1 /* 2 * Broadcom BCMSDH to SPI Protocol Conversion Layer 3 * 4 * Copyright (C) 1999-2010, Broadcom Corporation 5 * 6 * Unless you and Broadcom execute a separate written software license 7 * agreement governing use of this software, this software is licensed to you 8 * under the terms of the GNU General Public License version 2 (the "GPL"), 9 * available at http://www.broadcom.com/licenses/GPLv2.php, with the 10 * following added to such license: 11 * 12 * As a special exception, the copyright holders of this software give you 13 * permission to link this software with independent modules, and to copy and 14 * distribute the resulting executable under terms of your choice, provided that 15 * you also meet, for each linked independent module, the terms and conditions of 16 * the license of that module. An independent module is a module which is not 17 * derived from this software. The special exception does not apply to any 18 * modifications of the software. 19 * 20 * Notwithstanding the above, under no circumstances may you combine this 21 * software in any way with any other Broadcom software provided under a license 22 * other than the GPL, without Broadcom's express prior written consent. 23 * 24 * $Id: bcmsdspi.c,v 1.14.4.2.4.4.6.5 2010/03/10 03:09:48 Exp $ 25 */ 26 27 #include <typedefs.h> 28 29 #include <bcmdevs.h> 30 #include <bcmendian.h> 31 #include <bcmutils.h> 32 #include <osl.h> 33 #include <siutils.h> 34 #include <sdio.h> /* SDIO Device and Protocol Specs */ 35 #include <sdioh.h> /* SDIO Host Controller Specification */ 36 #include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */ 37 #include <sdiovar.h> /* ioctl/iovars */ 38 39 #include <pcicfg.h> 40 41 42 #include <bcmsdspi.h> 43 #include <bcmspi.h> 44 45 #include <proto/sdspi.h> 46 47 #define SD_PAGE 4096 48 49 /* Globals */ 50 51 uint sd_msglevel = SDH_ERROR_VAL; 52 uint sd_hiok = FALSE; /* Use hi-speed mode if available? */ 53 uint sd_sdmode = SDIOH_MODE_SPI; /* Use SD4 mode by default */ 54 uint sd_f2_blocksize = 512; /* Default blocksize */ 55 56 uint sd_divisor = 2; /* Default 33MHz/2 = 16MHz for dongle */ 57 uint sd_power = 1; /* Default to SD Slot powered ON */ 58 uint sd_clock = 1; /* Default to SD Clock turned ON */ 59 uint sd_crc = 0; /* Default to SPI CRC Check turned OFF */ 60 uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */ 61 62 uint sd_toctl = 7; 63 64 /* Prototypes */ 65 static bool sdspi_start_power(sdioh_info_t *sd); 66 static int sdspi_set_highspeed_mode(sdioh_info_t *sd, bool HSMode); 67 static int sdspi_card_enablefuncs(sdioh_info_t *sd); 68 static void sdspi_cmd_getrsp(sdioh_info_t *sd, uint32 *rsp_buffer, int count); 69 static int sdspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd, uint32 arg, 70 uint32 *data, uint32 datalen); 71 static int sdspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, 72 int regsize, uint32 *data); 73 static int sdspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, 74 int regsize, uint32 data); 75 static int sdspi_driver_init(sdioh_info_t *sd); 76 static bool sdspi_reset(sdioh_info_t *sd, bool host_reset, bool client_reset); 77 static int sdspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, 78 uint32 addr, int nbytes, uint32 *data); 79 static int sdspi_abort(sdioh_info_t *sd, uint func); 80 81 static int set_client_block_size(sdioh_info_t *sd, int func, int blocksize); 82 83 static uint8 sdspi_crc7(unsigned char* p, uint32 len); 84 static uint16 sdspi_crc16(unsigned char* p, uint32 len); 85 static int sdspi_crc_onoff(sdioh_info_t *sd, bool use_crc); 86 87 /* 88 * Public entry points & extern's 89 */ 90 extern sdioh_info_t * 91 sdioh_attach(osl_t *osh, void *bar0, uint irq) 92 { 93 sdioh_info_t *sd; 94 95 sd_trace(("%s\n", __FUNCTION__)); 96 if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) { 97 sd_err(("sdioh_attach: out of memory, malloced %d bytes\n", MALLOCED(osh))); 98 return NULL; 99 } 100 bzero((char *)sd, sizeof(sdioh_info_t)); 101 sd->osh = osh; 102 103 if (spi_osinit(sd) != 0) { 104 sd_err(("%s: spi_osinit() failed\n", __FUNCTION__)); 105 MFREE(sd->osh, sd, sizeof(sdioh_info_t)); 106 return NULL; 107 } 108 109 sd->bar0 = (uintptr)bar0; 110 sd->irq = irq; 111 sd->intr_handler = NULL; 112 sd->intr_handler_arg = NULL; 113 sd->intr_handler_valid = FALSE; 114 115 /* Set defaults */ 116 sd->sd_blockmode = FALSE; 117 sd->use_client_ints = TRUE; 118 sd->sd_use_dma = FALSE; /* DMA Not supported */ 119 120 /* Haven't figured out how to make bytemode work with dma */ 121 if (!sd->sd_blockmode) 122 sd->sd_use_dma = 0; 123 124 if (!spi_hw_attach(sd)) { 125 sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__)); 126 spi_osfree(sd); 127 MFREE(sd->osh, sd, sizeof(sdioh_info_t)); 128 return NULL; 129 } 130 131 if (sdspi_driver_init(sd) != SUCCESS) { 132 if (sdspi_driver_init(sd) != SUCCESS) { 133 sd_err(("%s:sdspi_driver_init() failed()\n", __FUNCTION__)); 134 spi_hw_detach(sd); 135 spi_osfree(sd); 136 MFREE(sd->osh, sd, sizeof(sdioh_info_t)); 137 return (NULL); 138 } 139 } 140 141 if (spi_register_irq(sd, irq) != SUCCESS) { 142 sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq)); 143 spi_hw_detach(sd); 144 spi_osfree(sd); 145 MFREE(sd->osh, sd, sizeof(sdioh_info_t)); 146 return (NULL); 147 } 148 149 sd_trace(("%s: Done\n", __FUNCTION__)); 150 return sd; 151 } 152 153 extern SDIOH_API_RC 154 sdioh_detach(osl_t *osh, sdioh_info_t *sd) 155 { 156 sd_trace(("%s\n", __FUNCTION__)); 157 158 if (sd) { 159 if (sd->card_init_done) 160 sdspi_reset(sd, 1, 1); 161 162 sd_info(("%s: detaching from hardware\n", __FUNCTION__)); 163 spi_free_irq(sd->irq, sd); 164 spi_hw_detach(sd); 165 spi_osfree(sd); 166 MFREE(sd->osh, sd, sizeof(sdioh_info_t)); 167 } 168 169 return SDIOH_API_RC_SUCCESS; 170 } 171 172 /* Configure callback to client when we recieve client interrupt */ 173 extern SDIOH_API_RC 174 sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh) 175 { 176 sd_trace(("%s: Entering\n", __FUNCTION__)); 177 178 sd->intr_handler = fn; 179 sd->intr_handler_arg = argh; 180 sd->intr_handler_valid = TRUE; 181 182 return SDIOH_API_RC_SUCCESS; 183 } 184 185 extern SDIOH_API_RC 186 sdioh_interrupt_deregister(sdioh_info_t *sd) 187 { 188 sd_trace(("%s: Entering\n", __FUNCTION__)); 189 190 sd->intr_handler_valid = FALSE; 191 sd->intr_handler = NULL; 192 sd->intr_handler_arg = NULL; 193 194 return SDIOH_API_RC_SUCCESS; 195 } 196 197 extern SDIOH_API_RC 198 sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff) 199 { 200 sd_trace(("%s: Entering\n", __FUNCTION__)); 201 202 *onoff = sd->client_intr_enabled; 203 204 return SDIOH_API_RC_SUCCESS; 205 } 206 207 #if defined(DHD_DEBUG) 208 extern bool 209 sdioh_interrupt_pending(sdioh_info_t *sd) 210 { 211 return 0; 212 } 213 #endif 214 215 uint 216 sdioh_query_iofnum(sdioh_info_t *sd) 217 { 218 return sd->num_funcs; 219 } 220 221 /* IOVar table */ 222 enum { 223 IOV_MSGLEVEL = 1, 224 IOV_BLOCKMODE, 225 IOV_BLOCKSIZE, 226 IOV_DMA, 227 IOV_USEINTS, 228 IOV_NUMINTS, 229 IOV_NUMLOCALINTS, 230 IOV_HOSTREG, 231 IOV_DEVREG, 232 IOV_DIVISOR, 233 IOV_SDMODE, 234 IOV_HISPEED, 235 IOV_HCIREGS, 236 IOV_POWER, 237 IOV_CLOCK, 238 IOV_CRC 239 }; 240 241 const bcm_iovar_t sdioh_iovars[] = { 242 {"sd_msglevel", IOV_MSGLEVEL, 0, IOVT_UINT32, 0 }, 243 {"sd_blockmode", IOV_BLOCKMODE, 0, IOVT_BOOL, 0 }, 244 {"sd_blocksize", IOV_BLOCKSIZE, 0, IOVT_UINT32, 0 }, /* ((fn << 16) | size) */ 245 {"sd_dma", IOV_DMA, 0, IOVT_BOOL, 0 }, 246 {"sd_ints", IOV_USEINTS, 0, IOVT_BOOL, 0 }, 247 {"sd_numints", IOV_NUMINTS, 0, IOVT_UINT32, 0 }, 248 {"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32, 0 }, 249 {"sd_hostreg", IOV_HOSTREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, 250 {"sd_devreg", IOV_DEVREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, 251 {"sd_divisor", IOV_DIVISOR, 0, IOVT_UINT32, 0 }, 252 {"sd_power", IOV_POWER, 0, IOVT_UINT32, 0 }, 253 {"sd_clock", IOV_CLOCK, 0, IOVT_UINT32, 0 }, 254 {"sd_crc", IOV_CRC, 0, IOVT_UINT32, 0 }, 255 {"sd_mode", IOV_SDMODE, 0, IOVT_UINT32, 100}, 256 {"sd_highspeed", IOV_HISPEED, 0, IOVT_UINT32, 0}, 257 {NULL, 0, 0, 0, 0 } 258 }; 259 260 int 261 sdioh_iovar_op(sdioh_info_t *si, const char *name, 262 void *params, int plen, void *arg, int len, bool set) 263 { 264 const bcm_iovar_t *vi = NULL; 265 int bcmerror = 0; 266 int val_size; 267 int32 int_val = 0; 268 bool bool_val; 269 uint32 actionid; 270 271 ASSERT(name); 272 ASSERT(len >= 0); 273 274 /* Get must have return space; Set does not take qualifiers */ 275 ASSERT(set || (arg && len)); 276 ASSERT(!set || (!params && !plen)); 277 278 sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name)); 279 280 if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) { 281 bcmerror = BCME_UNSUPPORTED; 282 goto exit; 283 } 284 285 if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0) 286 goto exit; 287 288 /* Set up params so get and set can share the convenience variables */ 289 if (params == NULL) { 290 params = arg; 291 plen = len; 292 } 293 294 if (vi->type == IOVT_VOID) 295 val_size = 0; 296 else if (vi->type == IOVT_BUFFER) 297 val_size = len; 298 else 299 val_size = sizeof(int); 300 301 if (plen >= (int)sizeof(int_val)) 302 bcopy(params, &int_val, sizeof(int_val)); 303 304 bool_val = (int_val != 0) ? TRUE : FALSE; 305 306 actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid); 307 switch (actionid) { 308 case IOV_GVAL(IOV_MSGLEVEL): 309 int_val = (int32)sd_msglevel; 310 bcopy(&int_val, arg, val_size); 311 break; 312 313 case IOV_SVAL(IOV_MSGLEVEL): 314 sd_msglevel = int_val; 315 break; 316 317 case IOV_GVAL(IOV_BLOCKMODE): 318 int_val = (int32)si->sd_blockmode; 319 bcopy(&int_val, arg, val_size); 320 break; 321 322 case IOV_SVAL(IOV_BLOCKMODE): 323 si->sd_blockmode = (bool)int_val; 324 /* Haven't figured out how to make non-block mode with DMA */ 325 if (!si->sd_blockmode) 326 si->sd_use_dma = 0; 327 break; 328 329 case IOV_GVAL(IOV_BLOCKSIZE): 330 if ((uint32)int_val > si->num_funcs) { 331 bcmerror = BCME_BADARG; 332 break; 333 } 334 int_val = (int32)si->client_block_size[int_val]; 335 bcopy(&int_val, arg, val_size); 336 break; 337 338 case IOV_SVAL(IOV_BLOCKSIZE): 339 { 340 uint func = ((uint32)int_val >> 16); 341 uint blksize = (uint16)int_val; 342 uint maxsize; 343 344 if (func > si->num_funcs) { 345 bcmerror = BCME_BADARG; 346 break; 347 } 348 349 switch (func) { 350 case 0: maxsize = 32; break; 351 case 1: maxsize = BLOCK_SIZE_4318; break; 352 case 2: maxsize = BLOCK_SIZE_4328; break; 353 default: maxsize = 0; 354 } 355 if (blksize > maxsize) { 356 bcmerror = BCME_BADARG; 357 break; 358 } 359 if (!blksize) { 360 blksize = maxsize; 361 } 362 363 /* Now set it */ 364 spi_lock(si); 365 bcmerror = set_client_block_size(si, func, blksize); 366 spi_unlock(si); 367 break; 368 } 369 370 case IOV_GVAL(IOV_DMA): 371 int_val = (int32)si->sd_use_dma; 372 bcopy(&int_val, arg, val_size); 373 break; 374 375 case IOV_SVAL(IOV_DMA): 376 si->sd_use_dma = (bool)int_val; 377 break; 378 379 case IOV_GVAL(IOV_USEINTS): 380 int_val = (int32)si->use_client_ints; 381 bcopy(&int_val, arg, val_size); 382 break; 383 384 case IOV_SVAL(IOV_USEINTS): 385 break; 386 387 case IOV_GVAL(IOV_DIVISOR): 388 int_val = (uint32)sd_divisor; 389 bcopy(&int_val, arg, val_size); 390 break; 391 392 case IOV_SVAL(IOV_DIVISOR): 393 sd_divisor = int_val; 394 if (!spi_start_clock(si, (uint16)sd_divisor)) { 395 sd_err(("set clock failed!\n")); 396 bcmerror = BCME_ERROR; 397 } 398 break; 399 400 case IOV_GVAL(IOV_POWER): 401 int_val = (uint32)sd_power; 402 bcopy(&int_val, arg, val_size); 403 break; 404 405 case IOV_SVAL(IOV_POWER): 406 sd_power = int_val; 407 break; 408 409 case IOV_GVAL(IOV_CLOCK): 410 int_val = (uint32)sd_clock; 411 bcopy(&int_val, arg, val_size); 412 break; 413 414 case IOV_SVAL(IOV_CLOCK): 415 sd_clock = int_val; 416 break; 417 418 case IOV_GVAL(IOV_CRC): 419 int_val = (uint32)sd_crc; 420 bcopy(&int_val, arg, val_size); 421 break; 422 423 case IOV_SVAL(IOV_CRC): 424 /* Apply new setting, but don't change sd_crc until 425 * after the CRC-mode is selected in the device. This 426 * is required because the software must generate a 427 * correct CRC for the CMD59 in order to be able to 428 * turn OFF the CRC. 429 */ 430 sdspi_crc_onoff(si, int_val ? 1 : 0); 431 sd_crc = int_val; 432 break; 433 434 case IOV_GVAL(IOV_SDMODE): 435 int_val = (uint32)sd_sdmode; 436 bcopy(&int_val, arg, val_size); 437 break; 438 439 case IOV_SVAL(IOV_SDMODE): 440 sd_sdmode = int_val; 441 break; 442 443 case IOV_GVAL(IOV_HISPEED): 444 int_val = (uint32)sd_hiok; 445 bcopy(&int_val, arg, val_size); 446 break; 447 448 case IOV_SVAL(IOV_HISPEED): 449 sd_hiok = int_val; 450 451 if (!sdspi_set_highspeed_mode(si, (bool)sd_hiok)) { 452 sd_err(("Failed changing highspeed mode to %d.\n", sd_hiok)); 453 bcmerror = BCME_ERROR; 454 return ERROR; 455 } 456 break; 457 458 case IOV_GVAL(IOV_NUMINTS): 459 int_val = (int32)si->intrcount; 460 bcopy(&int_val, arg, val_size); 461 break; 462 463 case IOV_GVAL(IOV_NUMLOCALINTS): 464 int_val = (int32)si->local_intrcount; 465 bcopy(&int_val, arg, val_size); 466 break; 467 468 case IOV_GVAL(IOV_HOSTREG): 469 { 470 break; 471 } 472 473 case IOV_SVAL(IOV_HOSTREG): 474 { 475 sd_err(("IOV_HOSTREG unsupported\n")); 476 break; 477 } 478 479 case IOV_GVAL(IOV_DEVREG): 480 { 481 sdreg_t *sd_ptr = (sdreg_t *)params; 482 uint8 data; 483 484 if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) { 485 bcmerror = BCME_SDIO_ERROR; 486 break; 487 } 488 489 int_val = (int)data; 490 bcopy(&int_val, arg, sizeof(int_val)); 491 break; 492 } 493 494 case IOV_SVAL(IOV_DEVREG): 495 { 496 sdreg_t *sd_ptr = (sdreg_t *)params; 497 uint8 data = (uint8)sd_ptr->value; 498 499 if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) { 500 bcmerror = BCME_SDIO_ERROR; 501 break; 502 } 503 break; 504 } 505 506 507 default: 508 bcmerror = BCME_UNSUPPORTED; 509 break; 510 } 511 exit: 512 513 return bcmerror; 514 } 515 516 extern SDIOH_API_RC 517 sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data) 518 { 519 SDIOH_API_RC status; 520 /* No lock needed since sdioh_request_byte does locking */ 521 status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data); 522 return status; 523 } 524 525 extern SDIOH_API_RC 526 sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data) 527 { 528 /* No lock needed since sdioh_request_byte does locking */ 529 SDIOH_API_RC status; 530 status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data); 531 return status; 532 } 533 534 extern SDIOH_API_RC 535 sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length) 536 { 537 uint32 count; 538 int offset; 539 uint32 foo; 540 uint8 *cis = cisd; 541 542 sd_trace(("%s: Func = %d\n", __FUNCTION__, func)); 543 544 if (!sd->func_cis_ptr[func]) { 545 bzero(cis, length); 546 return SDIOH_API_RC_FAIL; 547 } 548 549 spi_lock(sd); 550 *cis = 0; 551 for (count = 0; count < length; count++) { 552 offset = sd->func_cis_ptr[func] + count; 553 if (sdspi_card_regread (sd, 0, offset, 1, &foo) < 0) { 554 sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__)); 555 spi_unlock(sd); 556 return SDIOH_API_RC_FAIL; 557 } 558 *cis = (uint8)(foo & 0xff); 559 cis++; 560 } 561 spi_unlock(sd); 562 return SDIOH_API_RC_SUCCESS; 563 } 564 565 extern SDIOH_API_RC 566 sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte) 567 { 568 int status; 569 uint32 cmd_arg; 570 uint32 rsp5; 571 572 spi_lock(sd); 573 574 cmd_arg = 0; 575 cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func); 576 cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr); 577 cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, rw == SDIOH_READ ? 0 : 1); 578 cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0); 579 cmd_arg = SFIELD(cmd_arg, CMD52_DATA, rw == SDIOH_READ ? 0 : *byte); 580 581 sd_trace(("%s: rw=%d, func=%d, regaddr=0x%08x\n", __FUNCTION__, rw, func, regaddr)); 582 583 if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, 584 SDIOH_CMD_52, cmd_arg, NULL, 0)) != SUCCESS) { 585 spi_unlock(sd); 586 return status; 587 } 588 589 sdspi_cmd_getrsp(sd, &rsp5, 1); 590 if (rsp5 != 0x00) { 591 sd_err(("%s: rsp5 flags is 0x%x func=%d\n", 592 __FUNCTION__, rsp5, func)); 593 /* ASSERT(0); */ 594 spi_unlock(sd); 595 return SDIOH_API_RC_FAIL; 596 } 597 598 if (rw == SDIOH_READ) 599 *byte = sd->card_rsp_data >> 24; 600 601 spi_unlock(sd); 602 return SDIOH_API_RC_SUCCESS; 603 } 604 605 extern SDIOH_API_RC 606 sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr, 607 uint32 *word, uint nbytes) 608 { 609 int status; 610 611 spi_lock(sd); 612 613 if (rw == SDIOH_READ) 614 status = sdspi_card_regread(sd, func, addr, nbytes, word); 615 else 616 status = sdspi_card_regwrite(sd, func, addr, nbytes, *word); 617 618 spi_unlock(sd); 619 return (status == SUCCESS ? SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL); 620 } 621 622 extern SDIOH_API_RC 623 sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func, 624 uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt) 625 { 626 int len; 627 int buflen = (int)buflen_u; 628 bool fifo = (fix_inc == SDIOH_DATA_FIX); 629 630 spi_lock(sd); 631 632 ASSERT(reg_width == 4); 633 ASSERT(buflen_u < (1 << 30)); 634 ASSERT(sd->client_block_size[func]); 635 636 sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n", 637 __FUNCTION__, rw == SDIOH_READ ? 'R' : 'W', 638 buflen_u, sd->r_cnt, sd->t_cnt, pkt)); 639 640 /* Break buffer down into blocksize chunks: 641 * Bytemode: 1 block at a time. 642 */ 643 while (buflen > 0) { 644 if (sd->sd_blockmode) { 645 /* Max xfer is Page size */ 646 len = MIN(SD_PAGE, buflen); 647 648 /* Round down to a block boundry */ 649 if (buflen > sd->client_block_size[func]) 650 len = (len/sd->client_block_size[func]) * 651 sd->client_block_size[func]; 652 } else { 653 /* Byte mode: One block at a time */ 654 len = MIN(sd->client_block_size[func], buflen); 655 } 656 657 if (sdspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) { 658 spi_unlock(sd); 659 return SDIOH_API_RC_FAIL; 660 } 661 buffer += len; 662 buflen -= len; 663 if (!fifo) 664 addr += len; 665 } 666 spi_unlock(sd); 667 return SDIOH_API_RC_SUCCESS; 668 } 669 670 static int 671 sdspi_abort(sdioh_info_t *sd, uint func) 672 { 673 uint8 spi_databuf[] = { 0x74, 0x80, 0x00, 0x0C, 0xFF, 0x95, 0xFF, 0xFF, 674 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; 675 uint8 spi_rspbuf[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 676 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; 677 int err = 0; 678 679 sd_err(("Sending SPI Abort to F%d\n", func)); 680 spi_databuf[4] = func & 0x7; 681 /* write to function 0, addr 6 (IOABORT) func # in 3 LSBs. */ 682 spi_sendrecv(sd, spi_databuf, spi_rspbuf, sizeof(spi_databuf)); 683 684 return err; 685 } 686 687 extern int 688 sdioh_abort(sdioh_info_t *sd, uint fnum) 689 { 690 int ret; 691 692 spi_lock(sd); 693 ret = sdspi_abort(sd, fnum); 694 spi_unlock(sd); 695 696 return ret; 697 } 698 699 int 700 sdioh_start(sdioh_info_t *sd, int stage) 701 { 702 return SUCCESS; 703 } 704 705 int 706 sdioh_stop(sdioh_info_t *sd) 707 { 708 return SUCCESS; 709 } 710 711 712 /* 713 * Private/Static work routines 714 */ 715 static bool 716 sdspi_reset(sdioh_info_t *sd, bool host_reset, bool client_reset) 717 { 718 if (!sd) 719 return TRUE; 720 721 spi_lock(sd); 722 /* Reset client card */ 723 if (client_reset && (sd->adapter_slot != -1)) { 724 if (sdspi_card_regwrite(sd, 0, SDIOD_CCCR_IOABORT, 1, 0x8) != SUCCESS) 725 sd_err(("%s: Cannot write to card reg 0x%x\n", 726 __FUNCTION__, SDIOD_CCCR_IOABORT)); 727 else 728 sd->card_rca = 0; 729 } 730 731 /* The host reset is a NOP in the sd-spi case. */ 732 if (host_reset) { 733 sd->sd_mode = SDIOH_MODE_SPI; 734 } 735 spi_unlock(sd); 736 return TRUE; 737 } 738 739 static int 740 sdspi_host_init(sdioh_info_t *sd) 741 { 742 sdspi_reset(sd, 1, 0); 743 744 /* Default power on mode is SD1 */ 745 sd->sd_mode = SDIOH_MODE_SPI; 746 sd->polled_mode = TRUE; 747 sd->host_init_done = TRUE; 748 sd->card_init_done = FALSE; 749 sd->adapter_slot = 1; 750 751 return (SUCCESS); 752 } 753 754 #define CMD0_RETRIES 3 755 #define CMD5_RETRIES 10 756 757 static int 758 get_ocr(sdioh_info_t *sd, uint32 *cmd_arg, uint32 *cmd_rsp) 759 { 760 uint32 rsp5; 761 int retries, status; 762 763 /* First issue a CMD0 to get the card into SPI mode. */ 764 for (retries = 0; retries <= CMD0_RETRIES; retries++) { 765 if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, 766 SDIOH_CMD_0, *cmd_arg, NULL, 0)) != SUCCESS) { 767 sd_err(("%s: No response to CMD0\n", __FUNCTION__)); 768 continue; 769 } 770 771 sdspi_cmd_getrsp(sd, &rsp5, 1); 772 773 if (GFIELD(rsp5, SPI_RSP_ILL_CMD)) { 774 printf("%s: Card already initialized (continuing)\n", __FUNCTION__); 775 break; 776 } 777 778 if (GFIELD(rsp5, SPI_RSP_IDLE)) { 779 printf("%s: Card in SPI mode\n", __FUNCTION__); 780 break; 781 } 782 } 783 784 if (retries > CMD0_RETRIES) { 785 sd_err(("%s: Too many retries for CMD0\n", __FUNCTION__)); 786 return ERROR; 787 } 788 789 /* Get the Card's Operation Condition. */ 790 /* Occasionally the board takes a while to become ready. */ 791 for (retries = 0; retries <= CMD5_RETRIES; retries++) { 792 if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, 793 SDIOH_CMD_5, *cmd_arg, NULL, 0)) != SUCCESS) { 794 sd_err(("%s: No response to CMD5\n", __FUNCTION__)); 795 continue; 796 } 797 798 printf("CMD5 response data was: 0x%08x\n", sd->card_rsp_data); 799 800 if (GFIELD(sd->card_rsp_data, RSP4_CARD_READY)) { 801 printf("%s: Card ready\n", __FUNCTION__); 802 break; 803 } 804 } 805 806 if (retries > CMD5_RETRIES) { 807 sd_err(("%s: Too many retries for CMD5\n", __FUNCTION__)); 808 return ERROR; 809 } 810 811 *cmd_rsp = sd->card_rsp_data; 812 813 sdspi_crc_onoff(sd, sd_crc ? 1 : 0); 814 815 return (SUCCESS); 816 } 817 818 static int 819 sdspi_crc_onoff(sdioh_info_t *sd, bool use_crc) 820 { 821 uint32 args; 822 int status; 823 824 args = use_crc ? 1 : 0; 825 if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, 826 SDIOH_CMD_59, args, NULL, 0)) != SUCCESS) { 827 sd_err(("%s: No response to CMD59\n", __FUNCTION__)); 828 } 829 830 sd_info(("CMD59 response data was: 0x%08x\n", sd->card_rsp_data)); 831 832 sd_err(("SD-SPI CRC turned %s\n", use_crc ? "ON" : "OFF")); 833 return (SUCCESS); 834 } 835 836 static int 837 sdspi_client_init(sdioh_info_t *sd) 838 { 839 uint8 fn_ints; 840 841 sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot)); 842 843 /* Start at ~400KHz clock rate for initialization */ 844 if (!spi_start_clock(sd, 128)) { 845 sd_err(("spi_start_clock failed\n")); 846 return ERROR; 847 } 848 849 if (!sdspi_start_power(sd)) { 850 sd_err(("sdspi_start_power failed\n")); 851 return ERROR; 852 } 853 854 if (sd->num_funcs == 0) { 855 sd_err(("%s: No IO funcs!\n", __FUNCTION__)); 856 return ERROR; 857 } 858 859 sdspi_card_enablefuncs(sd); 860 861 set_client_block_size(sd, 1, BLOCK_SIZE_4318); 862 fn_ints = INTR_CTL_FUNC1_EN; 863 864 if (sd->num_funcs >= 2) { 865 set_client_block_size(sd, 2, sd_f2_blocksize /* BLOCK_SIZE_4328 */); 866 fn_ints |= INTR_CTL_FUNC2_EN; 867 } 868 869 /* Enable/Disable Client interrupts */ 870 /* Turn on here but disable at host controller */ 871 if (sdspi_card_regwrite(sd, 0, SDIOD_CCCR_INTEN, 1, 872 (fn_ints | INTR_CTL_MASTER_EN)) != SUCCESS) { 873 sd_err(("%s: Could not enable ints in CCCR\n", __FUNCTION__)); 874 return ERROR; 875 } 876 877 /* Switch to High-speed clocking mode if both host and device support it */ 878 sdspi_set_highspeed_mode(sd, (bool)sd_hiok); 879 880 /* After configuring for High-Speed mode, set the desired clock rate. */ 881 if (!spi_start_clock(sd, (uint16)sd_divisor)) { 882 sd_err(("spi_start_clock failed\n")); 883 return ERROR; 884 } 885 886 sd->card_init_done = TRUE; 887 888 return SUCCESS; 889 } 890 891 static int 892 sdspi_set_highspeed_mode(sdioh_info_t *sd, bool HSMode) 893 { 894 uint32 regdata; 895 int status; 896 bool hsmode; 897 898 if (HSMode == TRUE) { 899 900 sd_err(("Attempting to enable High-Speed mode.\n")); 901 902 if ((status = sdspi_card_regread(sd, 0, SDIOD_CCCR_SPEED_CONTROL, 903 1, ®data)) != SUCCESS) { 904 return status; 905 } 906 if (regdata & SDIO_SPEED_SHS) { 907 sd_err(("Device supports High-Speed mode.\n")); 908 909 regdata |= SDIO_SPEED_EHS; 910 911 sd_err(("Writing %08x to Card at %08x\n", 912 regdata, SDIOD_CCCR_SPEED_CONTROL)); 913 if ((status = sdspi_card_regwrite(sd, 0, SDIOD_CCCR_SPEED_CONTROL, 914 1, regdata)) != BCME_OK) { 915 return status; 916 } 917 918 hsmode = 1; 919 920 sd_err(("High-speed clocking mode enabled.\n")); 921 } 922 else { 923 sd_err(("Device does not support High-Speed Mode.\n")); 924 hsmode = 0; 925 } 926 } else { 927 if ((status = sdspi_card_regread(sd, 0, SDIOD_CCCR_SPEED_CONTROL, 928 1, ®data)) != SUCCESS) { 929 return status; 930 } 931 932 regdata = ~SDIO_SPEED_EHS; 933 934 sd_err(("Writing %08x to Card at %08x\n", 935 regdata, SDIOD_CCCR_SPEED_CONTROL)); 936 if ((status = sdspi_card_regwrite(sd, 0, SDIOD_CCCR_SPEED_CONTROL, 937 1, regdata)) != BCME_OK) { 938 return status; 939 } 940 941 sd_err(("Low-speed clocking mode enabled.\n")); 942 hsmode = 0; 943 } 944 945 spi_controller_highspeed_mode(sd, hsmode); 946 947 return TRUE; 948 } 949 950 bool 951 sdspi_start_power(sdioh_info_t *sd) 952 { 953 uint32 cmd_arg; 954 uint32 cmd_rsp; 955 956 sd_trace(("%s\n", __FUNCTION__)); 957 958 /* Get the Card's Operation Condition. Occasionally the board 959 * takes a while to become ready 960 */ 961 962 cmd_arg = 0; 963 if (get_ocr(sd, &cmd_arg, &cmd_rsp) != SUCCESS) { 964 sd_err(("%s: Failed to get OCR; bailing\n", __FUNCTION__)); 965 return FALSE; 966 } 967 968 sd_err(("mem_present = %d\n", GFIELD(cmd_rsp, RSP4_MEM_PRESENT))); 969 sd_err(("num_funcs = %d\n", GFIELD(cmd_rsp, RSP4_NUM_FUNCS))); 970 sd_err(("card_ready = %d\n", GFIELD(cmd_rsp, RSP4_CARD_READY))); 971 sd_err(("OCR = 0x%x\n", GFIELD(cmd_rsp, RSP4_IO_OCR))); 972 973 /* Verify that the card supports I/O mode */ 974 if (GFIELD(cmd_rsp, RSP4_NUM_FUNCS) == 0) { 975 sd_err(("%s: Card does not support I/O\n", __FUNCTION__)); 976 return ERROR; 977 } 978 979 sd->num_funcs = GFIELD(cmd_rsp, RSP4_NUM_FUNCS); 980 981 /* Examine voltage: Arasan only supports 3.3 volts, 982 * so look for 3.2-3.3 Volts and also 3.3-3.4 volts. 983 */ 984 985 if ((GFIELD(cmd_rsp, RSP4_IO_OCR) & (0x3 << 20)) == 0) { 986 sd_err(("This client does not support 3.3 volts!\n")); 987 return ERROR; 988 } 989 990 991 return TRUE; 992 } 993 994 static int 995 sdspi_driver_init(sdioh_info_t *sd) 996 { 997 sd_trace(("%s\n", __FUNCTION__)); 998 999 if ((sdspi_host_init(sd)) != SUCCESS) { 1000 return ERROR; 1001 } 1002 1003 if (sdspi_client_init(sd) != SUCCESS) { 1004 return ERROR; 1005 } 1006 1007 return SUCCESS; 1008 } 1009 1010 static int 1011 sdspi_card_enablefuncs(sdioh_info_t *sd) 1012 { 1013 int status; 1014 uint32 regdata; 1015 uint32 regaddr, fbraddr; 1016 uint8 func; 1017 uint8 *ptr; 1018 1019 sd_trace(("%s\n", __FUNCTION__)); 1020 /* Get the Card's common CIS address */ 1021 ptr = (uint8 *) &sd->com_cis_ptr; 1022 for (regaddr = SDIOD_CCCR_CISPTR_0; regaddr <= SDIOD_CCCR_CISPTR_2; regaddr++) { 1023 if ((status = sdspi_card_regread (sd, 0, regaddr, 1, ®data)) != SUCCESS) 1024 return status; 1025 1026 *ptr++ = (uint8) regdata; 1027 } 1028 1029 /* Only the lower 17-bits are valid */ 1030 sd->com_cis_ptr &= 0x0001FFFF; 1031 sd->func_cis_ptr[0] = sd->com_cis_ptr; 1032 sd_info(("%s: Card's Common CIS Ptr = 0x%x\n", __FUNCTION__, sd->com_cis_ptr)); 1033 1034 /* Get the Card's function CIS (for each function) */ 1035 for (fbraddr = SDIOD_FBR_STARTADDR, func = 1; 1036 func <= sd->num_funcs; func++, fbraddr += SDIOD_FBR_SIZE) { 1037 ptr = (uint8 *) &sd->func_cis_ptr[func]; 1038 for (regaddr = SDIOD_FBR_CISPTR_0; regaddr <= SDIOD_FBR_CISPTR_2; regaddr++) { 1039 if ((status = sdspi_card_regread (sd, 0, regaddr + fbraddr, 1, ®data)) 1040 != SUCCESS) 1041 return status; 1042 1043 *ptr++ = (uint8) regdata; 1044 } 1045 1046 /* Only the lower 17-bits are valid */ 1047 sd->func_cis_ptr[func] &= 0x0001FFFF; 1048 sd_info(("%s: Function %d CIS Ptr = 0x%x\n", 1049 __FUNCTION__, func, sd->func_cis_ptr[func])); 1050 } 1051 1052 sd_info(("%s: write ESCI bit\n", __FUNCTION__)); 1053 /* Enable continuous SPI interrupt (ESCI bit) */ 1054 sdspi_card_regwrite(sd, 0, SDIOD_CCCR_BICTRL, 1, 0x60); 1055 1056 sd_info(("%s: enable f1\n", __FUNCTION__)); 1057 /* Enable function 1 on the card */ 1058 regdata = SDIO_FUNC_ENABLE_1; 1059 if ((status = sdspi_card_regwrite(sd, 0, SDIOD_CCCR_IOEN, 1, regdata)) != SUCCESS) 1060 return status; 1061 1062 sd_info(("%s: done\n", __FUNCTION__)); 1063 return SUCCESS; 1064 } 1065 1066 /* Read client card reg */ 1067 static int 1068 sdspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data) 1069 { 1070 int status; 1071 uint32 cmd_arg; 1072 uint32 rsp5; 1073 1074 cmd_arg = 0; 1075 1076 if ((func == 0) || (regsize == 1)) { 1077 cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func); 1078 cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr); 1079 cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, SDIOH_XFER_TYPE_READ); 1080 cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0); 1081 cmd_arg = SFIELD(cmd_arg, CMD52_DATA, 0); 1082 1083 if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_52, cmd_arg, NULL, 0)) 1084 != SUCCESS) 1085 return status; 1086 1087 sdspi_cmd_getrsp(sd, &rsp5, 1); 1088 1089 if (rsp5 != 0x00) 1090 sd_err(("%s: rsp5 flags is 0x%x\t %d\n", 1091 __FUNCTION__, rsp5, func)); 1092 1093 *data = sd->card_rsp_data >> 24; 1094 } else { 1095 cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, regsize); 1096 cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1); 1097 cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0); 1098 cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func); 1099 cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, regaddr); 1100 cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_READ); 1101 1102 sd->data_xfer_count = regsize; 1103 1104 /* sdspi_cmd_issue() returns with the command complete bit 1105 * in the ISR already cleared 1106 */ 1107 if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_53, cmd_arg, NULL, 0)) 1108 != SUCCESS) 1109 return status; 1110 1111 sdspi_cmd_getrsp(sd, &rsp5, 1); 1112 1113 if (rsp5 != 0x00) 1114 sd_err(("%s: rsp5 flags is 0x%x\t %d\n", 1115 __FUNCTION__, rsp5, func)); 1116 1117 *data = sd->card_rsp_data; 1118 if (regsize == 2) { 1119 *data &= 0xffff; 1120 } 1121 1122 sd_info(("%s: CMD53 func %d, addr 0x%x, size %d, data 0x%08x\n", 1123 __FUNCTION__, func, regaddr, regsize, *data)); 1124 1125 1126 } 1127 1128 return SUCCESS; 1129 } 1130 1131 /* write a client register */ 1132 static int 1133 sdspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data) 1134 { 1135 int status; 1136 uint32 cmd_arg, rsp5, flags; 1137 1138 cmd_arg = 0; 1139 1140 if ((func == 0) || (regsize == 1)) { 1141 cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func); 1142 cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr); 1143 cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, SDIOH_XFER_TYPE_WRITE); 1144 cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0); 1145 cmd_arg = SFIELD(cmd_arg, CMD52_DATA, data & 0xff); 1146 if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_52, cmd_arg, NULL, 0)) 1147 != SUCCESS) 1148 return status; 1149 1150 sdspi_cmd_getrsp(sd, &rsp5, 1); 1151 flags = GFIELD(rsp5, RSP5_FLAGS); 1152 if (flags && (flags != 0x10)) 1153 sd_err(("%s: rsp5.rsp5.flags = 0x%x, expecting 0x10\n", 1154 __FUNCTION__, flags)); 1155 } 1156 else { 1157 cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, regsize); 1158 cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1); 1159 cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0); 1160 cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func); 1161 cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, regaddr); 1162 cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_WRITE); 1163 1164 sd->data_xfer_count = regsize; 1165 sd->cmd53_wr_data = data; 1166 1167 sd_info(("%s: CMD53 func %d, addr 0x%x, size %d, data 0x%08x\n", 1168 __FUNCTION__, func, regaddr, regsize, data)); 1169 1170 /* sdspi_cmd_issue() returns with the command complete bit 1171 * in the ISR already cleared 1172 */ 1173 if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_53, cmd_arg, NULL, 0)) 1174 != SUCCESS) 1175 return status; 1176 1177 sdspi_cmd_getrsp(sd, &rsp5, 1); 1178 1179 if (rsp5 != 0x00) 1180 sd_err(("%s: rsp5 flags = 0x%x, expecting 0x00\n", 1181 __FUNCTION__, rsp5)); 1182 1183 } 1184 return SUCCESS; 1185 } 1186 1187 void 1188 sdspi_cmd_getrsp(sdioh_info_t *sd, uint32 *rsp_buffer, int count /* num 32 bit words */) 1189 { 1190 *rsp_buffer = sd->card_response; 1191 } 1192 1193 int max_errors = 0; 1194 1195 #define SPI_MAX_PKT_LEN 768 1196 uint8 spi_databuf[SPI_MAX_PKT_LEN]; 1197 uint8 spi_rspbuf[SPI_MAX_PKT_LEN]; 1198 1199 /* datalen is used for CMD53 length only (0 for sd->data_xfer_count) */ 1200 static int 1201 sdspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd, uint32 arg, 1202 uint32 *data, uint32 datalen) 1203 { 1204 uint32 cmd_reg; 1205 uint32 cmd_arg = arg; 1206 uint8 cmd_crc = 0x95; /* correct CRC for CMD0 and don't care for others. */ 1207 uint16 dat_crc; 1208 uint8 cmd52data = 0; 1209 uint32 i, j; 1210 uint32 spi_datalen = 0; 1211 uint32 spi_pre_cmd_pad = 0; 1212 uint32 spi_max_response_pad = 128; 1213 1214 cmd_reg = 0; 1215 cmd_reg = SFIELD(cmd_reg, SPI_DIR, 1); 1216 cmd_reg = SFIELD(cmd_reg, SPI_CMD_INDEX, cmd); 1217 1218 if (GFIELD(cmd_arg, CMD52_RW_FLAG) == 1) { /* Same for CMD52 and CMD53 */ 1219 cmd_reg = SFIELD(cmd_reg, SPI_RW, 1); 1220 } 1221 1222 switch (cmd) { 1223 case SDIOH_CMD_59: /* CRC_ON_OFF (SPI Mode Only) - Response R1 */ 1224 cmd52data = arg & 0x1; 1225 case SDIOH_CMD_0: /* Set Card to Idle State - No Response */ 1226 case SDIOH_CMD_5: /* Send Operation condition - Response R4 */ 1227 sd_trace(("%s: CMD%d\n", __FUNCTION__, cmd)); 1228 spi_datalen = 44; 1229 spi_pre_cmd_pad = 12; 1230 spi_max_response_pad = 28; 1231 break; 1232 1233 case SDIOH_CMD_3: /* Ask card to send RCA - Response R6 */ 1234 case SDIOH_CMD_7: /* Select card - Response R1 */ 1235 case SDIOH_CMD_15: /* Set card to inactive state - Response None */ 1236 sd_err(("%s: CMD%d is invalid for SPI Mode.\n", __FUNCTION__, cmd)); 1237 return ERROR; 1238 break; 1239 1240 case SDIOH_CMD_52: /* IO R/W Direct (single byte) - Response R5 */ 1241 cmd52data = GFIELD(cmd_arg, CMD52_DATA); 1242 cmd_arg = arg; 1243 cmd_reg = SFIELD(cmd_reg, SPI_FUNC, GFIELD(cmd_arg, CMD52_FUNCTION)); 1244 cmd_reg = SFIELD(cmd_reg, SPI_ADDR, GFIELD(cmd_arg, CMD52_REG_ADDR)); 1245 /* Display trace for byte write */ 1246 if (GFIELD(cmd_arg, CMD52_RW_FLAG) == 1) { 1247 sd_trace(("%s: CMD52: Wr F:%d @0x%04x=%02x\n", 1248 __FUNCTION__, 1249 GFIELD(cmd_arg, CMD52_FUNCTION), 1250 GFIELD(cmd_arg, CMD52_REG_ADDR), 1251 cmd52data)); 1252 } 1253 1254 spi_datalen = 32; 1255 spi_max_response_pad = 28; 1256 1257 break; 1258 case SDIOH_CMD_53: /* IO R/W Extended (multiple bytes/blocks) */ 1259 cmd_arg = arg; 1260 cmd_reg = SFIELD(cmd_reg, SPI_FUNC, GFIELD(cmd_arg, CMD53_FUNCTION)); 1261 cmd_reg = SFIELD(cmd_reg, SPI_ADDR, GFIELD(cmd_arg, CMD53_REG_ADDR)); 1262 cmd_reg = SFIELD(cmd_reg, SPI_BLKMODE, 0); 1263 cmd_reg = SFIELD(cmd_reg, SPI_OPCODE, GFIELD(cmd_arg, CMD53_OP_CODE)); 1264 cmd_reg = SFIELD(cmd_reg, SPI_STUFF0, (sd->data_xfer_count>>8)); 1265 cmd52data = (uint8)sd->data_xfer_count; 1266 1267 /* Set upper bit in byte count if necessary, but don't set it for 512 bytes. */ 1268 if ((sd->data_xfer_count > 255) && (sd->data_xfer_count < 512)) { 1269 cmd_reg |= 1; 1270 } 1271 1272 if (GFIELD(cmd_reg, SPI_RW) == 1) { /* Write */ 1273 spi_max_response_pad = 32; 1274 spi_datalen = (sd->data_xfer_count + spi_max_response_pad) & 0xFFFC; 1275 } else { /* Read */ 1276 1277 spi_max_response_pad = 32; 1278 spi_datalen = (sd->data_xfer_count + spi_max_response_pad) & 0xFFFC; 1279 } 1280 sd_trace(("%s: CMD53: %s F:%d @0x%04x len=0x%02x\n", 1281 __FUNCTION__, 1282 (GFIELD(cmd_reg, SPI_RW) == 1 ? "Wr" : "Rd"), 1283 GFIELD(cmd_arg, CMD53_FUNCTION), 1284 GFIELD(cmd_arg, CMD53_REG_ADDR), 1285 cmd52data)); 1286 break; 1287 1288 default: 1289 sd_err(("%s: Unknown command %d\n", __FUNCTION__, cmd)); 1290 return ERROR; 1291 } 1292 1293 /* Set up and issue the SDIO command */ 1294 memset(spi_databuf, SDSPI_IDLE_PAD, spi_datalen); 1295 spi_databuf[spi_pre_cmd_pad + 0] = (cmd_reg & 0xFF000000) >> 24; 1296 spi_databuf[spi_pre_cmd_pad + 1] = (cmd_reg & 0x00FF0000) >> 16; 1297 spi_databuf[spi_pre_cmd_pad + 2] = (cmd_reg & 0x0000FF00) >> 8; 1298 spi_databuf[spi_pre_cmd_pad + 3] = (cmd_reg & 0x000000FF); 1299 spi_databuf[spi_pre_cmd_pad + 4] = cmd52data; 1300 1301 /* Generate CRC7 for command, if CRC is enabled, otherwise, a 1302 * default CRC7 of 0x95, which is correct for CMD0, is used. 1303 */ 1304 if (sd_crc) { 1305 cmd_crc = sdspi_crc7(&spi_databuf[spi_pre_cmd_pad], 5); 1306 } 1307 spi_databuf[spi_pre_cmd_pad + 5] = cmd_crc; 1308 #define SPI_STOP_TRAN 0xFD 1309 1310 /* for CMD53 Write, put the data into the output buffer */ 1311 if ((cmd == SDIOH_CMD_53) && (GFIELD(cmd_arg, CMD53_RW_FLAG) == 1)) { 1312 if (datalen != 0) { 1313 spi_databuf[spi_pre_cmd_pad + 9] = SDSPI_IDLE_PAD; 1314 spi_databuf[spi_pre_cmd_pad + 10] = SDSPI_START_BLOCK; 1315 1316 for (i = 0; i < sd->data_xfer_count; i++) { 1317 spi_databuf[i + 11 + spi_pre_cmd_pad] = ((uint8 *)data)[i]; 1318 } 1319 if (sd_crc) { 1320 dat_crc = sdspi_crc16(&spi_databuf[spi_pre_cmd_pad+11], i); 1321 } else { 1322 dat_crc = 0xAAAA; 1323 } 1324 spi_databuf[i + 11 + spi_pre_cmd_pad] = (dat_crc >> 8) & 0xFF; 1325 spi_databuf[i + 12 + spi_pre_cmd_pad] = dat_crc & 0xFF; 1326 } else if (sd->data_xfer_count == 2) { 1327 spi_databuf[spi_pre_cmd_pad + 9] = SDSPI_IDLE_PAD; 1328 spi_databuf[spi_pre_cmd_pad + 10] = SDSPI_START_BLOCK; 1329 spi_databuf[spi_pre_cmd_pad + 11] = sd->cmd53_wr_data & 0xFF; 1330 spi_databuf[spi_pre_cmd_pad + 12] = (sd->cmd53_wr_data & 0x0000FF00) >> 8; 1331 if (sd_crc) { 1332 dat_crc = sdspi_crc16(&spi_databuf[spi_pre_cmd_pad+11], 2); 1333 } else { 1334 dat_crc = 0x22AA; 1335 } 1336 spi_databuf[spi_pre_cmd_pad + 13] = (dat_crc >> 8) & 0xFF; 1337 spi_databuf[spi_pre_cmd_pad + 14] = (dat_crc & 0xFF); 1338 } else if (sd->data_xfer_count == 4) { 1339 spi_databuf[spi_pre_cmd_pad + 9] = SDSPI_IDLE_PAD; 1340 spi_databuf[spi_pre_cmd_pad + 10] = SDSPI_START_BLOCK; 1341 spi_databuf[spi_pre_cmd_pad + 11] = sd->cmd53_wr_data & 0xFF; 1342 spi_databuf[spi_pre_cmd_pad + 12] = (sd->cmd53_wr_data & 0x0000FF00) >> 8; 1343 spi_databuf[spi_pre_cmd_pad + 13] = (sd->cmd53_wr_data & 0x00FF0000) >> 16; 1344 spi_databuf[spi_pre_cmd_pad + 14] = (sd->cmd53_wr_data & 0xFF000000) >> 24; 1345 if (sd_crc) { 1346 dat_crc = sdspi_crc16(&spi_databuf[spi_pre_cmd_pad+11], 4); 1347 } else { 1348 dat_crc = 0x44AA; 1349 } 1350 spi_databuf[spi_pre_cmd_pad + 15] = (dat_crc >> 8) & 0xFF; 1351 spi_databuf[spi_pre_cmd_pad + 16] = (dat_crc & 0xFF); 1352 } else { 1353 printf("CMD53 Write: size %d unsupported\n", sd->data_xfer_count); 1354 } 1355 } 1356 1357 spi_sendrecv(sd, spi_databuf, spi_rspbuf, spi_datalen); 1358 1359 for (i = spi_pre_cmd_pad + SDSPI_COMMAND_LEN; i < spi_max_response_pad; i++) { 1360 if ((spi_rspbuf[i] & SDSPI_START_BIT_MASK) == 0) { 1361 break; 1362 } 1363 } 1364 1365 if (i == spi_max_response_pad) { 1366 sd_err(("%s: Did not get a response for CMD%d\n", __FUNCTION__, cmd)); 1367 return ERROR; 1368 } 1369 1370 /* Extract the response. */ 1371 sd->card_response = spi_rspbuf[i]; 1372 1373 /* for CMD53 Read, find the start of the response data... */ 1374 if ((cmd == SDIOH_CMD_53) && (GFIELD(cmd_arg, CMD52_RW_FLAG) == 0)) { 1375 for (; i < spi_max_response_pad; i++) { 1376 if (spi_rspbuf[i] == SDSPI_START_BLOCK) { 1377 break; 1378 } 1379 } 1380 1381 if (i == spi_max_response_pad) { 1382 printf("Did not get a start of data phase for CMD%d\n", cmd); 1383 max_errors++; 1384 sdspi_abort(sd, GFIELD(cmd_arg, CMD53_FUNCTION)); 1385 } 1386 sd->card_rsp_data = spi_rspbuf[i+1]; 1387 sd->card_rsp_data |= spi_rspbuf[i+2] << 8; 1388 sd->card_rsp_data |= spi_rspbuf[i+3] << 16; 1389 sd->card_rsp_data |= spi_rspbuf[i+4] << 24; 1390 1391 if (datalen != 0) { 1392 i++; 1393 for (j = 0; j < sd->data_xfer_count; j++) { 1394 ((uint8 *)data)[j] = spi_rspbuf[i+j]; 1395 } 1396 if (sd_crc) { 1397 uint16 recv_crc; 1398 1399 recv_crc = spi_rspbuf[i+j] << 8 | spi_rspbuf[i+j+1]; 1400 dat_crc = sdspi_crc16((uint8 *)data, datalen); 1401 if (dat_crc != recv_crc) { 1402 sd_err(("%s: Incorrect data CRC: expected 0x%04x, " 1403 "received 0x%04x\n", 1404 __FUNCTION__, dat_crc, recv_crc)); 1405 } 1406 } 1407 } 1408 return SUCCESS; 1409 } 1410 1411 sd->card_rsp_data = spi_rspbuf[i+4]; 1412 sd->card_rsp_data |= spi_rspbuf[i+3] << 8; 1413 sd->card_rsp_data |= spi_rspbuf[i+2] << 16; 1414 sd->card_rsp_data |= spi_rspbuf[i+1] << 24; 1415 1416 /* Display trace for byte read */ 1417 if ((cmd == SDIOH_CMD_52) && (GFIELD(cmd_arg, CMD52_RW_FLAG) == 0)) { 1418 sd_trace(("%s: CMD52: Rd F:%d @0x%04x=%02x\n", 1419 __FUNCTION__, 1420 GFIELD(cmd_arg, CMD53_FUNCTION), 1421 GFIELD(cmd_arg, CMD53_REG_ADDR), 1422 sd->card_rsp_data >> 24)); 1423 } 1424 1425 return SUCCESS; 1426 } 1427 1428 /* 1429 * On entry: if single-block or non-block, buffer size <= block size. 1430 * If multi-block, buffer size is unlimited. 1431 * Question is how to handle the left-overs in either single- or multi-block. 1432 * I think the caller should break the buffer up so this routine will always 1433 * use block size == buffer size to handle the end piece of the buffer 1434 */ 1435 1436 static int 1437 sdspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, uint32 addr, int nbytes, uint32 *data) 1438 { 1439 int status; 1440 uint32 cmd_arg; 1441 uint32 rsp5; 1442 int num_blocks, blocksize; 1443 bool local_blockmode, local_dma; 1444 bool read = rw == SDIOH_READ ? 1 : 0; 1445 1446 ASSERT(nbytes); 1447 1448 cmd_arg = 0; 1449 sd_data(("%s: %s 53 func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n", 1450 __FUNCTION__, read ? "Rd" : "Wr", func, fifo ? "FIXED" : "INCR", 1451 addr, nbytes, sd->r_cnt, sd->t_cnt)); 1452 1453 if (read) sd->r_cnt++; else sd->t_cnt++; 1454 1455 local_blockmode = sd->sd_blockmode; 1456 local_dma = sd->sd_use_dma; 1457 1458 /* Don't bother with block mode on small xfers */ 1459 if (nbytes < sd->client_block_size[func]) { 1460 sd_info(("setting local blockmode to false: nbytes (%d) != block_size (%d)\n", 1461 nbytes, sd->client_block_size[func])); 1462 local_blockmode = FALSE; 1463 local_dma = FALSE; 1464 } 1465 1466 if (local_blockmode) { 1467 blocksize = MIN(sd->client_block_size[func], nbytes); 1468 num_blocks = nbytes/blocksize; 1469 cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, num_blocks); 1470 cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 1); 1471 } else { 1472 num_blocks = 1; 1473 blocksize = nbytes; 1474 cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, nbytes); 1475 cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0); 1476 } 1477 1478 if (fifo) 1479 cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 0); 1480 else 1481 cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1); 1482 1483 cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func); 1484 cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, addr); 1485 if (read) 1486 cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_READ); 1487 else 1488 cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_WRITE); 1489 1490 sd->data_xfer_count = nbytes; 1491 if ((func == 2) && (fifo == 1)) { 1492 sd_data(("%s: %s 53 func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n", 1493 __FUNCTION__, read ? "Rd" : "Wr", func, fifo ? "FIXED" : "INCR", 1494 addr, nbytes, sd->r_cnt, sd->t_cnt)); 1495 } 1496 1497 /* sdspi_cmd_issue() returns with the command complete bit 1498 * in the ISR already cleared 1499 */ 1500 if ((status = sdspi_cmd_issue(sd, local_dma, 1501 SDIOH_CMD_53, cmd_arg, 1502 data, nbytes)) != SUCCESS) { 1503 sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__, (read ? "read" : "write"))); 1504 return status; 1505 } 1506 1507 sdspi_cmd_getrsp(sd, &rsp5, 1); 1508 1509 if (rsp5 != 0x00) { 1510 sd_err(("%s: rsp5 flags = 0x%x, expecting 0x00\n", 1511 __FUNCTION__, rsp5)); 1512 return ERROR; 1513 } 1514 1515 return SUCCESS; 1516 } 1517 1518 static int 1519 set_client_block_size(sdioh_info_t *sd, int func, int block_size) 1520 { 1521 int base; 1522 int err = 0; 1523 1524 sd_err(("%s: Setting block size %d, func %d\n", __FUNCTION__, block_size, func)); 1525 sd->client_block_size[func] = block_size; 1526 1527 /* Set the block size in the SDIO Card register */ 1528 base = func * SDIOD_FBR_SIZE; 1529 err = sdspi_card_regwrite(sd, 0, base + SDIOD_CCCR_BLKSIZE_0, 1, block_size & 0xff); 1530 if (!err) { 1531 err = sdspi_card_regwrite(sd, 0, base + SDIOD_CCCR_BLKSIZE_1, 1, 1532 (block_size >> 8) & 0xff); 1533 } 1534 1535 /* 1536 * Do not set the block size in the SDIO Host register; that 1537 * is func dependent and will get done on an individual 1538 * transaction basis. 1539 */ 1540 1541 return (err ? BCME_SDIO_ERROR : 0); 1542 } 1543 1544 /* Reset and re-initialize the device */ 1545 int 1546 sdioh_sdio_reset(sdioh_info_t *si) 1547 { 1548 si->card_init_done = FALSE; 1549 return sdspi_client_init(si); 1550 } 1551 1552 #define CRC7_POLYNOM 0x09 1553 #define CRC7_CRCHIGHBIT 0x40 1554 1555 static uint8 sdspi_crc7(unsigned char* p, uint32 len) 1556 { 1557 uint8 c, j, bit, crc = 0; 1558 uint32 i; 1559 1560 for (i = 0; i < len; i++) { 1561 c = *p++; 1562 for (j = 0x80; j; j >>= 1) { 1563 bit = crc & CRC7_CRCHIGHBIT; 1564 crc <<= 1; 1565 if (c & j) bit ^= CRC7_CRCHIGHBIT; 1566 if (bit) crc ^= CRC7_POLYNOM; 1567 } 1568 } 1569 1570 /* Convert the CRC7 to an 8-bit SD CRC */ 1571 crc = (crc << 1) | 1; 1572 1573 return (crc); 1574 } 1575 1576 #define CRC16_POLYNOM 0x1021 1577 #define CRC16_CRCHIGHBIT 0x8000 1578 1579 static uint16 sdspi_crc16(unsigned char* p, uint32 len) 1580 { 1581 uint32 i; 1582 uint16 j, c, bit; 1583 uint16 crc = 0; 1584 1585 for (i = 0; i < len; i++) { 1586 c = *p++; 1587 for (j = 0x80; j; j >>= 1) { 1588 bit = crc & CRC16_CRCHIGHBIT; 1589 crc <<= 1; 1590 if (c & j) bit ^= CRC16_CRCHIGHBIT; 1591 if (bit) crc ^= CRC16_POLYNOM; 1592 } 1593 } 1594 1595 return (crc); 1596 } 1597