1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb_ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/errno.h> /* for -ENODEV */ 14 #include <linux/delay.h> /* for mdelay() */ 15 #include <linux/interrupt.h> /* for in_interrupt() */ 16 #include <linux/list.h> /* for struct list_head */ 17 #include <linux/kref.h> /* for struct kref */ 18 #include <linux/device.h> /* for struct device */ 19 #include <linux/fs.h> /* for struct file_operations */ 20 #include <linux/completion.h> /* for struct completion */ 21 #include <linux/sched.h> /* for current && schedule_timeout */ 22 23 struct usb_device; 24 struct usb_driver; 25 26 /*-------------------------------------------------------------------------*/ 27 28 /* 29 * Host-side wrappers for standard USB descriptors ... these are parsed 30 * from the data provided by devices. Parsing turns them from a flat 31 * sequence of descriptors into a hierarchy: 32 * 33 * - devices have one (usually) or more configs; 34 * - configs have one (often) or more interfaces; 35 * - interfaces have one (usually) or more settings; 36 * - each interface setting has zero or (usually) more endpoints. 37 * 38 * And there might be other descriptors mixed in with those. 39 * 40 * Devices may also have class-specific or vendor-specific descriptors. 41 */ 42 43 struct ep_device; 44 45 /** 46 * struct usb_host_endpoint - host-side endpoint descriptor and queue 47 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 48 * @urb_list: urbs queued to this endpoint; maintained by usbcore 49 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 50 * with one or more transfer descriptors (TDs) per urb 51 * @ep_dev: ep_device for sysfs info 52 * @extra: descriptors following this endpoint in the configuration 53 * @extralen: how many bytes of "extra" are valid 54 * 55 * USB requests are always queued to a given endpoint, identified by a 56 * descriptor within an active interface in a given USB configuration. 57 */ 58 struct usb_host_endpoint { 59 struct usb_endpoint_descriptor desc; 60 struct list_head urb_list; 61 void *hcpriv; 62 struct ep_device *ep_dev; /* For sysfs info */ 63 64 unsigned char *extra; /* Extra descriptors */ 65 int extralen; 66 }; 67 68 /* host-side wrapper for one interface setting's parsed descriptors */ 69 struct usb_host_interface { 70 struct usb_interface_descriptor desc; 71 72 /* array of desc.bNumEndpoint endpoints associated with this 73 * interface setting. these will be in no particular order. 74 */ 75 struct usb_host_endpoint *endpoint; 76 77 char *string; /* iInterface string, if present */ 78 unsigned char *extra; /* Extra descriptors */ 79 int extralen; 80 }; 81 82 enum usb_interface_condition { 83 USB_INTERFACE_UNBOUND = 0, 84 USB_INTERFACE_BINDING, 85 USB_INTERFACE_BOUND, 86 USB_INTERFACE_UNBINDING, 87 }; 88 89 /** 90 * struct usb_interface - what usb device drivers talk to 91 * @altsetting: array of interface structures, one for each alternate 92 * setting that may be selected. Each one includes a set of 93 * endpoint configurations. They will be in no particular order. 94 * @num_altsetting: number of altsettings defined. 95 * @cur_altsetting: the current altsetting. 96 * @driver: the USB driver that is bound to this interface. 97 * @minor: the minor number assigned to this interface, if this 98 * interface is bound to a driver that uses the USB major number. 99 * If this interface does not use the USB major, this field should 100 * be unused. The driver should set this value in the probe() 101 * function of the driver, after it has been assigned a minor 102 * number from the USB core by calling usb_register_dev(). 103 * @condition: binding state of the interface: not bound, binding 104 * (in probe()), bound to a driver, or unbinding (in disconnect()) 105 * @dev: driver model's view of this device 106 * @class_dev: driver model's class view of this device. 107 * 108 * USB device drivers attach to interfaces on a physical device. Each 109 * interface encapsulates a single high level function, such as feeding 110 * an audio stream to a speaker or reporting a change in a volume control. 111 * Many USB devices only have one interface. The protocol used to talk to 112 * an interface's endpoints can be defined in a usb "class" specification, 113 * or by a product's vendor. The (default) control endpoint is part of 114 * every interface, but is never listed among the interface's descriptors. 115 * 116 * The driver that is bound to the interface can use standard driver model 117 * calls such as dev_get_drvdata() on the dev member of this structure. 118 * 119 * Each interface may have alternate settings. The initial configuration 120 * of a device sets altsetting 0, but the device driver can change 121 * that setting using usb_set_interface(). Alternate settings are often 122 * used to control the the use of periodic endpoints, such as by having 123 * different endpoints use different amounts of reserved USB bandwidth. 124 * All standards-conformant USB devices that use isochronous endpoints 125 * will use them in non-default settings. 126 * 127 * The USB specification says that alternate setting numbers must run from 128 * 0 to one less than the total number of alternate settings. But some 129 * devices manage to mess this up, and the structures aren't necessarily 130 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 131 * look up an alternate setting in the altsetting array based on its number. 132 */ 133 struct usb_interface { 134 /* array of alternate settings for this interface, 135 * stored in no particular order */ 136 struct usb_host_interface *altsetting; 137 138 struct usb_host_interface *cur_altsetting; /* the currently 139 * active alternate setting */ 140 unsigned num_altsetting; /* number of alternate settings */ 141 142 int minor; /* minor number this interface is 143 * bound to */ 144 enum usb_interface_condition condition; /* state of binding */ 145 struct device dev; /* interface specific device info */ 146 struct class_device *class_dev; 147 }; 148 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 149 #define interface_to_usbdev(intf) \ 150 container_of(intf->dev.parent, struct usb_device, dev) 151 152 static inline void *usb_get_intfdata (struct usb_interface *intf) 153 { 154 return dev_get_drvdata (&intf->dev); 155 } 156 157 static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 158 { 159 dev_set_drvdata(&intf->dev, data); 160 } 161 162 struct usb_interface *usb_get_intf(struct usb_interface *intf); 163 void usb_put_intf(struct usb_interface *intf); 164 165 /* this maximum is arbitrary */ 166 #define USB_MAXINTERFACES 32 167 168 /** 169 * struct usb_interface_cache - long-term representation of a device interface 170 * @num_altsetting: number of altsettings defined. 171 * @ref: reference counter. 172 * @altsetting: variable-length array of interface structures, one for 173 * each alternate setting that may be selected. Each one includes a 174 * set of endpoint configurations. They will be in no particular order. 175 * 176 * These structures persist for the lifetime of a usb_device, unlike 177 * struct usb_interface (which persists only as long as its configuration 178 * is installed). The altsetting arrays can be accessed through these 179 * structures at any time, permitting comparison of configurations and 180 * providing support for the /proc/bus/usb/devices pseudo-file. 181 */ 182 struct usb_interface_cache { 183 unsigned num_altsetting; /* number of alternate settings */ 184 struct kref ref; /* reference counter */ 185 186 /* variable-length array of alternate settings for this interface, 187 * stored in no particular order */ 188 struct usb_host_interface altsetting[0]; 189 }; 190 #define ref_to_usb_interface_cache(r) \ 191 container_of(r, struct usb_interface_cache, ref) 192 #define altsetting_to_usb_interface_cache(a) \ 193 container_of(a, struct usb_interface_cache, altsetting[0]) 194 195 /** 196 * struct usb_host_config - representation of a device's configuration 197 * @desc: the device's configuration descriptor. 198 * @string: pointer to the cached version of the iConfiguration string, if 199 * present for this configuration. 200 * @interface: array of pointers to usb_interface structures, one for each 201 * interface in the configuration. The number of interfaces is stored 202 * in desc.bNumInterfaces. These pointers are valid only while the 203 * the configuration is active. 204 * @intf_cache: array of pointers to usb_interface_cache structures, one 205 * for each interface in the configuration. These structures exist 206 * for the entire life of the device. 207 * @extra: pointer to buffer containing all extra descriptors associated 208 * with this configuration (those preceding the first interface 209 * descriptor). 210 * @extralen: length of the extra descriptors buffer. 211 * 212 * USB devices may have multiple configurations, but only one can be active 213 * at any time. Each encapsulates a different operational environment; 214 * for example, a dual-speed device would have separate configurations for 215 * full-speed and high-speed operation. The number of configurations 216 * available is stored in the device descriptor as bNumConfigurations. 217 * 218 * A configuration can contain multiple interfaces. Each corresponds to 219 * a different function of the USB device, and all are available whenever 220 * the configuration is active. The USB standard says that interfaces 221 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 222 * of devices get this wrong. In addition, the interface array is not 223 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 224 * look up an interface entry based on its number. 225 * 226 * Device drivers should not attempt to activate configurations. The choice 227 * of which configuration to install is a policy decision based on such 228 * considerations as available power, functionality provided, and the user's 229 * desires (expressed through userspace tools). However, drivers can call 230 * usb_reset_configuration() to reinitialize the current configuration and 231 * all its interfaces. 232 */ 233 struct usb_host_config { 234 struct usb_config_descriptor desc; 235 236 char *string; /* iConfiguration string, if present */ 237 /* the interfaces associated with this configuration, 238 * stored in no particular order */ 239 struct usb_interface *interface[USB_MAXINTERFACES]; 240 241 /* Interface information available even when this is not the 242 * active configuration */ 243 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 244 245 unsigned char *extra; /* Extra descriptors */ 246 int extralen; 247 }; 248 249 int __usb_get_extra_descriptor(char *buffer, unsigned size, 250 unsigned char type, void **ptr); 251 #define usb_get_extra_descriptor(ifpoint,type,ptr)\ 252 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 253 type,(void**)ptr) 254 255 /* ----------------------------------------------------------------------- */ 256 257 struct usb_operations; 258 259 /* USB device number allocation bitmap */ 260 struct usb_devmap { 261 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 262 }; 263 264 /* 265 * Allocated per bus (tree of devices) we have: 266 */ 267 struct usb_bus { 268 struct device *controller; /* host/master side hardware */ 269 int busnum; /* Bus number (in order of reg) */ 270 char *bus_name; /* stable id (PCI slot_name etc) */ 271 u8 otg_port; /* 0, or number of OTG/HNP port */ 272 unsigned is_b_host:1; /* true during some HNP roleswitches */ 273 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 274 275 int devnum_next; /* Next open device number in 276 * round-robin allocation */ 277 278 struct usb_devmap devmap; /* device address allocation map */ 279 struct usb_operations *op; /* Operations (specific to the HC) */ 280 struct usb_device *root_hub; /* Root hub */ 281 struct list_head bus_list; /* list of busses */ 282 void *hcpriv; /* Host Controller private data */ 283 284 int bandwidth_allocated; /* on this bus: how much of the time 285 * reserved for periodic (intr/iso) 286 * requests is used, on average? 287 * Units: microseconds/frame. 288 * Limits: Full/low speed reserve 90%, 289 * while high speed reserves 80%. 290 */ 291 int bandwidth_int_reqs; /* number of Interrupt requests */ 292 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 293 294 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 295 296 struct class_device *class_dev; /* class device for this bus */ 297 struct kref kref; /* reference counting for this bus */ 298 void (*release)(struct usb_bus *bus); 299 300 #if defined(CONFIG_USB_MON) 301 struct mon_bus *mon_bus; /* non-null when associated */ 302 int monitored; /* non-zero when monitored */ 303 #endif 304 }; 305 306 /* ----------------------------------------------------------------------- */ 307 308 /* This is arbitrary. 309 * From USB 2.0 spec Table 11-13, offset 7, a hub can 310 * have up to 255 ports. The most yet reported is 10. 311 */ 312 #define USB_MAXCHILDREN (16) 313 314 struct usb_tt; 315 316 /* 317 * struct usb_device - kernel's representation of a USB device 318 * 319 * FIXME: Write the kerneldoc! 320 * 321 * Usbcore drivers should not set usbdev->state directly. Instead use 322 * usb_set_device_state(). 323 */ 324 struct usb_device { 325 int devnum; /* Address on USB bus */ 326 char devpath [16]; /* Use in messages: /port/port/... */ 327 enum usb_device_state state; /* configured, not attached, etc */ 328 enum usb_device_speed speed; /* high/full/low (or error) */ 329 330 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 331 int ttport; /* device port on that tt hub */ 332 333 unsigned int toggle[2]; /* one bit for each endpoint 334 * ([0] = IN, [1] = OUT) */ 335 336 struct usb_device *parent; /* our hub, unless we're the root */ 337 struct usb_bus *bus; /* Bus we're part of */ 338 struct usb_host_endpoint ep0; 339 340 struct device dev; /* Generic device interface */ 341 342 struct usb_device_descriptor descriptor;/* Descriptor */ 343 struct usb_host_config *config; /* All of the configs */ 344 345 struct usb_host_config *actconfig;/* the active configuration */ 346 struct usb_host_endpoint *ep_in[16]; 347 struct usb_host_endpoint *ep_out[16]; 348 349 char **rawdescriptors; /* Raw descriptors for each config */ 350 351 unsigned short bus_mA; /* Current available from the bus */ 352 u8 portnum; /* Parent port number (origin 1) */ 353 354 int have_langid; /* whether string_langid is valid */ 355 int string_langid; /* language ID for strings */ 356 357 /* static strings from the device */ 358 char *product; /* iProduct string, if present */ 359 char *manufacturer; /* iManufacturer string, if present */ 360 char *serial; /* iSerialNumber string, if present */ 361 362 struct list_head filelist; 363 struct class_device *class_dev; 364 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 365 366 /* 367 * Child devices - these can be either new devices 368 * (if this is a hub device), or different instances 369 * of this same device. 370 * 371 * Each instance needs its own set of data structures. 372 */ 373 374 int maxchild; /* Number of ports if hub */ 375 struct usb_device *children[USB_MAXCHILDREN]; 376 }; 377 #define to_usb_device(d) container_of(d, struct usb_device, dev) 378 379 extern struct usb_device *usb_get_dev(struct usb_device *dev); 380 extern void usb_put_dev(struct usb_device *dev); 381 382 /* USB device locking */ 383 #define usb_lock_device(udev) down(&(udev)->dev.sem) 384 #define usb_unlock_device(udev) up(&(udev)->dev.sem) 385 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 386 extern int usb_lock_device_for_reset(struct usb_device *udev, 387 struct usb_interface *iface); 388 389 /* USB port reset for device reinitialization */ 390 extern int usb_reset_device(struct usb_device *dev); 391 extern int usb_reset_composite_device(struct usb_device *dev, 392 struct usb_interface *iface); 393 394 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 395 396 /*-------------------------------------------------------------------------*/ 397 398 /* for drivers using iso endpoints */ 399 extern int usb_get_current_frame_number (struct usb_device *usb_dev); 400 401 /* used these for multi-interface device registration */ 402 extern int usb_driver_claim_interface(struct usb_driver *driver, 403 struct usb_interface *iface, void* priv); 404 405 /** 406 * usb_interface_claimed - returns true iff an interface is claimed 407 * @iface: the interface being checked 408 * 409 * Returns true (nonzero) iff the interface is claimed, else false (zero). 410 * Callers must own the driver model's usb bus readlock. So driver 411 * probe() entries don't need extra locking, but other call contexts 412 * may need to explicitly claim that lock. 413 * 414 */ 415 static inline int usb_interface_claimed(struct usb_interface *iface) { 416 return (iface->dev.driver != NULL); 417 } 418 419 extern void usb_driver_release_interface(struct usb_driver *driver, 420 struct usb_interface *iface); 421 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 422 const struct usb_device_id *id); 423 424 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 425 int minor); 426 extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, 427 unsigned ifnum); 428 extern struct usb_host_interface *usb_altnum_to_altsetting( 429 struct usb_interface *intf, unsigned int altnum); 430 431 432 /** 433 * usb_make_path - returns stable device path in the usb tree 434 * @dev: the device whose path is being constructed 435 * @buf: where to put the string 436 * @size: how big is "buf"? 437 * 438 * Returns length of the string (> 0) or negative if size was too small. 439 * 440 * This identifier is intended to be "stable", reflecting physical paths in 441 * hardware such as physical bus addresses for host controllers or ports on 442 * USB hubs. That makes it stay the same until systems are physically 443 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 444 * controllers. Adding and removing devices, including virtual root hubs 445 * in host controller driver modules, does not change these path identifers; 446 * neither does rebooting or re-enumerating. These are more useful identifiers 447 * than changeable ("unstable") ones like bus numbers or device addresses. 448 * 449 * With a partial exception for devices connected to USB 2.0 root hubs, these 450 * identifiers are also predictable. So long as the device tree isn't changed, 451 * plugging any USB device into a given hub port always gives it the same path. 452 * Because of the use of "companion" controllers, devices connected to ports on 453 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 454 * high speed, and a different one if they are full or low speed. 455 */ 456 static inline int usb_make_path (struct usb_device *dev, char *buf, 457 size_t size) 458 { 459 int actual; 460 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 461 dev->devpath); 462 return (actual >= (int)size) ? -1 : actual; 463 } 464 465 /*-------------------------------------------------------------------------*/ 466 467 #define USB_DEVICE_ID_MATCH_DEVICE \ 468 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 469 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 470 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 471 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 472 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 473 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 474 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 475 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 476 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 477 #define USB_DEVICE_ID_MATCH_INT_INFO \ 478 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 479 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 480 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 481 482 /** 483 * USB_DEVICE - macro used to describe a specific usb device 484 * @vend: the 16 bit USB Vendor ID 485 * @prod: the 16 bit USB Product ID 486 * 487 * This macro is used to create a struct usb_device_id that matches a 488 * specific device. 489 */ 490 #define USB_DEVICE(vend,prod) \ 491 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 492 .idProduct = (prod) 493 /** 494 * USB_DEVICE_VER - macro used to describe a specific usb device with a 495 * version range 496 * @vend: the 16 bit USB Vendor ID 497 * @prod: the 16 bit USB Product ID 498 * @lo: the bcdDevice_lo value 499 * @hi: the bcdDevice_hi value 500 * 501 * This macro is used to create a struct usb_device_id that matches a 502 * specific device, with a version range. 503 */ 504 #define USB_DEVICE_VER(vend,prod,lo,hi) \ 505 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 506 .idVendor = (vend), .idProduct = (prod), \ 507 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 508 509 /** 510 * USB_DEVICE_INFO - macro used to describe a class of usb devices 511 * @cl: bDeviceClass value 512 * @sc: bDeviceSubClass value 513 * @pr: bDeviceProtocol value 514 * 515 * This macro is used to create a struct usb_device_id that matches a 516 * specific class of devices. 517 */ 518 #define USB_DEVICE_INFO(cl,sc,pr) \ 519 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 520 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 521 522 /** 523 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 524 * @cl: bInterfaceClass value 525 * @sc: bInterfaceSubClass value 526 * @pr: bInterfaceProtocol value 527 * 528 * This macro is used to create a struct usb_device_id that matches a 529 * specific class of interfaces. 530 */ 531 #define USB_INTERFACE_INFO(cl,sc,pr) \ 532 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 533 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 534 535 /* ----------------------------------------------------------------------- */ 536 537 struct usb_dynids { 538 spinlock_t lock; 539 struct list_head list; 540 }; 541 542 /** 543 * struct usb_driver - identifies USB driver to usbcore 544 * @name: The driver name should be unique among USB drivers, 545 * and should normally be the same as the module name. 546 * @probe: Called to see if the driver is willing to manage a particular 547 * interface on a device. If it is, probe returns zero and uses 548 * dev_set_drvdata() to associate driver-specific data with the 549 * interface. It may also use usb_set_interface() to specify the 550 * appropriate altsetting. If unwilling to manage the interface, 551 * return a negative errno value. 552 * @disconnect: Called when the interface is no longer accessible, usually 553 * because its device has been (or is being) disconnected or the 554 * driver module is being unloaded. 555 * @ioctl: Used for drivers that want to talk to userspace through 556 * the "usbfs" filesystem. This lets devices provide ways to 557 * expose information to user space regardless of where they 558 * do (or don't) show up otherwise in the filesystem. 559 * @suspend: Called when the device is going to be suspended by the system. 560 * @resume: Called when the device is being resumed by the system. 561 * @pre_reset: Called by usb_reset_composite_device() when the device 562 * is about to be reset. 563 * @post_reset: Called by usb_reset_composite_device() after the device 564 * has been reset. 565 * @id_table: USB drivers use ID table to support hotplugging. 566 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 567 * or your driver's probe function will never get called. 568 * @dynids: used internally to hold the list of dynamically added device 569 * ids for this driver. 570 * @driver: the driver model core driver structure. 571 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 572 * added to this driver by preventing the sysfs file from being created. 573 * 574 * USB drivers must provide a name, probe() and disconnect() methods, 575 * and an id_table. Other driver fields are optional. 576 * 577 * The id_table is used in hotplugging. It holds a set of descriptors, 578 * and specialized data may be associated with each entry. That table 579 * is used by both user and kernel mode hotplugging support. 580 * 581 * The probe() and disconnect() methods are called in a context where 582 * they can sleep, but they should avoid abusing the privilege. Most 583 * work to connect to a device should be done when the device is opened, 584 * and undone at the last close. The disconnect code needs to address 585 * concurrency issues with respect to open() and close() methods, as 586 * well as forcing all pending I/O requests to complete (by unlinking 587 * them as necessary, and blocking until the unlinks complete). 588 */ 589 struct usb_driver { 590 const char *name; 591 592 int (*probe) (struct usb_interface *intf, 593 const struct usb_device_id *id); 594 595 void (*disconnect) (struct usb_interface *intf); 596 597 int (*ioctl) (struct usb_interface *intf, unsigned int code, 598 void *buf); 599 600 int (*suspend) (struct usb_interface *intf, pm_message_t message); 601 int (*resume) (struct usb_interface *intf); 602 603 void (*pre_reset) (struct usb_interface *intf); 604 void (*post_reset) (struct usb_interface *intf); 605 606 const struct usb_device_id *id_table; 607 608 struct usb_dynids dynids; 609 struct device_driver driver; 610 unsigned int no_dynamic_id:1; 611 }; 612 #define to_usb_driver(d) container_of(d, struct usb_driver, driver) 613 614 extern struct bus_type usb_bus_type; 615 616 /** 617 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 618 * @name: the usb class device name for this driver. Will show up in sysfs. 619 * @fops: pointer to the struct file_operations of this driver. 620 * @minor_base: the start of the minor range for this driver. 621 * 622 * This structure is used for the usb_register_dev() and 623 * usb_unregister_dev() functions, to consolidate a number of the 624 * parameters used for them. 625 */ 626 struct usb_class_driver { 627 char *name; 628 const struct file_operations *fops; 629 int minor_base; 630 }; 631 632 /* 633 * use these in module_init()/module_exit() 634 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 635 */ 636 int usb_register_driver(struct usb_driver *, struct module *); 637 static inline int usb_register(struct usb_driver *driver) 638 { 639 return usb_register_driver(driver, THIS_MODULE); 640 } 641 extern void usb_deregister(struct usb_driver *); 642 643 extern int usb_register_dev(struct usb_interface *intf, 644 struct usb_class_driver *class_driver); 645 extern void usb_deregister_dev(struct usb_interface *intf, 646 struct usb_class_driver *class_driver); 647 648 extern int usb_disabled(void); 649 650 /* ----------------------------------------------------------------------- */ 651 652 /* 653 * URB support, for asynchronous request completions 654 */ 655 656 /* 657 * urb->transfer_flags: 658 */ 659 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 660 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 661 * ignored */ 662 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 663 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 664 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 665 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 666 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 667 * needed */ 668 669 struct usb_iso_packet_descriptor { 670 unsigned int offset; 671 unsigned int length; /* expected length */ 672 unsigned int actual_length; 673 unsigned int status; 674 }; 675 676 struct urb; 677 struct pt_regs; 678 679 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *); 680 681 /** 682 * struct urb - USB Request Block 683 * @urb_list: For use by current owner of the URB. 684 * @pipe: Holds endpoint number, direction, type, and more. 685 * Create these values with the eight macros available; 686 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 687 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 688 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 689 * numbers range from zero to fifteen. Note that "in" endpoint two 690 * is a different endpoint (and pipe) from "out" endpoint two. 691 * The current configuration controls the existence, type, and 692 * maximum packet size of any given endpoint. 693 * @dev: Identifies the USB device to perform the request. 694 * @status: This is read in non-iso completion functions to get the 695 * status of the particular request. ISO requests only use it 696 * to tell whether the URB was unlinked; detailed status for 697 * each frame is in the fields of the iso_frame-desc. 698 * @transfer_flags: A variety of flags may be used to affect how URB 699 * submission, unlinking, or operation are handled. Different 700 * kinds of URB can use different flags. 701 * @transfer_buffer: This identifies the buffer to (or from) which 702 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 703 * is set). This buffer must be suitable for DMA; allocate it with 704 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 705 * of this buffer will be modified. This buffer is used for the data 706 * stage of control transfers. 707 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 708 * the device driver is saying that it provided this DMA address, 709 * which the host controller driver should use in preference to the 710 * transfer_buffer. 711 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 712 * be broken up into chunks according to the current maximum packet 713 * size for the endpoint, which is a function of the configuration 714 * and is encoded in the pipe. When the length is zero, neither 715 * transfer_buffer nor transfer_dma is used. 716 * @actual_length: This is read in non-iso completion functions, and 717 * it tells how many bytes (out of transfer_buffer_length) were 718 * transferred. It will normally be the same as requested, unless 719 * either an error was reported or a short read was performed. 720 * The URB_SHORT_NOT_OK transfer flag may be used to make such 721 * short reads be reported as errors. 722 * @setup_packet: Only used for control transfers, this points to eight bytes 723 * of setup data. Control transfers always start by sending this data 724 * to the device. Then transfer_buffer is read or written, if needed. 725 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 726 * device driver has provided this DMA address for the setup packet. 727 * The host controller driver should use this in preference to 728 * setup_packet. 729 * @start_frame: Returns the initial frame for isochronous transfers. 730 * @number_of_packets: Lists the number of ISO transfer buffers. 731 * @interval: Specifies the polling interval for interrupt or isochronous 732 * transfers. The units are frames (milliseconds) for for full and low 733 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 734 * @error_count: Returns the number of ISO transfers that reported errors. 735 * @context: For use in completion functions. This normally points to 736 * request-specific driver context. 737 * @complete: Completion handler. This URB is passed as the parameter to the 738 * completion function. The completion function may then do what 739 * it likes with the URB, including resubmitting or freeing it. 740 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 741 * collect the transfer status for each buffer. 742 * 743 * This structure identifies USB transfer requests. URBs must be allocated by 744 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 745 * Initialization may be done using various usb_fill_*_urb() functions. URBs 746 * are submitted using usb_submit_urb(), and pending requests may be canceled 747 * using usb_unlink_urb() or usb_kill_urb(). 748 * 749 * Data Transfer Buffers: 750 * 751 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 752 * taken from the general page pool. That is provided by transfer_buffer 753 * (control requests also use setup_packet), and host controller drivers 754 * perform a dma mapping (and unmapping) for each buffer transferred. Those 755 * mapping operations can be expensive on some platforms (perhaps using a dma 756 * bounce buffer or talking to an IOMMU), 757 * although they're cheap on commodity x86 and ppc hardware. 758 * 759 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 760 * which tell the host controller driver that no such mapping is needed since 761 * the device driver is DMA-aware. For example, a device driver might 762 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 763 * When these transfer flags are provided, host controller drivers will 764 * attempt to use the dma addresses found in the transfer_dma and/or 765 * setup_dma fields rather than determining a dma address themselves. (Note 766 * that transfer_buffer and setup_packet must still be set because not all 767 * host controllers use DMA, nor do virtual root hubs). 768 * 769 * Initialization: 770 * 771 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 772 * zero), and complete fields. All URBs must also initialize 773 * transfer_buffer and transfer_buffer_length. They may provide the 774 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 775 * to be treated as errors; that flag is invalid for write requests. 776 * 777 * Bulk URBs may 778 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 779 * should always terminate with a short packet, even if it means adding an 780 * extra zero length packet. 781 * 782 * Control URBs must provide a setup_packet. The setup_packet and 783 * transfer_buffer may each be mapped for DMA or not, independently of 784 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 785 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 786 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 787 * 788 * Interrupt URBs must provide an interval, saying how often (in milliseconds 789 * or, for highspeed devices, 125 microsecond units) 790 * to poll for transfers. After the URB has been submitted, the interval 791 * field reflects how the transfer was actually scheduled. 792 * The polling interval may be more frequent than requested. 793 * For example, some controllers have a maximum interval of 32 milliseconds, 794 * while others support intervals of up to 1024 milliseconds. 795 * Isochronous URBs also have transfer intervals. (Note that for isochronous 796 * endpoints, as well as high speed interrupt endpoints, the encoding of 797 * the transfer interval in the endpoint descriptor is logarithmic. 798 * Device drivers must convert that value to linear units themselves.) 799 * 800 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 801 * the host controller to schedule the transfer as soon as bandwidth 802 * utilization allows, and then set start_frame to reflect the actual frame 803 * selected during submission. Otherwise drivers must specify the start_frame 804 * and handle the case where the transfer can't begin then. However, drivers 805 * won't know how bandwidth is currently allocated, and while they can 806 * find the current frame using usb_get_current_frame_number () they can't 807 * know the range for that frame number. (Ranges for frame counter values 808 * are HC-specific, and can go from 256 to 65536 frames from "now".) 809 * 810 * Isochronous URBs have a different data transfer model, in part because 811 * the quality of service is only "best effort". Callers provide specially 812 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 813 * at the end. Each such packet is an individual ISO transfer. Isochronous 814 * URBs are normally queued, submitted by drivers to arrange that 815 * transfers are at least double buffered, and then explicitly resubmitted 816 * in completion handlers, so 817 * that data (such as audio or video) streams at as constant a rate as the 818 * host controller scheduler can support. 819 * 820 * Completion Callbacks: 821 * 822 * The completion callback is made in_interrupt(), and one of the first 823 * things that a completion handler should do is check the status field. 824 * The status field is provided for all URBs. It is used to report 825 * unlinked URBs, and status for all non-ISO transfers. It should not 826 * be examined before the URB is returned to the completion handler. 827 * 828 * The context field is normally used to link URBs back to the relevant 829 * driver or request state. 830 * 831 * When the completion callback is invoked for non-isochronous URBs, the 832 * actual_length field tells how many bytes were transferred. This field 833 * is updated even when the URB terminated with an error or was unlinked. 834 * 835 * ISO transfer status is reported in the status and actual_length fields 836 * of the iso_frame_desc array, and the number of errors is reported in 837 * error_count. Completion callbacks for ISO transfers will normally 838 * (re)submit URBs to ensure a constant transfer rate. 839 * 840 * Note that even fields marked "public" should not be touched by the driver 841 * when the urb is owned by the hcd, that is, since the call to 842 * usb_submit_urb() till the entry into the completion routine. 843 */ 844 struct urb 845 { 846 /* private: usb core and host controller only fields in the urb */ 847 struct kref kref; /* reference count of the URB */ 848 spinlock_t lock; /* lock for the URB */ 849 void *hcpriv; /* private data for host controller */ 850 int bandwidth; /* bandwidth for INT/ISO request */ 851 atomic_t use_count; /* concurrent submissions counter */ 852 u8 reject; /* submissions will fail */ 853 854 /* public: documented fields in the urb that can be used by drivers */ 855 struct list_head urb_list; /* list head for use by the urb's 856 * current owner */ 857 struct usb_device *dev; /* (in) pointer to associated device */ 858 unsigned int pipe; /* (in) pipe information */ 859 int status; /* (return) non-ISO status */ 860 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 861 void *transfer_buffer; /* (in) associated data buffer */ 862 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 863 int transfer_buffer_length; /* (in) data buffer length */ 864 int actual_length; /* (return) actual transfer length */ 865 unsigned char *setup_packet; /* (in) setup packet (control only) */ 866 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 867 int start_frame; /* (modify) start frame (ISO) */ 868 int number_of_packets; /* (in) number of ISO packets */ 869 int interval; /* (modify) transfer interval 870 * (INT/ISO) */ 871 int error_count; /* (return) number of ISO errors */ 872 void *context; /* (in) context for completion */ 873 usb_complete_t complete; /* (in) completion routine */ 874 struct usb_iso_packet_descriptor iso_frame_desc[0]; 875 /* (in) ISO ONLY */ 876 }; 877 878 /* ----------------------------------------------------------------------- */ 879 880 /** 881 * usb_fill_control_urb - initializes a control urb 882 * @urb: pointer to the urb to initialize. 883 * @dev: pointer to the struct usb_device for this urb. 884 * @pipe: the endpoint pipe 885 * @setup_packet: pointer to the setup_packet buffer 886 * @transfer_buffer: pointer to the transfer buffer 887 * @buffer_length: length of the transfer buffer 888 * @complete: pointer to the usb_complete_t function 889 * @context: what to set the urb context to. 890 * 891 * Initializes a control urb with the proper information needed to submit 892 * it to a device. 893 */ 894 static inline void usb_fill_control_urb (struct urb *urb, 895 struct usb_device *dev, 896 unsigned int pipe, 897 unsigned char *setup_packet, 898 void *transfer_buffer, 899 int buffer_length, 900 usb_complete_t complete, 901 void *context) 902 { 903 spin_lock_init(&urb->lock); 904 urb->dev = dev; 905 urb->pipe = pipe; 906 urb->setup_packet = setup_packet; 907 urb->transfer_buffer = transfer_buffer; 908 urb->transfer_buffer_length = buffer_length; 909 urb->complete = complete; 910 urb->context = context; 911 } 912 913 /** 914 * usb_fill_bulk_urb - macro to help initialize a bulk urb 915 * @urb: pointer to the urb to initialize. 916 * @dev: pointer to the struct usb_device for this urb. 917 * @pipe: the endpoint pipe 918 * @transfer_buffer: pointer to the transfer buffer 919 * @buffer_length: length of the transfer buffer 920 * @complete: pointer to the usb_complete_t function 921 * @context: what to set the urb context to. 922 * 923 * Initializes a bulk urb with the proper information needed to submit it 924 * to a device. 925 */ 926 static inline void usb_fill_bulk_urb (struct urb *urb, 927 struct usb_device *dev, 928 unsigned int pipe, 929 void *transfer_buffer, 930 int buffer_length, 931 usb_complete_t complete, 932 void *context) 933 { 934 spin_lock_init(&urb->lock); 935 urb->dev = dev; 936 urb->pipe = pipe; 937 urb->transfer_buffer = transfer_buffer; 938 urb->transfer_buffer_length = buffer_length; 939 urb->complete = complete; 940 urb->context = context; 941 } 942 943 /** 944 * usb_fill_int_urb - macro to help initialize a interrupt urb 945 * @urb: pointer to the urb to initialize. 946 * @dev: pointer to the struct usb_device for this urb. 947 * @pipe: the endpoint pipe 948 * @transfer_buffer: pointer to the transfer buffer 949 * @buffer_length: length of the transfer buffer 950 * @complete: pointer to the usb_complete_t function 951 * @context: what to set the urb context to. 952 * @interval: what to set the urb interval to, encoded like 953 * the endpoint descriptor's bInterval value. 954 * 955 * Initializes a interrupt urb with the proper information needed to submit 956 * it to a device. 957 * Note that high speed interrupt endpoints use a logarithmic encoding of 958 * the endpoint interval, and express polling intervals in microframes 959 * (eight per millisecond) rather than in frames (one per millisecond). 960 */ 961 static inline void usb_fill_int_urb (struct urb *urb, 962 struct usb_device *dev, 963 unsigned int pipe, 964 void *transfer_buffer, 965 int buffer_length, 966 usb_complete_t complete, 967 void *context, 968 int interval) 969 { 970 spin_lock_init(&urb->lock); 971 urb->dev = dev; 972 urb->pipe = pipe; 973 urb->transfer_buffer = transfer_buffer; 974 urb->transfer_buffer_length = buffer_length; 975 urb->complete = complete; 976 urb->context = context; 977 if (dev->speed == USB_SPEED_HIGH) 978 urb->interval = 1 << (interval - 1); 979 else 980 urb->interval = interval; 981 urb->start_frame = -1; 982 } 983 984 extern void usb_init_urb(struct urb *urb); 985 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 986 extern void usb_free_urb(struct urb *urb); 987 #define usb_put_urb usb_free_urb 988 extern struct urb *usb_get_urb(struct urb *urb); 989 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 990 extern int usb_unlink_urb(struct urb *urb); 991 extern void usb_kill_urb(struct urb *urb); 992 993 #define HAVE_USB_BUFFERS 994 void *usb_buffer_alloc (struct usb_device *dev, size_t size, 995 gfp_t mem_flags, dma_addr_t *dma); 996 void usb_buffer_free (struct usb_device *dev, size_t size, 997 void *addr, dma_addr_t dma); 998 999 #if 0 1000 struct urb *usb_buffer_map (struct urb *urb); 1001 void usb_buffer_dmasync (struct urb *urb); 1002 void usb_buffer_unmap (struct urb *urb); 1003 #endif 1004 1005 struct scatterlist; 1006 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, 1007 struct scatterlist *sg, int nents); 1008 #if 0 1009 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, 1010 struct scatterlist *sg, int n_hw_ents); 1011 #endif 1012 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, 1013 struct scatterlist *sg, int n_hw_ents); 1014 1015 /*-------------------------------------------------------------------* 1016 * SYNCHRONOUS CALL SUPPORT * 1017 *-------------------------------------------------------------------*/ 1018 1019 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1020 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1021 void *data, __u16 size, int timeout); 1022 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1023 void *data, int len, int *actual_length, int timeout); 1024 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1025 void *data, int len, int *actual_length, 1026 int timeout); 1027 1028 /* wrappers around usb_control_msg() for the most common standard requests */ 1029 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1030 unsigned char descindex, void *buf, int size); 1031 extern int usb_get_status(struct usb_device *dev, 1032 int type, int target, void *data); 1033 extern int usb_string(struct usb_device *dev, int index, 1034 char *buf, size_t size); 1035 1036 /* wrappers that also update important state inside usbcore */ 1037 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1038 extern int usb_reset_configuration(struct usb_device *dev); 1039 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1040 1041 /* 1042 * timeouts, in milliseconds, used for sending/receiving control messages 1043 * they typically complete within a few frames (msec) after they're issued 1044 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1045 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1046 */ 1047 #define USB_CTRL_GET_TIMEOUT 5000 1048 #define USB_CTRL_SET_TIMEOUT 5000 1049 1050 1051 /** 1052 * struct usb_sg_request - support for scatter/gather I/O 1053 * @status: zero indicates success, else negative errno 1054 * @bytes: counts bytes transferred. 1055 * 1056 * These requests are initialized using usb_sg_init(), and then are used 1057 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1058 * members of the request object aren't for driver access. 1059 * 1060 * The status and bytecount values are valid only after usb_sg_wait() 1061 * returns. If the status is zero, then the bytecount matches the total 1062 * from the request. 1063 * 1064 * After an error completion, drivers may need to clear a halt condition 1065 * on the endpoint. 1066 */ 1067 struct usb_sg_request { 1068 int status; 1069 size_t bytes; 1070 1071 /* 1072 * members below are private: to usbcore, 1073 * and are not provided for driver access! 1074 */ 1075 spinlock_t lock; 1076 1077 struct usb_device *dev; 1078 int pipe; 1079 struct scatterlist *sg; 1080 int nents; 1081 1082 int entries; 1083 struct urb **urbs; 1084 1085 int count; 1086 struct completion complete; 1087 }; 1088 1089 int usb_sg_init ( 1090 struct usb_sg_request *io, 1091 struct usb_device *dev, 1092 unsigned pipe, 1093 unsigned period, 1094 struct scatterlist *sg, 1095 int nents, 1096 size_t length, 1097 gfp_t mem_flags 1098 ); 1099 void usb_sg_cancel (struct usb_sg_request *io); 1100 void usb_sg_wait (struct usb_sg_request *io); 1101 1102 1103 /* ----------------------------------------------------------------------- */ 1104 1105 /* 1106 * For various legacy reasons, Linux has a small cookie that's paired with 1107 * a struct usb_device to identify an endpoint queue. Queue characteristics 1108 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1109 * an unsigned int encoded as: 1110 * 1111 * - direction: bit 7 (0 = Host-to-Device [Out], 1112 * 1 = Device-to-Host [In] ... 1113 * like endpoint bEndpointAddress) 1114 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1115 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1116 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1117 * 10 = control, 11 = bulk) 1118 * 1119 * Given the device address and endpoint descriptor, pipes are redundant. 1120 */ 1121 1122 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1123 /* (yet ... they're the values used by usbfs) */ 1124 #define PIPE_ISOCHRONOUS 0 1125 #define PIPE_INTERRUPT 1 1126 #define PIPE_CONTROL 2 1127 #define PIPE_BULK 3 1128 1129 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1130 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1131 1132 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1133 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1134 1135 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1136 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1137 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1138 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1139 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1140 1141 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1142 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1143 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1144 #define usb_settoggle(dev, ep, out, bit) \ 1145 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1146 ((bit) << (ep))) 1147 1148 1149 static inline unsigned int __create_pipe(struct usb_device *dev, 1150 unsigned int endpoint) 1151 { 1152 return (dev->devnum << 8) | (endpoint << 15); 1153 } 1154 1155 /* Create various pipes... */ 1156 #define usb_sndctrlpipe(dev,endpoint) \ 1157 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1158 #define usb_rcvctrlpipe(dev,endpoint) \ 1159 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1160 #define usb_sndisocpipe(dev,endpoint) \ 1161 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1162 #define usb_rcvisocpipe(dev,endpoint) \ 1163 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1164 #define usb_sndbulkpipe(dev,endpoint) \ 1165 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1166 #define usb_rcvbulkpipe(dev,endpoint) \ 1167 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1168 #define usb_sndintpipe(dev,endpoint) \ 1169 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1170 #define usb_rcvintpipe(dev,endpoint) \ 1171 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1172 1173 /*-------------------------------------------------------------------------*/ 1174 1175 static inline __u16 1176 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1177 { 1178 struct usb_host_endpoint *ep; 1179 unsigned epnum = usb_pipeendpoint(pipe); 1180 1181 if (is_out) { 1182 WARN_ON(usb_pipein(pipe)); 1183 ep = udev->ep_out[epnum]; 1184 } else { 1185 WARN_ON(usb_pipeout(pipe)); 1186 ep = udev->ep_in[epnum]; 1187 } 1188 if (!ep) 1189 return 0; 1190 1191 /* NOTE: only 0x07ff bits are for packet size... */ 1192 return le16_to_cpu(ep->desc.wMaxPacketSize); 1193 } 1194 1195 /* ----------------------------------------------------------------------- */ 1196 1197 /* Events from the usb core */ 1198 #define USB_DEVICE_ADD 0x0001 1199 #define USB_DEVICE_REMOVE 0x0002 1200 #define USB_BUS_ADD 0x0003 1201 #define USB_BUS_REMOVE 0x0004 1202 extern void usb_register_notify(struct notifier_block *nb); 1203 extern void usb_unregister_notify(struct notifier_block *nb); 1204 1205 #ifdef DEBUG 1206 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1207 __FILE__ , ## arg) 1208 #else 1209 #define dbg(format, arg...) do {} while (0) 1210 #endif 1211 1212 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1213 __FILE__ , ## arg) 1214 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1215 __FILE__ , ## arg) 1216 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1217 __FILE__ , ## arg) 1218 1219 1220 #endif /* __KERNEL__ */ 1221 1222 #endif 1223