23 #define TWOFISH_TABLES
     24 #endif
     25 #endif
     26 
     27 const struct ltc_cipher_descriptor twofish_desc =
     28 {
     29     "twofish",
     30     7,
     31     16, 32, 16, 16,
     32     &twofish_setup,
     33     &twofish_ecb_encrypt,
     34     &twofish_ecb_decrypt,
     35     &twofish_test,
     36     &twofish_done,
     37     &twofish_keysize,
     38     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
     39 };
     40 
     41 /* the two polynomials */
     42 #define MDS_POLY          0x169
     43 #define RS_POLY           0x14D
     44 
     45 /* The 4x4 MDS Linear Transform */
     46 #if 0
     47 static const unsigned char MDS[4][4] = {
     48     { 0x01, 0xEF, 0x5B, 0x5B },
     49     { 0x5B, 0xEF, 0xEF, 0x01 },
     50     { 0xEF, 0x5B, 0x01, 0xEF },
     51     { 0xEF, 0x01, 0xEF, 0x5B }
     52 };
     53 #endif
     54 
     55 /* The 4x8 RS Linear Transform */
     56 static const unsigned char RS[4][8] = {
     57     { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
     58     { 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 },
     59     { 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 },
     60     { 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 }
     61 };
     62 
     63 /* sbox usage orderings */
     64 static const unsigned char qord[4][5] = {
     65    { 1, 1, 0, 0, 1 },
     66    { 0, 1, 1, 0, 0 },
     67    { 0, 0, 0, 1, 1 },
     68    { 1, 0, 1, 1, 0 }
     69 };
     70 
     71 #ifdef TWOFISH_TABLES
     72 
     73 #include "twofish_tab.c"
     74 
     75 #define sbox(i, x) ((ulong32)SBOX[i][(x)&255])
     76 
     77 #else
     78 
     79 /* The Q-box tables */
     80 static const unsigned char qbox[2][4][16] = {
     81 {
     82    { 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 },
     83    { 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD },
     84    { 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 },
     85    { 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA }
     86 },
     87 {
     88    { 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 },
     89    { 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 },
     90    { 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF },
     91    { 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA }
     92 }
     93 };
     94 
     95 /* computes S_i[x] */
     96 #ifdef LTC_CLEAN_STACK
     97 static ulong32 _sbox(int i, ulong32 x)
     98 #else
     99 static ulong32 sbox(int i, ulong32 x)
    100 #endif
    101 {
    102    unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y;
    103 
    104    /* a0,b0 = [x/16], x mod 16 */
    105    a0 = (unsigned char)((x>>4)&15);
    106    b0 = (unsigned char)((x)&15);
    107 
    108    /* a1 = a0 ^ b0 */
    109    a1 = a0 ^ b0;
    110 
    111    /* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */
    112    b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15;
    113 
    114    /* a2,b2 = t0[a1], t1[b1] */
    115    a2 = qbox[i][0][(int)a1];
    116    b2 = qbox[i][1][(int)b1];
    117 
    118    /* a3 = a2 ^ b2 */
    119    a3 = a2 ^ b2;
    120 
    121    /* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */
    122    b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15;
    123 
    124    /* a4,b4 = t2[a3], t3[b3] */
    125    a4 = qbox[i][2][(int)a3];
    126    b4 = qbox[i][3][(int)b3];
    127 
    128    /* y = 16b4 + a4 */
    129    y = (b4 << 4) + a4;
    130 
    131    /* return result */
    132    return (ulong32)y;
    133 }
    134 
    135 #ifdef LTC_CLEAN_STACK
    136 static ulong32 sbox(int i, ulong32 x)
    137 {
    138    ulong32 y;
    139    y = _sbox(i, x);
    140    burn_stack(sizeof(unsigned char) * 11);
    141    return y;
    142 }
    143 #endif /* LTC_CLEAN_STACK */
    144 
    145 #endif /* TWOFISH_TABLES */
    146 
    147 /* computes ab mod p */
    148 static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p)
    149 {
    150    ulong32 result, B[2], P[2];
    151 
    152    P[1] = p;
    153    B[1] = b;
    154    result = P[0] = B[0] = 0;
    155 
    156    /* unrolled branchless GF multiplier */
    157    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
    158    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
    159    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
    160    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
    161    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
    162    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
    163    result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
    164    result ^= B[a&1];
    165 
    166    return result;
    167 }
    168 
    169 /* computes [y0 y1 y2 y3] = MDS . [x0] */
    170 #ifndef TWOFISH_TABLES
    171 static ulong32 mds_column_mult(unsigned char in, int col)
    172 {
    173    ulong32 x01, x5B, xEF;
    174 
    175    x01 = in;
    176    x5B = gf_mult(in, 0x5B, MDS_POLY);
    177    xEF = gf_mult(in, 0xEF, MDS_POLY);
    178 
    179    switch (col) {
    180        case 0:
    181           return (x01 << 0 ) |
    182                  (x5B << 8 ) |
    183                  (xEF << 16) |
    184                  (xEF << 24);
    185        case 1:
    186           return (xEF << 0 ) |
    187                  (xEF << 8 ) |
    188                  (x5B << 16) |
    189                  (x01 << 24);
    190        case 2:
    191           return (x5B << 0 ) |
    192                  (xEF << 8 ) |
    193                  (x01 << 16) |
    194                  (xEF << 24);
    195        case 3:
    196           return (x5B << 0 ) |
    197                  (x01 << 8 ) |
    198                  (xEF << 16) |
    199                  (x5B << 24);
    200    }
    201    /* avoid warnings, we'd never get here normally but just to calm compiler warnings... */
    202    return 0;
    203 }
    204 
    205 #else /* !TWOFISH_TABLES */
    206 
    207 #define mds_column_mult(x, i) mds_tab[i][x]
    208 
    209 #endif /* TWOFISH_TABLES */
    210 
    211 /* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */
    212 static void mds_mult(const unsigned char *in, unsigned char *out)
    213 {
    214   int x;
    215   ulong32 tmp;
    216   for (tmp = x = 0; x < 4; x++) {
    217       tmp ^= mds_column_mult(in[x], x);
    218   }
    219   STORE32L(tmp, out);
    220 }
    221 
    222 #ifdef TWOFISH_ALL_TABLES
    223 /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
    224 static void rs_mult(const unsigned char *in, unsigned char *out)
    225 {
    226    ulong32 tmp;
    227    tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^
    228          rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]];
    229    STORE32L(tmp, out);
    230 }
    231 
    232 #else /* !TWOFISH_ALL_TABLES */
    233 
    234 /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
    235 static void rs_mult(const unsigned char *in, unsigned char *out)
    236 {
    237   int x, y;
    238   for (x = 0; x < 4; x++) {
    239       out[x] = 0;
    240       for (y = 0; y < 8; y++) {
    241           out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY);
    242       }
    243   }
    244 }
    245 
    246 #endif
    247 
    248 /* computes h(x) */
    249 static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset)
    250 {
    251   int x;
    252   unsigned char y[4];
    253   for (x = 0; x < 4; x++) {
    254       y[x] = in[x];
    255  }
    256   switch (k) {
    257      case 4:
    258             y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]);
    259             y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]);
    260             y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]);
    261             y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]);
    262      case 3:
    263             y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]);
    264             y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]);
    265             y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]);
    266             y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]);
    267      case 2:
    268             y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0]));
    269             y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1]));
    270             y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2]));
    271             y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3]));
    272   }
    273   mds_mult(y, out);
    274 }
    275 
    276 #ifndef TWOFISH_SMALL
    277 
    278 /* for GCC we don't use pointer aliases */
    279 #if defined(__GNUC__)
    280     #define S1 skey->twofish.S[0]
    281     #define S2 skey->twofish.S[1]
    282     #define S3 skey->twofish.S[2]
    283     #define S4 skey->twofish.S[3]
    284 #endif
    285 
    286 /* the G function */
    287 #define g_func(x, dum)  (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)])
    288 #define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)])
    289 
    290 #else
    291 
    292 #ifdef LTC_CLEAN_STACK
    293 static ulong32 _g_func(ulong32 x, symmetric_key *key)
    294 #else
    295 static ulong32 g_func(ulong32 x, symmetric_key *key)
    296 #endif
    297 {
    298    unsigned char g, i, y, z;
    299    ulong32 res;
    300 
    301    res = 0;
    302    for (y = 0; y < 4; y++) {
    303        z = key->twofish.start;
    304 
    305        /* do unkeyed substitution */
    306        g = sbox(qord[y][z++], (x >> (8*y)) & 255);
    307 
    308        /* first subkey */
    309        i = 0;
    310 
    311        /* do key mixing+sbox until z==5 */
    312        while (z != 5) {
    313           g = g ^ key->twofish.S[4*i++ + y];
    314           g = sbox(qord[y][z++], g);
    315        }
    316 
    317        /* multiply g by a column of the MDS */
    318        res ^= mds_column_mult(g, y);
    319    }
    320    return res;
    321 }
    322 
    323 #define g1_func(x, key) g_func(ROLc(x, 8), key)
    324 
    325 #ifdef LTC_CLEAN_STACK
    326 static ulong32 g_func(ulong32 x, symmetric_key *key)
    327 {
    328     ulong32 y;
    329     y = _g_func(x, key);
    330     burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32));
    331     return y;
    332 }
    333 #endif /* LTC_CLEAN_STACK */
    334 
    335 #endif /* TWOFISH_SMALL */
    336 
    337  /**
    338     Initialize the Twofish block cipher
    339     @param key The symmetric key you wish to pass
    340     @param keylen The key length in bytes
    341     @param num_rounds The number of rounds desired (0 for default)
    342     @param skey The key in as scheduled by this function.
    343     @return CRYPT_OK if successful
    344  */
    345 #ifdef LTC_CLEAN_STACK
    346 static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
    347 #else
    348 int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
    349 #endif
    350 {
    351 #ifndef TWOFISH_SMALL
    352    unsigned char S[4*4], tmpx0, tmpx1;
    353 #endif
    354    int k, x, y;
    355    unsigned char tmp[4], tmp2[4], M[8*4];
    356    ulong32 A, B;
    357 
    358    LTC_ARGCHK(key  != NULL);
    359    LTC_ARGCHK(skey != NULL);
    360 
    361    /* invalid arguments? */
    362    if (num_rounds != 16 && num_rounds != 0) {
    363       return CRYPT_INVALID_ROUNDS;
    364    }
    365 
    366    if (keylen != 16 && keylen != 24 && keylen != 32) {
    367       return CRYPT_INVALID_KEYSIZE;
    368    }
    369 
    370    /* k = keysize/64 [but since our keysize is in bytes...] */
    371    k = keylen / 8;
    372 
    373    /* copy the key into M */
    374    for (x = 0; x < keylen; x++) {
    375        M[x] = key[x] & 255;
    376    }
    377 
    378    /* create the S[..] words */
    379 #ifndef TWOFISH_SMALL
    380    for (x = 0; x < k; x++) {
    381        rs_mult(M+(x*8), S+(x*4));
    382    }
    383 #else
    384    for (x = 0; x < k; x++) {
    385        rs_mult(M+(x*8), skey->twofish.S+(x*4));
    386    }
    387 #endif
    388 
    389    /* make subkeys */
    390    for (x = 0; x < 20; x++) {
    391        /* A = h(p * 2x, Me) */
    392        for (y = 0; y < 4; y++) {
    393            tmp[y] = x+x;
    394        }
    395        h_func(tmp, tmp2, M, k, 0);
    396        LOAD32L(A, tmp2);
    397 
    398        /* B = ROL(h(p * (2x + 1), Mo), 8) */
    399        for (y = 0; y < 4; y++) {
    400            tmp[y] = (unsigned char)(x+x+1);
    401        }
    402        h_func(tmp, tmp2, M, k, 1);
    403        LOAD32L(B, tmp2);
    404        B = ROLc(B, 8);
    405 
    406        /* K[2i]   = A + B */
    407        skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL;
    408 
    409        /* K[2i+1] = (A + 2B) <<< 9 */
    410        skey->twofish.K[x+x+1] = ROLc(B + B + A, 9);
    411    }
    412 
    413 #ifndef TWOFISH_SMALL
    414    /* make the sboxes (large ram variant) */
    415    if (k == 2) {
    416         for (x = 0; x < 256; x++) {
    417            tmpx0 = (unsigned char)sbox(0, x);
    418            tmpx1 = (unsigned char)sbox(1, x);
    419            skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0);
    420            skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1);
    421            skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2);
    422            skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3);
    423         }
    424    } else if (k == 3) {
    425         for (x = 0; x < 256; x++) {
    426            tmpx0 = (unsigned char)sbox(0, x);
    427            tmpx1 = (unsigned char)sbox(1, x);
    428            skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0);
    429            skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1);
    430            skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2);
    431            skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3);
    432         }
    433    } else {
    434         for (x = 0; x < 256; x++) {
    435            tmpx0 = (unsigned char)sbox(0, x);
    436            tmpx1 = (unsigned char)sbox(1, x);
    437            skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0);
    438            skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1);
    439            skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2);
    440            skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3);
    441         }
    442    }
    443 #else
    444    /* where to start in the sbox layers */
    445    /* small ram variant */
    446    switch (k) {
    447          case 4 : skey->twofish.start = 0; break;
    448          case 3 : skey->twofish.start = 1; break;
    449          default: skey->twofish.start = 2; break;
    450    }
    451 #endif
    452    return CRYPT_OK;
    453 }
    454 
    455 #ifdef LTC_CLEAN_STACK
    456 int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
    457 {
    458    int x;
    459    x = _twofish_setup(key, keylen, num_rounds, skey);
    460    burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2);
    461    return x;
    462 }
    463 #endif
    464 
    465 /**
    466   Encrypts a block of text with Twofish
    467   @param pt The input plaintext (16 bytes)
    468   @param ct The output ciphertext (16 bytes)
    469   @param skey The key as scheduled
    470   @return CRYPT_OK if successful
    471 */
    472 #ifdef LTC_CLEAN_STACK
    473 static int _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    474 #else
    475 int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    476 #endif
    477 {
    478     ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
    479     int r;
    480 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
    481     ulong32 *S1, *S2, *S3, *S4;
    482 #endif
    483 
    484     LTC_ARGCHK(pt   != NULL);
    485     LTC_ARGCHK(ct   != NULL);
    486     LTC_ARGCHK(skey != NULL);
    487 
    488 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
    489     S1 = skey->twofish.S[0];
    490     S2 = skey->twofish.S[1];
    491     S3 = skey->twofish.S[2];
    492     S4 = skey->twofish.S[3];
    493 #endif
    494 
    495     LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]);
    496     LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]);
    497     a ^= skey->twofish.K[0];
    498     b ^= skey->twofish.K[1];
    499     c ^= skey->twofish.K[2];
    500     d ^= skey->twofish.K[3];
    501 
    502     k  = skey->twofish.K + 8;
    503     for (r = 8; r != 0; --r) {
    504         t2 = g1_func(b, skey);
    505         t1 = g_func(a, skey) + t2;
    506         c  = RORc(c ^ (t1 + k[0]), 1);
    507         d  = ROLc(d, 1) ^ (t2 + t1 + k[1]);
    508 
    509         t2 = g1_func(d, skey);
    510         t1 = g_func(c, skey) + t2;
    511         a  = RORc(a ^ (t1 + k[2]), 1);
    512         b  = ROLc(b, 1) ^ (t2 + t1 + k[3]);
    513         k += 4;
    514    }
    515 
    516     /* output with "undo last swap" */
    517     ta = c ^ skey->twofish.K[4];
    518     tb = d ^ skey->twofish.K[5];
    519     tc = a ^ skey->twofish.K[6];
    520     td = b ^ skey->twofish.K[7];
    521 
    522     /* store output */
    523     STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]);
    524     STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]);
    525 
    526     return CRYPT_OK;
    527 }
    528 
    529 #ifdef LTC_CLEAN_STACK
    530 int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    531 {
    532    int err = _twofish_ecb_encrypt(pt, ct, skey);
    533    burn_stack(sizeof(ulong32) * 10 + sizeof(int));
    534    return err;
    535 }
    536 #endif
    537 
    538 /**
    539   Decrypts a block of text with Twofish
    540   @param ct The input ciphertext (16 bytes)
    541   @param pt The output plaintext (16 bytes)
    542   @param skey The key as scheduled
    543   @return CRYPT_OK if successful
    544 */
    545 #ifdef LTC_CLEAN_STACK
    546 static int _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    547 #else
    548 int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    549 #endif
    550 {
    551     ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
    552     int r;
    553 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
    554     ulong32 *S1, *S2, *S3, *S4;
    555 #endif
    556 
    557     LTC_ARGCHK(pt   != NULL);
    558     LTC_ARGCHK(ct   != NULL);
    559     LTC_ARGCHK(skey != NULL);
    560 
    561 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
    562     S1 = skey->twofish.S[0];
    563     S2 = skey->twofish.S[1];
    564     S3 = skey->twofish.S[2];
    565     S4 = skey->twofish.S[3];
    566 #endif
    567 
    568     /* load input */
    569     LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]);
    570     LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]);
    571 
    572     /* undo undo final swap */
    573     a = tc ^ skey->twofish.K[6];
    574     b = td ^ skey->twofish.K[7];
    575     c = ta ^ skey->twofish.K[4];
    576     d = tb ^ skey->twofish.K[5];
    577 
    578     k = skey->twofish.K + 36;
    579     for (r = 8; r != 0; --r) {
    580         t2 = g1_func(d, skey);
    581         t1 = g_func(c, skey) + t2;
    582         a = ROLc(a, 1) ^ (t1 + k[2]);
    583         b = RORc(b ^ (t2 + t1 + k[3]), 1);
    584 
    585         t2 = g1_func(b, skey);
    586         t1 = g_func(a, skey) + t2;
    587         c = ROLc(c, 1) ^ (t1 + k[0]);
    588         d = RORc(d ^ (t2 +  t1 + k[1]), 1);
    589         k -= 4;
    590     }
    591 
    592     /* pre-white */
    593     a ^= skey->twofish.K[0];
    594     b ^= skey->twofish.K[1];
    595     c ^= skey->twofish.K[2];
    596     d ^= skey->twofish.K[3];
    597 
    598     /* store */
    599     STORE32L(a, &pt[0]); STORE32L(b, &pt[4]);
    600     STORE32L(c, &pt[8]); STORE32L(d, &pt[12]);
    601     return CRYPT_OK;
    602 }
    603 
    604 #ifdef LTC_CLEAN_STACK
    605 int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    606 {
    607    int err =_twofish_ecb_decrypt(ct, pt, skey);
    608    burn_stack(sizeof(ulong32) * 10 + sizeof(int));
    609    return err;
    610 }
    611 #endif
    612 
    613 /**
    614   Performs a self-test of the Twofish block cipher
    615   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
    616 */
    617 int twofish_test(void)
    618 {
    619  #ifndef LTC_TEST
    620     return CRYPT_NOP;
    621  #else
    622  static const struct {
    623      int keylen;
    624      unsigned char key[32], pt[16], ct[16];
    625  } tests[] = {
    626    { 16,
    627      { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
    628        0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A },
    629      { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
    630        0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 },
    631      { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
    632        0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 }
    633    }, {
    634      24,
    635      { 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36,
    636        0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88,
    637        0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 },
    638      { 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5,
    639        0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 },
    640      { 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45,
    641        0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 }
    642    }, {
    643      32,
    644      { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
    645        0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
    646        0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
    647        0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F },
    648      { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
    649        0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 },
    650      { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
    651        0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA }
    652    }
    653 };
    654 
    655 
    656  symmetric_key key;
    657  unsigned char tmp[2][16];
    658  int err, i, y;
    659 
    660  for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
    661     if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
    662        return err;
    663     }
    664     twofish_ecb_encrypt(tests[i].pt, tmp[0], &key);
    665     twofish_ecb_decrypt(tmp[0], tmp[1], &key);
    666     if (XMEMCMP(tmp[0], tests[i].ct, 16) != 0 || XMEMCMP(tmp[1], tests[i].pt, 16) != 0) {
    667 #if 0
    668        printf("Twofish failed test %d, %d, %d\n", i, XMEMCMP(tmp[0], tests[i].ct, 16), XMEMCMP(tmp[1], tests[i].pt, 16));
    669 #endif
    670        return CRYPT_FAIL_TESTVECTOR;
    671     }
    672       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
    673       for (y = 0; y < 16; y++) tmp[0][y] = 0;
    674       for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key);
    675       for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key);
    676       for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
    677  }
    678  return CRYPT_OK;
    679 #endif
    680 }
    681 
    682 /** Terminate the context
    683    @param skey    The scheduled key
    684 */
    685 void twofish_done(symmetric_key *skey)
    686 {
    687 }
    688 
    689 /**
    690   Gets suitable key size
    691   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
    692   @return CRYPT_OK if the input key size is acceptable.
    693 */
    694 int twofish_keysize(int *keysize)
    695 {
    696    LTC_ARGCHK(keysize);
    697    if (*keysize < 16)
    698       return CRYPT_INVALID_KEYSIZE;
    699    if (*keysize < 24) {
    700       *keysize = 16;
    701       return CRYPT_OK;
    702    } else if (*keysize < 32) {
    703       *keysize = 24;
    704       return CRYPT_OK;
    705    } else {
    706       *keysize = 32;
    707       return CRYPT_OK;
    708    }
    709 }
    710 
    711 #endif
    712 
    713 
    714 
    715 
    716 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/twofish/twofish.c,v $ */
    717 /* $Revision: 1.14 $ */
    718 /* $Date: 2006/12/04 21:34:03 $ */
    719