Home | History | Annotate | Download | only in linux
      1 #ifndef __LINUX_USB_H
      2 #define __LINUX_USB_H
      3 
      4 #include <linux/mod_devicetable.h>
      5 #include <linux/usb_ch9.h>
      6 
      7 #define USB_MAJOR			180
      8 #define USB_DEVICE_MAJOR		189
      9 
     10 
     11 #ifdef __KERNEL__
     12 
     13 #include <linux/errno.h>        /* for -ENODEV */
     14 #include <linux/delay.h>	/* for mdelay() */
     15 #include <linux/interrupt.h>	/* for in_interrupt() */
     16 #include <linux/list.h>		/* for struct list_head */
     17 #include <linux/kref.h>		/* for struct kref */
     18 #include <linux/device.h>	/* for struct device */
     19 #include <linux/fs.h>		/* for struct file_operations */
     20 #include <linux/completion.h>	/* for struct completion */
     21 #include <linux/sched.h>	/* for current && schedule_timeout */
     22 
     23 struct usb_device;
     24 struct usb_driver;
     25 
     26 /*-------------------------------------------------------------------------*/
     27 
     28 /*
     29  * Host-side wrappers for standard USB descriptors ... these are parsed
     30  * from the data provided by devices.  Parsing turns them from a flat
     31  * sequence of descriptors into a hierarchy:
     32  *
     33  *  - devices have one (usually) or more configs;
     34  *  - configs have one (often) or more interfaces;
     35  *  - interfaces have one (usually) or more settings;
     36  *  - each interface setting has zero or (usually) more endpoints.
     37  *
     38  * And there might be other descriptors mixed in with those.
     39  *
     40  * Devices may also have class-specific or vendor-specific descriptors.
     41  */
     42 
     43 struct ep_device;
     44 
     45 /**
     46  * struct usb_host_endpoint - host-side endpoint descriptor and queue
     47  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
     48  * @urb_list: urbs queued to this endpoint; maintained by usbcore
     49  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
     50  *	with one or more transfer descriptors (TDs) per urb
     51  * @ep_dev: ep_device for sysfs info
     52  * @extra: descriptors following this endpoint in the configuration
     53  * @extralen: how many bytes of "extra" are valid
     54  *
     55  * USB requests are always queued to a given endpoint, identified by a
     56  * descriptor within an active interface in a given USB configuration.
     57  */
     58 struct usb_host_endpoint {
     59 	struct usb_endpoint_descriptor	desc;
     60 	struct list_head		urb_list;
     61 	void				*hcpriv;
     62 	struct ep_device 		*ep_dev;	/* For sysfs info */
     63 
     64 	unsigned char *extra;   /* Extra descriptors */
     65 	int extralen;
     66 };
     67 
     68 /* host-side wrapper for one interface setting's parsed descriptors */
     69 struct usb_host_interface {
     70 	struct usb_interface_descriptor	desc;
     71 
     72 	/* array of desc.bNumEndpoint endpoints associated with this
     73 	 * interface setting.  these will be in no particular order.
     74 	 */
     75 	struct usb_host_endpoint *endpoint;
     76 
     77 	char *string;		/* iInterface string, if present */
     78 	unsigned char *extra;   /* Extra descriptors */
     79 	int extralen;
     80 };
     81 
     82 enum usb_interface_condition {
     83 	USB_INTERFACE_UNBOUND = 0,
     84 	USB_INTERFACE_BINDING,
     85 	USB_INTERFACE_BOUND,
     86 	USB_INTERFACE_UNBINDING,
     87 };
     88 
     89 /**
     90  * struct usb_interface - what usb device drivers talk to
     91  * @altsetting: array of interface structures, one for each alternate
     92  * 	setting that may be selected.  Each one includes a set of
     93  * 	endpoint configurations.  They will be in no particular order.
     94  * @num_altsetting: number of altsettings defined.
     95  * @cur_altsetting: the current altsetting.
     96  * @driver: the USB driver that is bound to this interface.
     97  * @minor: the minor number assigned to this interface, if this
     98  *	interface is bound to a driver that uses the USB major number.
     99  *	If this interface does not use the USB major, this field should
    100  *	be unused.  The driver should set this value in the probe()
    101  *	function of the driver, after it has been assigned a minor
    102  *	number from the USB core by calling usb_register_dev().
    103  * @condition: binding state of the interface: not bound, binding
    104  *	(in probe()), bound to a driver, or unbinding (in disconnect())
    105  * @dev: driver model's view of this device
    106  * @class_dev: driver model's class view of this device.
    107  *
    108  * USB device drivers attach to interfaces on a physical device.  Each
    109  * interface encapsulates a single high level function, such as feeding
    110  * an audio stream to a speaker or reporting a change in a volume control.
    111  * Many USB devices only have one interface.  The protocol used to talk to
    112  * an interface's endpoints can be defined in a usb "class" specification,
    113  * or by a product's vendor.  The (default) control endpoint is part of
    114  * every interface, but is never listed among the interface's descriptors.
    115  *
    116  * The driver that is bound to the interface can use standard driver model
    117  * calls such as dev_get_drvdata() on the dev member of this structure.
    118  *
    119  * Each interface may have alternate settings.  The initial configuration
    120  * of a device sets altsetting 0, but the device driver can change
    121  * that setting using usb_set_interface().  Alternate settings are often
    122  * used to control the the use of periodic endpoints, such as by having
    123  * different endpoints use different amounts of reserved USB bandwidth.
    124  * All standards-conformant USB devices that use isochronous endpoints
    125  * will use them in non-default settings.
    126  *
    127  * The USB specification says that alternate setting numbers must run from
    128  * 0 to one less than the total number of alternate settings.  But some
    129  * devices manage to mess this up, and the structures aren't necessarily
    130  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
    131  * look up an alternate setting in the altsetting array based on its number.
    132  */
    133 struct usb_interface {
    134 	/* array of alternate settings for this interface,
    135 	 * stored in no particular order */
    136 	struct usb_host_interface *altsetting;
    137 
    138 	struct usb_host_interface *cur_altsetting;	/* the currently
    139 					 * active alternate setting */
    140 	unsigned num_altsetting;	/* number of alternate settings */
    141 
    142 	int minor;			/* minor number this interface is
    143 					 * bound to */
    144 	enum usb_interface_condition condition;		/* state of binding */
    145 	struct device dev;		/* interface specific device info */
    146 	struct class_device *class_dev;
    147 };
    148 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
    149 #define	interface_to_usbdev(intf) \
    150 	container_of(intf->dev.parent, struct usb_device, dev)
    151 
    152 static inline void *usb_get_intfdata (struct usb_interface *intf)
    153 {
    154 	return dev_get_drvdata (&intf->dev);
    155 }
    156 
    157 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
    158 {
    159 	dev_set_drvdata(&intf->dev, data);
    160 }
    161 
    162 struct usb_interface *usb_get_intf(struct usb_interface *intf);
    163 void usb_put_intf(struct usb_interface *intf);
    164 
    165 /* this maximum is arbitrary */
    166 #define USB_MAXINTERFACES	32
    167 
    168 /**
    169  * struct usb_interface_cache - long-term representation of a device interface
    170  * @num_altsetting: number of altsettings defined.
    171  * @ref: reference counter.
    172  * @altsetting: variable-length array of interface structures, one for
    173  *	each alternate setting that may be selected.  Each one includes a
    174  *	set of endpoint configurations.  They will be in no particular order.
    175  *
    176  * These structures persist for the lifetime of a usb_device, unlike
    177  * struct usb_interface (which persists only as long as its configuration
    178  * is installed).  The altsetting arrays can be accessed through these
    179  * structures at any time, permitting comparison of configurations and
    180  * providing support for the /proc/bus/usb/devices pseudo-file.
    181  */
    182 struct usb_interface_cache {
    183 	unsigned num_altsetting;	/* number of alternate settings */
    184 	struct kref ref;		/* reference counter */
    185 
    186 	/* variable-length array of alternate settings for this interface,
    187 	 * stored in no particular order */
    188 	struct usb_host_interface altsetting[0];
    189 };
    190 #define	ref_to_usb_interface_cache(r) \
    191 		container_of(r, struct usb_interface_cache, ref)
    192 #define	altsetting_to_usb_interface_cache(a) \
    193 		container_of(a, struct usb_interface_cache, altsetting[0])
    194 
    195 /**
    196  * struct usb_host_config - representation of a device's configuration
    197  * @desc: the device's configuration descriptor.
    198  * @string: pointer to the cached version of the iConfiguration string, if
    199  *	present for this configuration.
    200  * @interface: array of pointers to usb_interface structures, one for each
    201  *	interface in the configuration.  The number of interfaces is stored
    202  *	in desc.bNumInterfaces.  These pointers are valid only while the
    203  *	the configuration is active.
    204  * @intf_cache: array of pointers to usb_interface_cache structures, one
    205  *	for each interface in the configuration.  These structures exist
    206  *	for the entire life of the device.
    207  * @extra: pointer to buffer containing all extra descriptors associated
    208  *	with this configuration (those preceding the first interface
    209  *	descriptor).
    210  * @extralen: length of the extra descriptors buffer.
    211  *
    212  * USB devices may have multiple configurations, but only one can be active
    213  * at any time.  Each encapsulates a different operational environment;
    214  * for example, a dual-speed device would have separate configurations for
    215  * full-speed and high-speed operation.  The number of configurations
    216  * available is stored in the device descriptor as bNumConfigurations.
    217  *
    218  * A configuration can contain multiple interfaces.  Each corresponds to
    219  * a different function of the USB device, and all are available whenever
    220  * the configuration is active.  The USB standard says that interfaces
    221  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
    222  * of devices get this wrong.  In addition, the interface array is not
    223  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
    224  * look up an interface entry based on its number.
    225  *
    226  * Device drivers should not attempt to activate configurations.  The choice
    227  * of which configuration to install is a policy decision based on such
    228  * considerations as available power, functionality provided, and the user's
    229  * desires (expressed through userspace tools).  However, drivers can call
    230  * usb_reset_configuration() to reinitialize the current configuration and
    231  * all its interfaces.
    232  */
    233 struct usb_host_config {
    234 	struct usb_config_descriptor	desc;
    235 
    236 	char *string;		/* iConfiguration string, if present */
    237 	/* the interfaces associated with this configuration,
    238 	 * stored in no particular order */
    239 	struct usb_interface *interface[USB_MAXINTERFACES];
    240 
    241 	/* Interface information available even when this is not the
    242 	 * active configuration */
    243 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
    244 
    245 	unsigned char *extra;   /* Extra descriptors */
    246 	int extralen;
    247 };
    248 
    249 int __usb_get_extra_descriptor(char *buffer, unsigned size,
    250 	unsigned char type, void **ptr);
    251 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
    252 	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
    253 		type,(void**)ptr)
    254 
    255 /* ----------------------------------------------------------------------- */
    256 
    257 struct usb_operations;
    258 
    259 /* USB device number allocation bitmap */
    260 struct usb_devmap {
    261 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
    262 };
    263 
    264 /*
    265  * Allocated per bus (tree of devices) we have:
    266  */
    267 struct usb_bus {
    268 	struct device *controller;	/* host/master side hardware */
    269 	int busnum;			/* Bus number (in order of reg) */
    270 	char *bus_name;			/* stable id (PCI slot_name etc) */
    271 	u8 otg_port;			/* 0, or number of OTG/HNP port */
    272 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
    273 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
    274 
    275 	int devnum_next;		/* Next open device number in
    276 					 * round-robin allocation */
    277 
    278 	struct usb_devmap devmap;	/* device address allocation map */
    279 	struct usb_operations *op;	/* Operations (specific to the HC) */
    280 	struct usb_device *root_hub;	/* Root hub */
    281 	struct list_head bus_list;	/* list of busses */
    282 	void *hcpriv;                   /* Host Controller private data */
    283 
    284 	int bandwidth_allocated;	/* on this bus: how much of the time
    285 					 * reserved for periodic (intr/iso)
    286 					 * requests is used, on average?
    287 					 * Units: microseconds/frame.
    288 					 * Limits: Full/low speed reserve 90%,
    289 					 * while high speed reserves 80%.
    290 					 */
    291 	int bandwidth_int_reqs;		/* number of Interrupt requests */
    292 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
    293 
    294 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
    295 
    296 	struct class_device *class_dev;	/* class device for this bus */
    297 	struct kref kref;		/* reference counting for this bus */
    298 	void (*release)(struct usb_bus *bus);
    299 
    300 #if defined(CONFIG_USB_MON)
    301 	struct mon_bus *mon_bus;	/* non-null when associated */
    302 	int monitored;			/* non-zero when monitored */
    303 #endif
    304 };
    305 
    306 /* ----------------------------------------------------------------------- */
    307 
    308 /* This is arbitrary.
    309  * From USB 2.0 spec Table 11-13, offset 7, a hub can
    310  * have up to 255 ports. The most yet reported is 10.
    311  */
    312 #define USB_MAXCHILDREN		(16)
    313 
    314 struct usb_tt;
    315 
    316 /*
    317  * struct usb_device - kernel's representation of a USB device
    318  *
    319  * FIXME: Write the kerneldoc!
    320  *
    321  * Usbcore drivers should not set usbdev->state directly.  Instead use
    322  * usb_set_device_state().
    323  */
    324 struct usb_device {
    325 	int		devnum;		/* Address on USB bus */
    326 	char		devpath [16];	/* Use in messages: /port/port/... */
    327 	enum usb_device_state	state;	/* configured, not attached, etc */
    328 	enum usb_device_speed	speed;	/* high/full/low (or error) */
    329 
    330 	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
    331 	int		ttport;		/* device port on that tt hub */
    332 
    333 	unsigned int toggle[2];		/* one bit for each endpoint
    334 					 * ([0] = IN, [1] = OUT) */
    335 
    336 	struct usb_device *parent;	/* our hub, unless we're the root */
    337 	struct usb_bus *bus;		/* Bus we're part of */
    338 	struct usb_host_endpoint ep0;
    339 
    340 	struct device dev;		/* Generic device interface */
    341 
    342 	struct usb_device_descriptor descriptor;/* Descriptor */
    343 	struct usb_host_config *config;	/* All of the configs */
    344 
    345 	struct usb_host_config *actconfig;/* the active configuration */
    346 	struct usb_host_endpoint *ep_in[16];
    347 	struct usb_host_endpoint *ep_out[16];
    348 
    349 	char **rawdescriptors;		/* Raw descriptors for each config */
    350 
    351 	unsigned short bus_mA;		/* Current available from the bus */
    352 	u8 portnum;			/* Parent port number (origin 1) */
    353 
    354 	int have_langid;		/* whether string_langid is valid */
    355 	int string_langid;		/* language ID for strings */
    356 
    357 	/* static strings from the device */
    358 	char *product;			/* iProduct string, if present */
    359 	char *manufacturer;		/* iManufacturer string, if present */
    360 	char *serial;			/* iSerialNumber string, if present */
    361 
    362 	struct list_head filelist;
    363 	struct class_device *class_dev;
    364 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
    365 
    366 	/*
    367 	 * Child devices - these can be either new devices
    368 	 * (if this is a hub device), or different instances
    369 	 * of this same device.
    370 	 *
    371 	 * Each instance needs its own set of data structures.
    372 	 */
    373 
    374 	int maxchild;			/* Number of ports if hub */
    375 	struct usb_device *children[USB_MAXCHILDREN];
    376 };
    377 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
    378 
    379 extern struct usb_device *usb_get_dev(struct usb_device *dev);
    380 extern void usb_put_dev(struct usb_device *dev);
    381 
    382 /* USB device locking */
    383 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
    384 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
    385 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
    386 extern int usb_lock_device_for_reset(struct usb_device *udev,
    387 		struct usb_interface *iface);
    388 
    389 /* USB port reset for device reinitialization */
    390 extern int usb_reset_device(struct usb_device *dev);
    391 extern int usb_reset_composite_device(struct usb_device *dev,
    392 		struct usb_interface *iface);
    393 
    394 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
    395 
    396 /*-------------------------------------------------------------------------*/
    397 
    398 /* for drivers using iso endpoints */
    399 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
    400 
    401 /* used these for multi-interface device registration */
    402 extern int usb_driver_claim_interface(struct usb_driver *driver,
    403 			struct usb_interface *iface, void* priv);
    404 
    405 /**
    406  * usb_interface_claimed - returns true iff an interface is claimed
    407  * @iface: the interface being checked
    408  *
    409  * Returns true (nonzero) iff the interface is claimed, else false (zero).
    410  * Callers must own the driver model's usb bus readlock.  So driver
    411  * probe() entries don't need extra locking, but other call contexts
    412  * may need to explicitly claim that lock.
    413  *
    414  */
    415 static inline int usb_interface_claimed(struct usb_interface *iface) {
    416 	return (iface->dev.driver != NULL);
    417 }
    418 
    419 extern void usb_driver_release_interface(struct usb_driver *driver,
    420 			struct usb_interface *iface);
    421 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
    422 					 const struct usb_device_id *id);
    423 
    424 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
    425 		int minor);
    426 extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
    427 		unsigned ifnum);
    428 extern struct usb_host_interface *usb_altnum_to_altsetting(
    429 		struct usb_interface *intf, unsigned int altnum);
    430 
    431 
    432 /**
    433  * usb_make_path - returns stable device path in the usb tree
    434  * @dev: the device whose path is being constructed
    435  * @buf: where to put the string
    436  * @size: how big is "buf"?
    437  *
    438  * Returns length of the string (> 0) or negative if size was too small.
    439  *
    440  * This identifier is intended to be "stable", reflecting physical paths in
    441  * hardware such as physical bus addresses for host controllers or ports on
    442  * USB hubs.  That makes it stay the same until systems are physically
    443  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
    444  * controllers.  Adding and removing devices, including virtual root hubs
    445  * in host controller driver modules, does not change these path identifers;
    446  * neither does rebooting or re-enumerating.  These are more useful identifiers
    447  * than changeable ("unstable") ones like bus numbers or device addresses.
    448  *
    449  * With a partial exception for devices connected to USB 2.0 root hubs, these
    450  * identifiers are also predictable.  So long as the device tree isn't changed,
    451  * plugging any USB device into a given hub port always gives it the same path.
    452  * Because of the use of "companion" controllers, devices connected to ports on
    453  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
    454  * high speed, and a different one if they are full or low speed.
    455  */
    456 static inline int usb_make_path (struct usb_device *dev, char *buf,
    457 		size_t size)
    458 {
    459 	int actual;
    460 	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
    461 			dev->devpath);
    462 	return (actual >= (int)size) ? -1 : actual;
    463 }
    464 
    465 /*-------------------------------------------------------------------------*/
    466 
    467 #define USB_DEVICE_ID_MATCH_DEVICE \
    468 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
    469 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
    470 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
    471 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
    472 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
    473 #define USB_DEVICE_ID_MATCH_DEV_INFO \
    474 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
    475 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
    476 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
    477 #define USB_DEVICE_ID_MATCH_INT_INFO \
    478 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
    479 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
    480 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
    481 
    482 /**
    483  * USB_DEVICE - macro used to describe a specific usb device
    484  * @vend: the 16 bit USB Vendor ID
    485  * @prod: the 16 bit USB Product ID
    486  *
    487  * This macro is used to create a struct usb_device_id that matches a
    488  * specific device.
    489  */
    490 #define USB_DEVICE(vend,prod) \
    491 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
    492 			.idProduct = (prod)
    493 /**
    494  * USB_DEVICE_VER - macro used to describe a specific usb device with a
    495  *		version range
    496  * @vend: the 16 bit USB Vendor ID
    497  * @prod: the 16 bit USB Product ID
    498  * @lo: the bcdDevice_lo value
    499  * @hi: the bcdDevice_hi value
    500  *
    501  * This macro is used to create a struct usb_device_id that matches a
    502  * specific device, with a version range.
    503  */
    504 #define USB_DEVICE_VER(vend,prod,lo,hi) \
    505 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
    506 	.idVendor = (vend), .idProduct = (prod), \
    507 	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
    508 
    509 /**
    510  * USB_DEVICE_INFO - macro used to describe a class of usb devices
    511  * @cl: bDeviceClass value
    512  * @sc: bDeviceSubClass value
    513  * @pr: bDeviceProtocol value
    514  *
    515  * This macro is used to create a struct usb_device_id that matches a
    516  * specific class of devices.
    517  */
    518 #define USB_DEVICE_INFO(cl,sc,pr) \
    519 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
    520 	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
    521 
    522 /**
    523  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
    524  * @cl: bInterfaceClass value
    525  * @sc: bInterfaceSubClass value
    526  * @pr: bInterfaceProtocol value
    527  *
    528  * This macro is used to create a struct usb_device_id that matches a
    529  * specific class of interfaces.
    530  */
    531 #define USB_INTERFACE_INFO(cl,sc,pr) \
    532 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
    533 	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
    534 
    535 /* ----------------------------------------------------------------------- */
    536 
    537 struct usb_dynids {
    538 	spinlock_t lock;
    539 	struct list_head list;
    540 };
    541 
    542 /**
    543  * struct usb_driver - identifies USB driver to usbcore
    544  * @name: The driver name should be unique among USB drivers,
    545  *	and should normally be the same as the module name.
    546  * @probe: Called to see if the driver is willing to manage a particular
    547  *	interface on a device.  If it is, probe returns zero and uses
    548  *	dev_set_drvdata() to associate driver-specific data with the
    549  *	interface.  It may also use usb_set_interface() to specify the
    550  *	appropriate altsetting.  If unwilling to manage the interface,
    551  *	return a negative errno value.
    552  * @disconnect: Called when the interface is no longer accessible, usually
    553  *	because its device has been (or is being) disconnected or the
    554  *	driver module is being unloaded.
    555  * @ioctl: Used for drivers that want to talk to userspace through
    556  *	the "usbfs" filesystem.  This lets devices provide ways to
    557  *	expose information to user space regardless of where they
    558  *	do (or don't) show up otherwise in the filesystem.
    559  * @suspend: Called when the device is going to be suspended by the system.
    560  * @resume: Called when the device is being resumed by the system.
    561  * @pre_reset: Called by usb_reset_composite_device() when the device
    562  *	is about to be reset.
    563  * @post_reset: Called by usb_reset_composite_device() after the device
    564  *	has been reset.
    565  * @id_table: USB drivers use ID table to support hotplugging.
    566  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
    567  *	or your driver's probe function will never get called.
    568  * @dynids: used internally to hold the list of dynamically added device
    569  *	ids for this driver.
    570  * @driver: the driver model core driver structure.
    571  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
    572  *	added to this driver by preventing the sysfs file from being created.
    573  *
    574  * USB drivers must provide a name, probe() and disconnect() methods,
    575  * and an id_table.  Other driver fields are optional.
    576  *
    577  * The id_table is used in hotplugging.  It holds a set of descriptors,
    578  * and specialized data may be associated with each entry.  That table
    579  * is used by both user and kernel mode hotplugging support.
    580  *
    581  * The probe() and disconnect() methods are called in a context where
    582  * they can sleep, but they should avoid abusing the privilege.  Most
    583  * work to connect to a device should be done when the device is opened,
    584  * and undone at the last close.  The disconnect code needs to address
    585  * concurrency issues with respect to open() and close() methods, as
    586  * well as forcing all pending I/O requests to complete (by unlinking
    587  * them as necessary, and blocking until the unlinks complete).
    588  */
    589 struct usb_driver {
    590 	const char *name;
    591 
    592 	int (*probe) (struct usb_interface *intf,
    593 		      const struct usb_device_id *id);
    594 
    595 	void (*disconnect) (struct usb_interface *intf);
    596 
    597 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
    598 			void *buf);
    599 
    600 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
    601 	int (*resume) (struct usb_interface *intf);
    602 
    603 	void (*pre_reset) (struct usb_interface *intf);
    604 	void (*post_reset) (struct usb_interface *intf);
    605 
    606 	const struct usb_device_id *id_table;
    607 
    608 	struct usb_dynids dynids;
    609 	struct device_driver driver;
    610 	unsigned int no_dynamic_id:1;
    611 };
    612 #define	to_usb_driver(d) container_of(d, struct usb_driver, driver)
    613 
    614 extern struct bus_type usb_bus_type;
    615 
    616 /**
    617  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
    618  * @name: the usb class device name for this driver.  Will show up in sysfs.
    619  * @fops: pointer to the struct file_operations of this driver.
    620  * @minor_base: the start of the minor range for this driver.
    621  *
    622  * This structure is used for the usb_register_dev() and
    623  * usb_unregister_dev() functions, to consolidate a number of the
    624  * parameters used for them.
    625  */
    626 struct usb_class_driver {
    627 	char *name;
    628 	const struct file_operations *fops;
    629 	int minor_base;
    630 };
    631 
    632 /*
    633  * use these in module_init()/module_exit()
    634  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
    635  */
    636 int usb_register_driver(struct usb_driver *, struct module *);
    637 static inline int usb_register(struct usb_driver *driver)
    638 {
    639 	return usb_register_driver(driver, THIS_MODULE);
    640 }
    641 extern void usb_deregister(struct usb_driver *);
    642 
    643 extern int usb_register_dev(struct usb_interface *intf,
    644 			    struct usb_class_driver *class_driver);
    645 extern void usb_deregister_dev(struct usb_interface *intf,
    646 			       struct usb_class_driver *class_driver);
    647 
    648 extern int usb_disabled(void);
    649 
    650 /* ----------------------------------------------------------------------- */
    651 
    652 /*
    653  * URB support, for asynchronous request completions
    654  */
    655 
    656 /*
    657  * urb->transfer_flags:
    658  */
    659 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
    660 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
    661 					 * ignored */
    662 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
    663 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
    664 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
    665 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
    666 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
    667 					 * needed */
    668 
    669 struct usb_iso_packet_descriptor {
    670 	unsigned int offset;
    671 	unsigned int length;		/* expected length */
    672 	unsigned int actual_length;
    673 	unsigned int status;
    674 };
    675 
    676 struct urb;
    677 struct pt_regs;
    678 
    679 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
    680 
    681 /**
    682  * struct urb - USB Request Block
    683  * @urb_list: For use by current owner of the URB.
    684  * @pipe: Holds endpoint number, direction, type, and more.
    685  *	Create these values with the eight macros available;
    686  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
    687  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
    688  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
    689  *	numbers range from zero to fifteen.  Note that "in" endpoint two
    690  *	is a different endpoint (and pipe) from "out" endpoint two.
    691  *	The current configuration controls the existence, type, and
    692  *	maximum packet size of any given endpoint.
    693  * @dev: Identifies the USB device to perform the request.
    694  * @status: This is read in non-iso completion functions to get the
    695  *	status of the particular request.  ISO requests only use it
    696  *	to tell whether the URB was unlinked; detailed status for
    697  *	each frame is in the fields of the iso_frame-desc.
    698  * @transfer_flags: A variety of flags may be used to affect how URB
    699  *	submission, unlinking, or operation are handled.  Different
    700  *	kinds of URB can use different flags.
    701  * @transfer_buffer:  This identifies the buffer to (or from) which
    702  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
    703  *	is set).  This buffer must be suitable for DMA; allocate it with
    704  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
    705  *	of this buffer will be modified.  This buffer is used for the data
    706  *	stage of control transfers.
    707  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
    708  *	the device driver is saying that it provided this DMA address,
    709  *	which the host controller driver should use in preference to the
    710  *	transfer_buffer.
    711  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
    712  *	be broken up into chunks according to the current maximum packet
    713  *	size for the endpoint, which is a function of the configuration
    714  *	and is encoded in the pipe.  When the length is zero, neither
    715  *	transfer_buffer nor transfer_dma is used.
    716  * @actual_length: This is read in non-iso completion functions, and
    717  *	it tells how many bytes (out of transfer_buffer_length) were
    718  *	transferred.  It will normally be the same as requested, unless
    719  *	either an error was reported or a short read was performed.
    720  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
    721  *	short reads be reported as errors.
    722  * @setup_packet: Only used for control transfers, this points to eight bytes
    723  *	of setup data.  Control transfers always start by sending this data
    724  *	to the device.  Then transfer_buffer is read or written, if needed.
    725  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
    726  *	device driver has provided this DMA address for the setup packet.
    727  *	The host controller driver should use this in preference to
    728  *	setup_packet.
    729  * @start_frame: Returns the initial frame for isochronous transfers.
    730  * @number_of_packets: Lists the number of ISO transfer buffers.
    731  * @interval: Specifies the polling interval for interrupt or isochronous
    732  *	transfers.  The units are frames (milliseconds) for for full and low
    733  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
    734  * @error_count: Returns the number of ISO transfers that reported errors.
    735  * @context: For use in completion functions.  This normally points to
    736  *	request-specific driver context.
    737  * @complete: Completion handler. This URB is passed as the parameter to the
    738  *	completion function.  The completion function may then do what
    739  *	it likes with the URB, including resubmitting or freeing it.
    740  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
    741  *	collect the transfer status for each buffer.
    742  *
    743  * This structure identifies USB transfer requests.  URBs must be allocated by
    744  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
    745  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
    746  * are submitted using usb_submit_urb(), and pending requests may be canceled
    747  * using usb_unlink_urb() or usb_kill_urb().
    748  *
    749  * Data Transfer Buffers:
    750  *
    751  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
    752  * taken from the general page pool.  That is provided by transfer_buffer
    753  * (control requests also use setup_packet), and host controller drivers
    754  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
    755  * mapping operations can be expensive on some platforms (perhaps using a dma
    756  * bounce buffer or talking to an IOMMU),
    757  * although they're cheap on commodity x86 and ppc hardware.
    758  *
    759  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
    760  * which tell the host controller driver that no such mapping is needed since
    761  * the device driver is DMA-aware.  For example, a device driver might
    762  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
    763  * When these transfer flags are provided, host controller drivers will
    764  * attempt to use the dma addresses found in the transfer_dma and/or
    765  * setup_dma fields rather than determining a dma address themselves.  (Note
    766  * that transfer_buffer and setup_packet must still be set because not all
    767  * host controllers use DMA, nor do virtual root hubs).
    768  *
    769  * Initialization:
    770  *
    771  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
    772  * zero), and complete fields.  All URBs must also initialize
    773  * transfer_buffer and transfer_buffer_length.  They may provide the
    774  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
    775  * to be treated as errors; that flag is invalid for write requests.
    776  *
    777  * Bulk URBs may
    778  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
    779  * should always terminate with a short packet, even if it means adding an
    780  * extra zero length packet.
    781  *
    782  * Control URBs must provide a setup_packet.  The setup_packet and
    783  * transfer_buffer may each be mapped for DMA or not, independently of
    784  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
    785  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
    786  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
    787  *
    788  * Interrupt URBs must provide an interval, saying how often (in milliseconds
    789  * or, for highspeed devices, 125 microsecond units)
    790  * to poll for transfers.  After the URB has been submitted, the interval
    791  * field reflects how the transfer was actually scheduled.
    792  * The polling interval may be more frequent than requested.
    793  * For example, some controllers have a maximum interval of 32 milliseconds,
    794  * while others support intervals of up to 1024 milliseconds.
    795  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
    796  * endpoints, as well as high speed interrupt endpoints, the encoding of
    797  * the transfer interval in the endpoint descriptor is logarithmic.
    798  * Device drivers must convert that value to linear units themselves.)
    799  *
    800  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
    801  * the host controller to schedule the transfer as soon as bandwidth
    802  * utilization allows, and then set start_frame to reflect the actual frame
    803  * selected during submission.  Otherwise drivers must specify the start_frame
    804  * and handle the case where the transfer can't begin then.  However, drivers
    805  * won't know how bandwidth is currently allocated, and while they can
    806  * find the current frame using usb_get_current_frame_number () they can't
    807  * know the range for that frame number.  (Ranges for frame counter values
    808  * are HC-specific, and can go from 256 to 65536 frames from "now".)
    809  *
    810  * Isochronous URBs have a different data transfer model, in part because
    811  * the quality of service is only "best effort".  Callers provide specially
    812  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
    813  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
    814  * URBs are normally queued, submitted by drivers to arrange that
    815  * transfers are at least double buffered, and then explicitly resubmitted
    816  * in completion handlers, so
    817  * that data (such as audio or video) streams at as constant a rate as the
    818  * host controller scheduler can support.
    819  *
    820  * Completion Callbacks:
    821  *
    822  * The completion callback is made in_interrupt(), and one of the first
    823  * things that a completion handler should do is check the status field.
    824  * The status field is provided for all URBs.  It is used to report
    825  * unlinked URBs, and status for all non-ISO transfers.  It should not
    826  * be examined before the URB is returned to the completion handler.
    827  *
    828  * The context field is normally used to link URBs back to the relevant
    829  * driver or request state.
    830  *
    831  * When the completion callback is invoked for non-isochronous URBs, the
    832  * actual_length field tells how many bytes were transferred.  This field
    833  * is updated even when the URB terminated with an error or was unlinked.
    834  *
    835  * ISO transfer status is reported in the status and actual_length fields
    836  * of the iso_frame_desc array, and the number of errors is reported in
    837  * error_count.  Completion callbacks for ISO transfers will normally
    838  * (re)submit URBs to ensure a constant transfer rate.
    839  *
    840  * Note that even fields marked "public" should not be touched by the driver
    841  * when the urb is owned by the hcd, that is, since the call to
    842  * usb_submit_urb() till the entry into the completion routine.
    843  */
    844 struct urb
    845 {
    846 	/* private: usb core and host controller only fields in the urb */
    847 	struct kref kref;		/* reference count of the URB */
    848 	spinlock_t lock;		/* lock for the URB */
    849 	void *hcpriv;			/* private data for host controller */
    850 	int bandwidth;			/* bandwidth for INT/ISO request */
    851 	atomic_t use_count;		/* concurrent submissions counter */
    852 	u8 reject;			/* submissions will fail */
    853 
    854 	/* public: documented fields in the urb that can be used by drivers */
    855 	struct list_head urb_list;	/* list head for use by the urb's
    856 					 * current owner */
    857 	struct usb_device *dev; 	/* (in) pointer to associated device */
    858 	unsigned int pipe;		/* (in) pipe information */
    859 	int status;			/* (return) non-ISO status */
    860 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
    861 	void *transfer_buffer;		/* (in) associated data buffer */
    862 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
    863 	int transfer_buffer_length;	/* (in) data buffer length */
    864 	int actual_length;		/* (return) actual transfer length */
    865 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
    866 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
    867 	int start_frame;		/* (modify) start frame (ISO) */
    868 	int number_of_packets;		/* (in) number of ISO packets */
    869 	int interval;			/* (modify) transfer interval
    870 					 * (INT/ISO) */
    871 	int error_count;		/* (return) number of ISO errors */
    872 	void *context;			/* (in) context for completion */
    873 	usb_complete_t complete;	/* (in) completion routine */
    874 	struct usb_iso_packet_descriptor iso_frame_desc[0];
    875 					/* (in) ISO ONLY */
    876 };
    877 
    878 /* ----------------------------------------------------------------------- */
    879 
    880 /**
    881  * usb_fill_control_urb - initializes a control urb
    882  * @urb: pointer to the urb to initialize.
    883  * @dev: pointer to the struct usb_device for this urb.
    884  * @pipe: the endpoint pipe
    885  * @setup_packet: pointer to the setup_packet buffer
    886  * @transfer_buffer: pointer to the transfer buffer
    887  * @buffer_length: length of the transfer buffer
    888  * @complete: pointer to the usb_complete_t function
    889  * @context: what to set the urb context to.
    890  *
    891  * Initializes a control urb with the proper information needed to submit
    892  * it to a device.
    893  */
    894 static inline void usb_fill_control_urb (struct urb *urb,
    895 					 struct usb_device *dev,
    896 					 unsigned int pipe,
    897 					 unsigned char *setup_packet,
    898 					 void *transfer_buffer,
    899 					 int buffer_length,
    900 					 usb_complete_t complete,
    901 					 void *context)
    902 {
    903 	spin_lock_init(&urb->lock);
    904 	urb->dev = dev;
    905 	urb->pipe = pipe;
    906 	urb->setup_packet = setup_packet;
    907 	urb->transfer_buffer = transfer_buffer;
    908 	urb->transfer_buffer_length = buffer_length;
    909 	urb->complete = complete;
    910 	urb->context = context;
    911 }
    912 
    913 /**
    914  * usb_fill_bulk_urb - macro to help initialize a bulk urb
    915  * @urb: pointer to the urb to initialize.
    916  * @dev: pointer to the struct usb_device for this urb.
    917  * @pipe: the endpoint pipe
    918  * @transfer_buffer: pointer to the transfer buffer
    919  * @buffer_length: length of the transfer buffer
    920  * @complete: pointer to the usb_complete_t function
    921  * @context: what to set the urb context to.
    922  *
    923  * Initializes a bulk urb with the proper information needed to submit it
    924  * to a device.
    925  */
    926 static inline void usb_fill_bulk_urb (struct urb *urb,
    927 				      struct usb_device *dev,
    928 				      unsigned int pipe,
    929 				      void *transfer_buffer,
    930 				      int buffer_length,
    931 				      usb_complete_t complete,
    932 				      void *context)
    933 {
    934 	spin_lock_init(&urb->lock);
    935 	urb->dev = dev;
    936 	urb->pipe = pipe;
    937 	urb->transfer_buffer = transfer_buffer;
    938 	urb->transfer_buffer_length = buffer_length;
    939 	urb->complete = complete;
    940 	urb->context = context;
    941 }
    942 
    943 /**
    944  * usb_fill_int_urb - macro to help initialize a interrupt urb
    945  * @urb: pointer to the urb to initialize.
    946  * @dev: pointer to the struct usb_device for this urb.
    947  * @pipe: the endpoint pipe
    948  * @transfer_buffer: pointer to the transfer buffer
    949  * @buffer_length: length of the transfer buffer
    950  * @complete: pointer to the usb_complete_t function
    951  * @context: what to set the urb context to.
    952  * @interval: what to set the urb interval to, encoded like
    953  *	the endpoint descriptor's bInterval value.
    954  *
    955  * Initializes a interrupt urb with the proper information needed to submit
    956  * it to a device.
    957  * Note that high speed interrupt endpoints use a logarithmic encoding of
    958  * the endpoint interval, and express polling intervals in microframes
    959  * (eight per millisecond) rather than in frames (one per millisecond).
    960  */
    961 static inline void usb_fill_int_urb (struct urb *urb,
    962 				     struct usb_device *dev,
    963 				     unsigned int pipe,
    964 				     void *transfer_buffer,
    965 				     int buffer_length,
    966 				     usb_complete_t complete,
    967 				     void *context,
    968 				     int interval)
    969 {
    970 	spin_lock_init(&urb->lock);
    971 	urb->dev = dev;
    972 	urb->pipe = pipe;
    973 	urb->transfer_buffer = transfer_buffer;
    974 	urb->transfer_buffer_length = buffer_length;
    975 	urb->complete = complete;
    976 	urb->context = context;
    977 	if (dev->speed == USB_SPEED_HIGH)
    978 		urb->interval = 1 << (interval - 1);
    979 	else
    980 		urb->interval = interval;
    981 	urb->start_frame = -1;
    982 }
    983 
    984 extern void usb_init_urb(struct urb *urb);
    985 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
    986 extern void usb_free_urb(struct urb *urb);
    987 #define usb_put_urb usb_free_urb
    988 extern struct urb *usb_get_urb(struct urb *urb);
    989 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
    990 extern int usb_unlink_urb(struct urb *urb);
    991 extern void usb_kill_urb(struct urb *urb);
    992 
    993 #define HAVE_USB_BUFFERS
    994 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
    995 	gfp_t mem_flags, dma_addr_t *dma);
    996 void usb_buffer_free (struct usb_device *dev, size_t size,
    997 	void *addr, dma_addr_t dma);
    998 
    999 #if 0
   1000 struct urb *usb_buffer_map (struct urb *urb);
   1001 void usb_buffer_dmasync (struct urb *urb);
   1002 void usb_buffer_unmap (struct urb *urb);
   1003 #endif
   1004 
   1005 struct scatterlist;
   1006 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
   1007 		struct scatterlist *sg, int nents);
   1008 #if 0
   1009 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
   1010 		struct scatterlist *sg, int n_hw_ents);
   1011 #endif
   1012 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
   1013 		struct scatterlist *sg, int n_hw_ents);
   1014 
   1015 /*-------------------------------------------------------------------*
   1016  *                         SYNCHRONOUS CALL SUPPORT                  *
   1017  *-------------------------------------------------------------------*/
   1018 
   1019 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
   1020 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
   1021 	void *data, __u16 size, int timeout);
   1022 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
   1023 	void *data, int len, int *actual_length, int timeout);
   1024 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
   1025 	void *data, int len, int *actual_length,
   1026 	int timeout);
   1027 
   1028 /* wrappers around usb_control_msg() for the most common standard requests */
   1029 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
   1030 	unsigned char descindex, void *buf, int size);
   1031 extern int usb_get_status(struct usb_device *dev,
   1032 	int type, int target, void *data);
   1033 extern int usb_string(struct usb_device *dev, int index,
   1034 	char *buf, size_t size);
   1035 
   1036 /* wrappers that also update important state inside usbcore */
   1037 extern int usb_clear_halt(struct usb_device *dev, int pipe);
   1038 extern int usb_reset_configuration(struct usb_device *dev);
   1039 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
   1040 
   1041 /*
   1042  * timeouts, in milliseconds, used for sending/receiving control messages
   1043  * they typically complete within a few frames (msec) after they're issued
   1044  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
   1045  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
   1046  */
   1047 #define USB_CTRL_GET_TIMEOUT	5000
   1048 #define USB_CTRL_SET_TIMEOUT	5000
   1049 
   1050 
   1051 /**
   1052  * struct usb_sg_request - support for scatter/gather I/O
   1053  * @status: zero indicates success, else negative errno
   1054  * @bytes: counts bytes transferred.
   1055  *
   1056  * These requests are initialized using usb_sg_init(), and then are used
   1057  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
   1058  * members of the request object aren't for driver access.
   1059  *
   1060  * The status and bytecount values are valid only after usb_sg_wait()
   1061  * returns.  If the status is zero, then the bytecount matches the total
   1062  * from the request.
   1063  *
   1064  * After an error completion, drivers may need to clear a halt condition
   1065  * on the endpoint.
   1066  */
   1067 struct usb_sg_request {
   1068 	int			status;
   1069 	size_t			bytes;
   1070 
   1071 	/*
   1072 	 * members below are private: to usbcore,
   1073 	 * and are not provided for driver access!
   1074 	 */
   1075 	spinlock_t		lock;
   1076 
   1077 	struct usb_device	*dev;
   1078 	int			pipe;
   1079 	struct scatterlist	*sg;
   1080 	int			nents;
   1081 
   1082 	int			entries;
   1083 	struct urb		**urbs;
   1084 
   1085 	int			count;
   1086 	struct completion	complete;
   1087 };
   1088 
   1089 int usb_sg_init (
   1090 	struct usb_sg_request	*io,
   1091 	struct usb_device	*dev,
   1092 	unsigned		pipe,
   1093 	unsigned		period,
   1094 	struct scatterlist	*sg,
   1095 	int			nents,
   1096 	size_t			length,
   1097 	gfp_t			mem_flags
   1098 );
   1099 void usb_sg_cancel (struct usb_sg_request *io);
   1100 void usb_sg_wait (struct usb_sg_request *io);
   1101 
   1102 
   1103 /* ----------------------------------------------------------------------- */
   1104 
   1105 /*
   1106  * For various legacy reasons, Linux has a small cookie that's paired with
   1107  * a struct usb_device to identify an endpoint queue.  Queue characteristics
   1108  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
   1109  * an unsigned int encoded as:
   1110  *
   1111  *  - direction:	bit 7		(0 = Host-to-Device [Out],
   1112  *					 1 = Device-to-Host [In] ...
   1113  *					like endpoint bEndpointAddress)
   1114  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
   1115  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
   1116  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
   1117  *					 10 = control, 11 = bulk)
   1118  *
   1119  * Given the device address and endpoint descriptor, pipes are redundant.
   1120  */
   1121 
   1122 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
   1123 /* (yet ... they're the values used by usbfs) */
   1124 #define PIPE_ISOCHRONOUS		0
   1125 #define PIPE_INTERRUPT			1
   1126 #define PIPE_CONTROL			2
   1127 #define PIPE_BULK			3
   1128 
   1129 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
   1130 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
   1131 
   1132 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
   1133 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
   1134 
   1135 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
   1136 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
   1137 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
   1138 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
   1139 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
   1140 
   1141 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
   1142 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
   1143 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
   1144 #define usb_settoggle(dev, ep, out, bit) \
   1145 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
   1146 		 ((bit) << (ep)))
   1147 
   1148 
   1149 static inline unsigned int __create_pipe(struct usb_device *dev,
   1150 		unsigned int endpoint)
   1151 {
   1152 	return (dev->devnum << 8) | (endpoint << 15);
   1153 }
   1154 
   1155 /* Create various pipes... */
   1156 #define usb_sndctrlpipe(dev,endpoint)	\
   1157 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
   1158 #define usb_rcvctrlpipe(dev,endpoint)	\
   1159 	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
   1160 #define usb_sndisocpipe(dev,endpoint)	\
   1161 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
   1162 #define usb_rcvisocpipe(dev,endpoint)	\
   1163 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
   1164 #define usb_sndbulkpipe(dev,endpoint)	\
   1165 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
   1166 #define usb_rcvbulkpipe(dev,endpoint)	\
   1167 	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
   1168 #define usb_sndintpipe(dev,endpoint)	\
   1169 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
   1170 #define usb_rcvintpipe(dev,endpoint)	\
   1171 	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
   1172 
   1173 /*-------------------------------------------------------------------------*/
   1174 
   1175 static inline __u16
   1176 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
   1177 {
   1178 	struct usb_host_endpoint	*ep;
   1179 	unsigned			epnum = usb_pipeendpoint(pipe);
   1180 
   1181 	if (is_out) {
   1182 		WARN_ON(usb_pipein(pipe));
   1183 		ep = udev->ep_out[epnum];
   1184 	} else {
   1185 		WARN_ON(usb_pipeout(pipe));
   1186 		ep = udev->ep_in[epnum];
   1187 	}
   1188 	if (!ep)
   1189 		return 0;
   1190 
   1191 	/* NOTE:  only 0x07ff bits are for packet size... */
   1192 	return le16_to_cpu(ep->desc.wMaxPacketSize);
   1193 }
   1194 
   1195 /* ----------------------------------------------------------------------- */
   1196 
   1197 /* Events from the usb core */
   1198 #define USB_DEVICE_ADD		0x0001
   1199 #define USB_DEVICE_REMOVE	0x0002
   1200 #define USB_BUS_ADD		0x0003
   1201 #define USB_BUS_REMOVE		0x0004
   1202 extern void usb_register_notify(struct notifier_block *nb);
   1203 extern void usb_unregister_notify(struct notifier_block *nb);
   1204 
   1205 #ifdef DEBUG
   1206 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
   1207 	__FILE__ , ## arg)
   1208 #else
   1209 #define dbg(format, arg...) do {} while (0)
   1210 #endif
   1211 
   1212 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
   1213 	__FILE__ , ## arg)
   1214 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
   1215 	__FILE__ , ## arg)
   1216 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
   1217 	__FILE__ , ## arg)
   1218 
   1219 
   1220 #endif  /* __KERNEL__ */
   1221 
   1222 #endif
   1223