Home | History | Annotate | Download | only in src
      1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // Platform specific code for Linux goes here. For the POSIX comaptible parts
     29 // the implementation is in platform-posix.cc.
     30 
     31 #include <pthread.h>
     32 #include <semaphore.h>
     33 #include <signal.h>
     34 #include <sys/time.h>
     35 #include <sys/resource.h>
     36 #include <sys/types.h>
     37 #include <stdlib.h>
     38 
     39 // Ubuntu Dapper requires memory pages to be marked as
     40 // executable. Otherwise, OS raises an exception when executing code
     41 // in that page.
     42 #include <sys/types.h>  // mmap & munmap
     43 #include <sys/mman.h>   // mmap & munmap
     44 #include <sys/stat.h>   // open
     45 #include <fcntl.h>      // open
     46 #include <unistd.h>     // sysconf
     47 #ifdef __GLIBC__
     48 #include <execinfo.h>   // backtrace, backtrace_symbols
     49 #endif  // def __GLIBC__
     50 #include <strings.h>    // index
     51 #include <errno.h>
     52 #include <stdarg.h>
     53 
     54 #undef MAP_TYPE
     55 
     56 #include "v8.h"
     57 
     58 #include "platform.h"
     59 #include "top.h"
     60 #include "v8threads.h"
     61 
     62 
     63 namespace v8 {
     64 namespace internal {
     65 
     66 // 0 is never a valid thread id on Linux since tids and pids share a
     67 // name space and pid 0 is reserved (see man 2 kill).
     68 static const pthread_t kNoThread = (pthread_t) 0;
     69 
     70 
     71 double ceiling(double x) {
     72   return ceil(x);
     73 }
     74 
     75 
     76 void OS::Setup() {
     77   // Seed the random number generator.
     78   // Convert the current time to a 64-bit integer first, before converting it
     79   // to an unsigned. Going directly can cause an overflow and the seed to be
     80   // set to all ones. The seed will be identical for different instances that
     81   // call this setup code within the same millisecond.
     82   uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
     83   srandom(static_cast<unsigned int>(seed));
     84 }
     85 
     86 
     87 uint64_t OS::CpuFeaturesImpliedByPlatform() {
     88 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
     89   // Here gcc is telling us that we are on an ARM and gcc is assuming that we
     90   // have VFP3 instructions.  If gcc can assume it then so can we.
     91   return 1u << VFP3;
     92 #elif CAN_USE_ARMV7_INSTRUCTIONS
     93   return 1u << ARMv7;
     94 #else
     95   return 0;  // Linux runs on anything.
     96 #endif
     97 }
     98 
     99 
    100 #ifdef __arm__
    101 bool OS::ArmCpuHasFeature(CpuFeature feature) {
    102   const char* search_string = NULL;
    103   const char* file_name = "/proc/cpuinfo";
    104   // Simple detection of VFP at runtime for Linux.
    105   // It is based on /proc/cpuinfo, which reveals hardware configuration
    106   // to user-space applications.  According to ARM (mid 2009), no similar
    107   // facility is universally available on the ARM architectures,
    108   // so it's up to individual OSes to provide such.
    109   //
    110   // This is written as a straight shot one pass parser
    111   // and not using STL string and ifstream because,
    112   // on Linux, it's reading from a (non-mmap-able)
    113   // character special device.
    114   switch (feature) {
    115     case VFP3:
    116       search_string = "vfp";
    117       break;
    118     case ARMv7:
    119       search_string = "ARMv7";
    120       break;
    121     default:
    122       UNREACHABLE();
    123   }
    124 
    125   FILE* f = NULL;
    126   const char* what = search_string;
    127 
    128   if (NULL == (f = fopen(file_name, "r")))
    129     return false;
    130 
    131   int k;
    132   while (EOF != (k = fgetc(f))) {
    133     if (k == *what) {
    134       ++what;
    135       while ((*what != '\0') && (*what == fgetc(f))) {
    136         ++what;
    137       }
    138       if (*what == '\0') {
    139         fclose(f);
    140         return true;
    141       } else {
    142         what = search_string;
    143       }
    144     }
    145   }
    146   fclose(f);
    147 
    148   // Did not find string in the proc file.
    149   return false;
    150 }
    151 #endif  // def __arm__
    152 
    153 
    154 int OS::ActivationFrameAlignment() {
    155 #ifdef V8_TARGET_ARCH_ARM
    156   // On EABI ARM targets this is required for fp correctness in the
    157   // runtime system.
    158   return 8;
    159 #elif V8_TARGET_ARCH_MIPS
    160   return 8;
    161 #endif
    162   // With gcc 4.4 the tree vectorization optimiser can generate code
    163   // that requires 16 byte alignment such as movdqa on x86.
    164   return 16;
    165 }
    166 
    167 
    168 const char* OS::LocalTimezone(double time) {
    169   if (isnan(time)) return "";
    170   time_t tv = static_cast<time_t>(floor(time/msPerSecond));
    171   struct tm* t = localtime(&tv);
    172   if (NULL == t) return "";
    173   return t->tm_zone;
    174 }
    175 
    176 
    177 double OS::LocalTimeOffset() {
    178   time_t tv = time(NULL);
    179   struct tm* t = localtime(&tv);
    180   // tm_gmtoff includes any daylight savings offset, so subtract it.
    181   return static_cast<double>(t->tm_gmtoff * msPerSecond -
    182                              (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
    183 }
    184 
    185 
    186 // We keep the lowest and highest addresses mapped as a quick way of
    187 // determining that pointers are outside the heap (used mostly in assertions
    188 // and verification).  The estimate is conservative, ie, not all addresses in
    189 // 'allocated' space are actually allocated to our heap.  The range is
    190 // [lowest, highest), inclusive on the low and and exclusive on the high end.
    191 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
    192 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
    193 
    194 
    195 static void UpdateAllocatedSpaceLimits(void* address, int size) {
    196   lowest_ever_allocated = Min(lowest_ever_allocated, address);
    197   highest_ever_allocated =
    198       Max(highest_ever_allocated,
    199           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
    200 }
    201 
    202 
    203 bool OS::IsOutsideAllocatedSpace(void* address) {
    204   return address < lowest_ever_allocated || address >= highest_ever_allocated;
    205 }
    206 
    207 
    208 size_t OS::AllocateAlignment() {
    209   return sysconf(_SC_PAGESIZE);
    210 }
    211 
    212 
    213 void* OS::Allocate(const size_t requested,
    214                    size_t* allocated,
    215                    bool is_executable) {
    216   const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
    217   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
    218   void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    219   if (mbase == MAP_FAILED) {
    220     LOG(StringEvent("OS::Allocate", "mmap failed"));
    221     return NULL;
    222   }
    223   *allocated = msize;
    224   UpdateAllocatedSpaceLimits(mbase, msize);
    225   return mbase;
    226 }
    227 
    228 
    229 void OS::Free(void* address, const size_t size) {
    230   // TODO(1240712): munmap has a return value which is ignored here.
    231   int result = munmap(address, size);
    232   USE(result);
    233   ASSERT(result == 0);
    234 }
    235 
    236 
    237 #ifdef ENABLE_HEAP_PROTECTION
    238 
    239 void OS::Protect(void* address, size_t size) {
    240   // TODO(1240712): mprotect has a return value which is ignored here.
    241   mprotect(address, size, PROT_READ);
    242 }
    243 
    244 
    245 void OS::Unprotect(void* address, size_t size, bool is_executable) {
    246   // TODO(1240712): mprotect has a return value which is ignored here.
    247   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
    248   mprotect(address, size, prot);
    249 }
    250 
    251 #endif
    252 
    253 
    254 void OS::Sleep(int milliseconds) {
    255   unsigned int ms = static_cast<unsigned int>(milliseconds);
    256   usleep(1000 * ms);
    257 }
    258 
    259 
    260 void OS::Abort() {
    261   // Redirect to std abort to signal abnormal program termination.
    262   abort();
    263 }
    264 
    265 
    266 void OS::DebugBreak() {
    267 // TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
    268 //  which is the architecture of generated code).
    269 #if (defined(__arm__) || defined(__thumb__)) && \
    270     defined(CAN_USE_ARMV5_INSTRUCTIONS)
    271   asm("bkpt 0");
    272 #elif defined(__mips__)
    273   asm("break");
    274 #else
    275   asm("int $3");
    276 #endif
    277 }
    278 
    279 
    280 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
    281  public:
    282   PosixMemoryMappedFile(FILE* file, void* memory, int size)
    283     : file_(file), memory_(memory), size_(size) { }
    284   virtual ~PosixMemoryMappedFile();
    285   virtual void* memory() { return memory_; }
    286  private:
    287   FILE* file_;
    288   void* memory_;
    289   int size_;
    290 };
    291 
    292 
    293 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
    294     void* initial) {
    295   FILE* file = fopen(name, "w+");
    296   if (file == NULL) return NULL;
    297   int result = fwrite(initial, size, 1, file);
    298   if (result < 1) {
    299     fclose(file);
    300     return NULL;
    301   }
    302   void* memory =
    303       mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
    304   return new PosixMemoryMappedFile(file, memory, size);
    305 }
    306 
    307 
    308 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
    309   if (memory_) munmap(memory_, size_);
    310   fclose(file_);
    311 }
    312 
    313 
    314 void OS::LogSharedLibraryAddresses() {
    315 #ifdef ENABLE_LOGGING_AND_PROFILING
    316   // This function assumes that the layout of the file is as follows:
    317   // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
    318   // If we encounter an unexpected situation we abort scanning further entries.
    319   FILE* fp = fopen("/proc/self/maps", "r");
    320   if (fp == NULL) return;
    321 
    322   // Allocate enough room to be able to store a full file name.
    323   const int kLibNameLen = FILENAME_MAX + 1;
    324   char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
    325 
    326   // This loop will terminate once the scanning hits an EOF.
    327   while (true) {
    328     uintptr_t start, end;
    329     char attr_r, attr_w, attr_x, attr_p;
    330     // Parse the addresses and permission bits at the beginning of the line.
    331     if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
    332     if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
    333 
    334     int c;
    335     if (attr_r == 'r' && attr_x == 'x') {
    336       // Found a readable and executable entry. Skip characters until we reach
    337       // the beginning of the filename or the end of the line.
    338       do {
    339         c = getc(fp);
    340       } while ((c != EOF) && (c != '\n') && (c != '/'));
    341       if (c == EOF) break;  // EOF: Was unexpected, just exit.
    342 
    343       // Process the filename if found.
    344       if (c == '/') {
    345         ungetc(c, fp);  // Push the '/' back into the stream to be read below.
    346 
    347         // Read to the end of the line. Exit if the read fails.
    348         if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
    349 
    350         // Drop the newline character read by fgets. We do not need to check
    351         // for a zero-length string because we know that we at least read the
    352         // '/' character.
    353         lib_name[strlen(lib_name) - 1] = '\0';
    354       } else {
    355         // No library name found, just record the raw address range.
    356         snprintf(lib_name, kLibNameLen,
    357                  "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
    358       }
    359       LOG(SharedLibraryEvent(lib_name, start, end));
    360     } else {
    361       // Entry not describing executable data. Skip to end of line to setup
    362       // reading the next entry.
    363       do {
    364         c = getc(fp);
    365       } while ((c != EOF) && (c != '\n'));
    366       if (c == EOF) break;
    367     }
    368   }
    369   free(lib_name);
    370   fclose(fp);
    371 #endif
    372 }
    373 
    374 
    375 int OS::StackWalk(Vector<OS::StackFrame> frames) {
    376   // backtrace is a glibc extension.
    377 #ifdef __GLIBC__
    378   int frames_size = frames.length();
    379   void** addresses = NewArray<void*>(frames_size);
    380 
    381   int frames_count = backtrace(addresses, frames_size);
    382 
    383   char** symbols;
    384   symbols = backtrace_symbols(addresses, frames_count);
    385   if (symbols == NULL) {
    386     DeleteArray(addresses);
    387     return kStackWalkError;
    388   }
    389 
    390   for (int i = 0; i < frames_count; i++) {
    391     frames[i].address = addresses[i];
    392     // Format a text representation of the frame based on the information
    393     // available.
    394     SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
    395              "%s",
    396              symbols[i]);
    397     // Make sure line termination is in place.
    398     frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
    399   }
    400 
    401   DeleteArray(addresses);
    402   free(symbols);
    403 
    404   return frames_count;
    405 #else  // ndef __GLIBC__
    406   return 0;
    407 #endif  // ndef __GLIBC__
    408 }
    409 
    410 
    411 // Constants used for mmap.
    412 static const int kMmapFd = -1;
    413 static const int kMmapFdOffset = 0;
    414 
    415 
    416 VirtualMemory::VirtualMemory(size_t size) {
    417   address_ = mmap(NULL, size, PROT_NONE,
    418                   MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
    419                   kMmapFd, kMmapFdOffset);
    420   size_ = size;
    421 }
    422 
    423 
    424 VirtualMemory::~VirtualMemory() {
    425   if (IsReserved()) {
    426     if (0 == munmap(address(), size())) address_ = MAP_FAILED;
    427   }
    428 }
    429 
    430 
    431 bool VirtualMemory::IsReserved() {
    432   return address_ != MAP_FAILED;
    433 }
    434 
    435 
    436 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
    437   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
    438   if (MAP_FAILED == mmap(address, size, prot,
    439                          MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
    440                          kMmapFd, kMmapFdOffset)) {
    441     return false;
    442   }
    443 
    444   UpdateAllocatedSpaceLimits(address, size);
    445   return true;
    446 }
    447 
    448 
    449 bool VirtualMemory::Uncommit(void* address, size_t size) {
    450   return mmap(address, size, PROT_NONE,
    451               MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
    452               kMmapFd, kMmapFdOffset) != MAP_FAILED;
    453 }
    454 
    455 
    456 class ThreadHandle::PlatformData : public Malloced {
    457  public:
    458   explicit PlatformData(ThreadHandle::Kind kind) {
    459     Initialize(kind);
    460   }
    461 
    462   void Initialize(ThreadHandle::Kind kind) {
    463     switch (kind) {
    464       case ThreadHandle::SELF: thread_ = pthread_self(); break;
    465       case ThreadHandle::INVALID: thread_ = kNoThread; break;
    466     }
    467   }
    468 
    469   pthread_t thread_;  // Thread handle for pthread.
    470 };
    471 
    472 
    473 ThreadHandle::ThreadHandle(Kind kind) {
    474   data_ = new PlatformData(kind);
    475 }
    476 
    477 
    478 void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
    479   data_->Initialize(kind);
    480 }
    481 
    482 
    483 ThreadHandle::~ThreadHandle() {
    484   delete data_;
    485 }
    486 
    487 
    488 bool ThreadHandle::IsSelf() const {
    489   return pthread_equal(data_->thread_, pthread_self());
    490 }
    491 
    492 
    493 bool ThreadHandle::IsValid() const {
    494   return data_->thread_ != kNoThread;
    495 }
    496 
    497 
    498 Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
    499 }
    500 
    501 
    502 Thread::~Thread() {
    503 }
    504 
    505 
    506 static void* ThreadEntry(void* arg) {
    507   Thread* thread = reinterpret_cast<Thread*>(arg);
    508   // This is also initialized by the first argument to pthread_create() but we
    509   // don't know which thread will run first (the original thread or the new
    510   // one) so we initialize it here too.
    511   thread->thread_handle_data()->thread_ = pthread_self();
    512   ASSERT(thread->IsValid());
    513   thread->Run();
    514   return NULL;
    515 }
    516 
    517 
    518 void Thread::Start() {
    519   pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
    520   ASSERT(IsValid());
    521 }
    522 
    523 
    524 void Thread::Join() {
    525   pthread_join(thread_handle_data()->thread_, NULL);
    526 }
    527 
    528 
    529 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
    530   pthread_key_t key;
    531   int result = pthread_key_create(&key, NULL);
    532   USE(result);
    533   ASSERT(result == 0);
    534   return static_cast<LocalStorageKey>(key);
    535 }
    536 
    537 
    538 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
    539   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
    540   int result = pthread_key_delete(pthread_key);
    541   USE(result);
    542   ASSERT(result == 0);
    543 }
    544 
    545 
    546 void* Thread::GetThreadLocal(LocalStorageKey key) {
    547   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
    548   return pthread_getspecific(pthread_key);
    549 }
    550 
    551 
    552 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
    553   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
    554   pthread_setspecific(pthread_key, value);
    555 }
    556 
    557 
    558 void Thread::YieldCPU() {
    559   sched_yield();
    560 }
    561 
    562 
    563 class LinuxMutex : public Mutex {
    564  public:
    565 
    566   LinuxMutex() {
    567     pthread_mutexattr_t attrs;
    568     int result = pthread_mutexattr_init(&attrs);
    569     ASSERT(result == 0);
    570     result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
    571     ASSERT(result == 0);
    572     result = pthread_mutex_init(&mutex_, &attrs);
    573     ASSERT(result == 0);
    574   }
    575 
    576   virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
    577 
    578   virtual int Lock() {
    579     int result = pthread_mutex_lock(&mutex_);
    580     return result;
    581   }
    582 
    583   virtual int Unlock() {
    584     int result = pthread_mutex_unlock(&mutex_);
    585     return result;
    586   }
    587 
    588  private:
    589   pthread_mutex_t mutex_;   // Pthread mutex for POSIX platforms.
    590 };
    591 
    592 
    593 Mutex* OS::CreateMutex() {
    594   return new LinuxMutex();
    595 }
    596 
    597 
    598 class LinuxSemaphore : public Semaphore {
    599  public:
    600   explicit LinuxSemaphore(int count) {  sem_init(&sem_, 0, count); }
    601   virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
    602 
    603   virtual void Wait();
    604   virtual bool Wait(int timeout);
    605   virtual void Signal() { sem_post(&sem_); }
    606  private:
    607   sem_t sem_;
    608 };
    609 
    610 
    611 void LinuxSemaphore::Wait() {
    612   while (true) {
    613     int result = sem_wait(&sem_);
    614     if (result == 0) return;  // Successfully got semaphore.
    615     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
    616   }
    617 }
    618 
    619 
    620 #ifndef TIMEVAL_TO_TIMESPEC
    621 #define TIMEVAL_TO_TIMESPEC(tv, ts) do {                            \
    622     (ts)->tv_sec = (tv)->tv_sec;                                    \
    623     (ts)->tv_nsec = (tv)->tv_usec * 1000;                           \
    624 } while (false)
    625 #endif
    626 
    627 
    628 bool LinuxSemaphore::Wait(int timeout) {
    629   const long kOneSecondMicros = 1000000;  // NOLINT
    630 
    631   // Split timeout into second and nanosecond parts.
    632   struct timeval delta;
    633   delta.tv_usec = timeout % kOneSecondMicros;
    634   delta.tv_sec = timeout / kOneSecondMicros;
    635 
    636   struct timeval current_time;
    637   // Get the current time.
    638   if (gettimeofday(&current_time, NULL) == -1) {
    639     return false;
    640   }
    641 
    642   // Calculate time for end of timeout.
    643   struct timeval end_time;
    644   timeradd(&current_time, &delta, &end_time);
    645 
    646   struct timespec ts;
    647   TIMEVAL_TO_TIMESPEC(&end_time, &ts);
    648   // Wait for semaphore signalled or timeout.
    649   while (true) {
    650     int result = sem_timedwait(&sem_, &ts);
    651     if (result == 0) return true;  // Successfully got semaphore.
    652     if (result > 0) {
    653       // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
    654       errno = result;
    655       result = -1;
    656     }
    657     if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
    658     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
    659   }
    660 }
    661 
    662 
    663 Semaphore* OS::CreateSemaphore(int count) {
    664   return new LinuxSemaphore(count);
    665 }
    666 
    667 
    668 #ifdef ENABLE_LOGGING_AND_PROFILING
    669 
    670 static Sampler* active_sampler_ = NULL;
    671 static pthread_t vm_thread_ = 0;
    672 
    673 
    674 #if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
    675 // Android runs a fairly new Linux kernel, so signal info is there,
    676 // but the C library doesn't have the structs defined.
    677 
    678 struct sigcontext {
    679   uint32_t trap_no;
    680   uint32_t error_code;
    681   uint32_t oldmask;
    682   uint32_t gregs[16];
    683   uint32_t arm_cpsr;
    684   uint32_t fault_address;
    685 };
    686 typedef uint32_t __sigset_t;
    687 typedef struct sigcontext mcontext_t;
    688 typedef struct ucontext {
    689   uint32_t uc_flags;
    690   struct ucontext* uc_link;
    691   stack_t uc_stack;
    692   mcontext_t uc_mcontext;
    693   __sigset_t uc_sigmask;
    694 } ucontext_t;
    695 enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};
    696 
    697 #endif
    698 
    699 
    700 // A function that determines if a signal handler is called in the context
    701 // of a VM thread.
    702 //
    703 // The problem is that SIGPROF signal can be delivered to an arbitrary thread
    704 // (see http://code.google.com/p/google-perftools/issues/detail?id=106#c2)
    705 // So, if the signal is being handled in the context of a non-VM thread,
    706 // it means that the VM thread is running, and trying to sample its stack can
    707 // cause a crash.
    708 static inline bool IsVmThread() {
    709   // In the case of a single VM thread, this check is enough.
    710   if (pthread_equal(pthread_self(), vm_thread_)) return true;
    711   // If there are multiple threads that use VM, they must have a thread id
    712   // stored in TLS. To verify that the thread is really executing VM,
    713   // we check Top's data. Having that ThreadManager::RestoreThread first
    714   // restores ThreadLocalTop from TLS, and only then erases the TLS value,
    715   // reading Top::thread_id() should not be affected by races.
    716   if (ThreadManager::HasId() && !ThreadManager::IsArchived() &&
    717       ThreadManager::CurrentId() == Top::thread_id()) {
    718     return true;
    719   }
    720   return false;
    721 }
    722 
    723 
    724 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
    725 #ifndef V8_HOST_ARCH_MIPS
    726   USE(info);
    727   if (signal != SIGPROF) return;
    728   if (active_sampler_ == NULL) return;
    729 
    730   TickSample sample;
    731 
    732   // If profiling, we extract the current pc and sp.
    733   if (active_sampler_->IsProfiling()) {
    734     // Extracting the sample from the context is extremely machine dependent.
    735     ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
    736     mcontext_t& mcontext = ucontext->uc_mcontext;
    737 #if V8_HOST_ARCH_IA32
    738     sample.pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
    739     sample.sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
    740     sample.fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
    741 #elif V8_HOST_ARCH_X64
    742     sample.pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
    743     sample.sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
    744     sample.fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
    745 #elif V8_HOST_ARCH_ARM
    746 // An undefined macro evaluates to 0, so this applies to Android's Bionic also.
    747 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
    748     sample.pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
    749     sample.sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
    750     sample.fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
    751 #else
    752     sample.pc = reinterpret_cast<Address>(mcontext.arm_pc);
    753     sample.sp = reinterpret_cast<Address>(mcontext.arm_sp);
    754     sample.fp = reinterpret_cast<Address>(mcontext.arm_fp);
    755 #endif
    756 #elif V8_HOST_ARCH_MIPS
    757     // Implement this on MIPS.
    758     UNIMPLEMENTED();
    759 #endif
    760     if (IsVmThread())
    761       active_sampler_->SampleStack(&sample);
    762   }
    763 
    764   // We always sample the VM state.
    765   sample.state = Logger::state();
    766 
    767   active_sampler_->Tick(&sample);
    768 #endif
    769 }
    770 
    771 
    772 class Sampler::PlatformData : public Malloced {
    773  public:
    774   PlatformData() {
    775     signal_handler_installed_ = false;
    776   }
    777 
    778   bool signal_handler_installed_;
    779   struct sigaction old_signal_handler_;
    780   struct itimerval old_timer_value_;
    781 };
    782 
    783 
    784 Sampler::Sampler(int interval, bool profiling)
    785     : interval_(interval), profiling_(profiling), active_(false) {
    786   data_ = new PlatformData();
    787 }
    788 
    789 
    790 Sampler::~Sampler() {
    791   delete data_;
    792 }
    793 
    794 
    795 void Sampler::Start() {
    796   // There can only be one active sampler at the time on POSIX
    797   // platforms.
    798   if (active_sampler_ != NULL) return;
    799 
    800   vm_thread_ = pthread_self();
    801 
    802   // Request profiling signals.
    803   struct sigaction sa;
    804   sa.sa_sigaction = ProfilerSignalHandler;
    805   sigemptyset(&sa.sa_mask);
    806   sa.sa_flags = SA_SIGINFO;
    807   if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return;
    808   data_->signal_handler_installed_ = true;
    809 
    810   // Set the itimer to generate a tick for each interval.
    811   itimerval itimer;
    812   itimer.it_interval.tv_sec = interval_ / 1000;
    813   itimer.it_interval.tv_usec = (interval_ % 1000) * 1000;
    814   itimer.it_value.tv_sec = itimer.it_interval.tv_sec;
    815   itimer.it_value.tv_usec = itimer.it_interval.tv_usec;
    816   setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_);
    817 
    818   // Set this sampler as the active sampler.
    819   active_sampler_ = this;
    820   active_ = true;
    821 }
    822 
    823 
    824 void Sampler::Stop() {
    825   // Restore old signal handler
    826   if (data_->signal_handler_installed_) {
    827     setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL);
    828     sigaction(SIGPROF, &data_->old_signal_handler_, 0);
    829     data_->signal_handler_installed_ = false;
    830   }
    831 
    832   // This sampler is no longer the active sampler.
    833   active_sampler_ = NULL;
    834   active_ = false;
    835 }
    836 
    837 
    838 #endif  // ENABLE_LOGGING_AND_PROFILING
    839 
    840 } }  // namespace v8::internal
    841