Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 
      6 // Windows Timer Primer
      7 //
      8 // A good article:  http://www.ddj.com/windows/184416651
      9 // A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
     10 //
     11 // The default windows timer, GetSystemTimeAsFileTime is not very precise.
     12 // It is only good to ~15.5ms.
     13 //
     14 // QueryPerformanceCounter is the logical choice for a high-precision timer.
     15 // However, it is known to be buggy on some hardware.  Specifically, it can
     16 // sometimes "jump".  On laptops, QPC can also be very expensive to call.
     17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
     18 // on laptops.  A unittest exists which will show the relative cost of various
     19 // timers on any system.
     20 //
     21 // The next logical choice is timeGetTime().  timeGetTime has a precision of
     22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
     23 // applications on the system.  By default, precision is only 15.5ms.
     24 // Unfortunately, we don't want to call timeBeginPeriod because we don't
     25 // want to affect other applications.  Further, on mobile platforms, use of
     26 // faster multimedia timers can hurt battery life.  See the intel
     27 // article about this here:
     28 // http://softwarecommunity.intel.com/articles/eng/1086.htm
     29 //
     30 // To work around all this, we're going to generally use timeGetTime().  We
     31 // will only increase the system-wide timer if we're not running on battery
     32 // power.  Using timeBeginPeriod(1) is a requirement in order to make our
     33 // message loop waits have the same resolution that our time measurements
     34 // do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
     35 // there is nothing else to waken the Wait.
     36 
     37 #include "base/time.h"
     38 
     39 #pragma comment(lib, "winmm.lib")
     40 #include <windows.h>
     41 #include <mmsystem.h>
     42 
     43 #include "base/basictypes.h"
     44 #include "base/lock.h"
     45 #include "base/logging.h"
     46 #include "base/cpu.h"
     47 #include "base/singleton.h"
     48 
     49 using base::Time;
     50 using base::TimeDelta;
     51 using base::TimeTicks;
     52 
     53 namespace {
     54 
     55 // From MSDN, FILETIME "Contains a 64-bit value representing the number of
     56 // 100-nanosecond intervals since January 1, 1601 (UTC)."
     57 int64 FileTimeToMicroseconds(const FILETIME& ft) {
     58   // Need to bit_cast to fix alignment, then divide by 10 to convert
     59   // 100-nanoseconds to milliseconds. This only works on little-endian
     60   // machines.
     61   return bit_cast<int64, FILETIME>(ft) / 10;
     62 }
     63 
     64 void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
     65   DCHECK(us >= 0) << "Time is less than 0, negative values are not "
     66       "representable in FILETIME";
     67 
     68   // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
     69   // handle alignment problems. This only works on little-endian machines.
     70   *ft = bit_cast<FILETIME, int64>(us * 10);
     71 }
     72 
     73 int64 CurrentWallclockMicroseconds() {
     74   FILETIME ft;
     75   ::GetSystemTimeAsFileTime(&ft);
     76   return FileTimeToMicroseconds(ft);
     77 }
     78 
     79 // Time between resampling the un-granular clock for this API.  60 seconds.
     80 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
     81 
     82 int64 initial_time = 0;
     83 TimeTicks initial_ticks;
     84 
     85 void InitializeClock() {
     86   initial_ticks = TimeTicks::Now();
     87   initial_time = CurrentWallclockMicroseconds();
     88 }
     89 
     90 }  // namespace
     91 
     92 // Time -----------------------------------------------------------------------
     93 
     94 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
     95 // 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
     96 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
     97 // 1700, 1800, and 1900.
     98 // static
     99 const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
    100 
    101 // static
    102 Time Time::Now() {
    103   if (initial_time == 0)
    104     InitializeClock();
    105 
    106   // We implement time using the high-resolution timers so that we can get
    107   // timeouts which are smaller than 10-15ms.  If we just used
    108   // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
    109   //
    110   // To make this work, we initialize the clock (initial_time) and the
    111   // counter (initial_ctr).  To compute the initial time, we can check
    112   // the number of ticks that have elapsed, and compute the delta.
    113   //
    114   // To avoid any drift, we periodically resync the counters to the system
    115   // clock.
    116   while (true) {
    117     TimeTicks ticks = TimeTicks::Now();
    118 
    119     // Calculate the time elapsed since we started our timer
    120     TimeDelta elapsed = ticks - initial_ticks;
    121 
    122     // Check if enough time has elapsed that we need to resync the clock.
    123     if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
    124       InitializeClock();
    125       continue;
    126     }
    127 
    128     return Time(elapsed + Time(initial_time));
    129   }
    130 }
    131 
    132 // static
    133 Time Time::NowFromSystemTime() {
    134   // Force resync.
    135   InitializeClock();
    136   return Time(initial_time);
    137 }
    138 
    139 // static
    140 Time Time::FromFileTime(FILETIME ft) {
    141   return Time(FileTimeToMicroseconds(ft));
    142 }
    143 
    144 FILETIME Time::ToFileTime() const {
    145   FILETIME utc_ft;
    146   MicrosecondsToFileTime(us_, &utc_ft);
    147   return utc_ft;
    148 }
    149 
    150 // static
    151 bool Time::UseHighResolutionTimer(bool use) {
    152   // TODO(mbelshe): Make sure that switching the system timer resolution
    153   // doesn't break Timer firing order etc. An example test would be to have
    154   // two threads. One would have a bunch of timers, and another would turn the
    155   // high resolution timer on and off.
    156 
    157   MMRESULT result;
    158   if (use)
    159     result = timeBeginPeriod(1);
    160   else
    161     result = timeEndPeriod(1);
    162   return (result == TIMERR_NOERROR);
    163 }
    164 
    165 // static
    166 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
    167   // Create the system struct representing our exploded time. It will either be
    168   // in local time or UTC.
    169   SYSTEMTIME st;
    170   st.wYear = exploded.year;
    171   st.wMonth = exploded.month;
    172   st.wDayOfWeek = exploded.day_of_week;
    173   st.wDay = exploded.day_of_month;
    174   st.wHour = exploded.hour;
    175   st.wMinute = exploded.minute;
    176   st.wSecond = exploded.second;
    177   st.wMilliseconds = exploded.millisecond;
    178 
    179   // Convert to FILETIME.
    180   FILETIME ft;
    181   if (!SystemTimeToFileTime(&st, &ft)) {
    182     NOTREACHED() << "Unable to convert time";
    183     return Time(0);
    184   }
    185 
    186   // Ensure that it's in UTC.
    187   if (is_local) {
    188     FILETIME utc_ft;
    189     LocalFileTimeToFileTime(&ft, &utc_ft);
    190     return Time(FileTimeToMicroseconds(utc_ft));
    191   }
    192   return Time(FileTimeToMicroseconds(ft));
    193 }
    194 
    195 void Time::Explode(bool is_local, Exploded* exploded) const {
    196   // FILETIME in UTC.
    197   FILETIME utc_ft;
    198   MicrosecondsToFileTime(us_, &utc_ft);
    199 
    200   // FILETIME in local time if necessary.
    201   BOOL success = TRUE;
    202   FILETIME ft;
    203   if (is_local)
    204     success = FileTimeToLocalFileTime(&utc_ft, &ft);
    205   else
    206     ft = utc_ft;
    207 
    208   // FILETIME in SYSTEMTIME (exploded).
    209   SYSTEMTIME st;
    210   if (!success || !FileTimeToSystemTime(&ft, &st)) {
    211     NOTREACHED() << "Unable to convert time, don't know why";
    212     ZeroMemory(exploded, sizeof(exploded));
    213     return;
    214   }
    215 
    216   exploded->year = st.wYear;
    217   exploded->month = st.wMonth;
    218   exploded->day_of_week = st.wDayOfWeek;
    219   exploded->day_of_month = st.wDay;
    220   exploded->hour = st.wHour;
    221   exploded->minute = st.wMinute;
    222   exploded->second = st.wSecond;
    223   exploded->millisecond = st.wMilliseconds;
    224 }
    225 
    226 // TimeTicks ------------------------------------------------------------------
    227 namespace {
    228 
    229 // We define a wrapper to adapt between the __stdcall and __cdecl call of the
    230 // mock function, and to avoid a static constructor.  Assigning an import to a
    231 // function pointer directly would require setup code to fetch from the IAT.
    232 DWORD timeGetTimeWrapper() {
    233   return timeGetTime();
    234 }
    235 
    236 
    237 DWORD (*tick_function)(void) = &timeGetTimeWrapper;
    238 
    239 // We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
    240 // because it returns the number of milliseconds since Windows has started,
    241 // which will roll over the 32-bit value every ~49 days.  We try to track
    242 // rollover ourselves, which works if TimeTicks::Now() is called at least every
    243 // 49 days.
    244 class NowSingleton {
    245  public:
    246   NowSingleton()
    247     : rollover_(TimeDelta::FromMilliseconds(0)),
    248       last_seen_(0) {
    249   }
    250 
    251   ~NowSingleton() {
    252   }
    253 
    254   TimeDelta Now() {
    255     AutoLock locked(lock_);
    256     // We should hold the lock while calling tick_function to make sure that
    257     // we keep our last_seen_ stay correctly in sync.
    258     DWORD now = tick_function();
    259     if (now < last_seen_)
    260       rollover_ += TimeDelta::FromMilliseconds(0x100000000I64);  // ~49.7 days.
    261     last_seen_ = now;
    262     return TimeDelta::FromMilliseconds(now) + rollover_;
    263   }
    264 
    265  private:
    266   Lock lock_;  // To protected last_seen_ and rollover_.
    267   TimeDelta rollover_;  // Accumulation of time lost due to rollover.
    268   DWORD last_seen_;  // The last timeGetTime value we saw, to detect rollover.
    269 
    270   DISALLOW_COPY_AND_ASSIGN(NowSingleton);
    271 };
    272 
    273 // Overview of time counters:
    274 // (1) CPU cycle counter. (Retrieved via RDTSC)
    275 // The CPU counter provides the highest resolution time stamp and is the least
    276 // expensive to retrieve. However, the CPU counter is unreliable and should not
    277 // be used in production. Its biggest issue is that it is per processor and it
    278 // is not synchronized between processors. Also, on some computers, the counters
    279 // will change frequency due to thermal and power changes, and stop in some
    280 // states.
    281 //
    282 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
    283 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
    284 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
    285 // (with some help from ACPI).
    286 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
    287 // in the worst case, it gets the counter from the rollover interrupt on the
    288 // programmable interrupt timer. In best cases, the HAL may conclude that the
    289 // RDTSC counter runs at a constant frequency, then it uses that instead. On
    290 // multiprocessor machines, it will try to verify the values returned from
    291 // RDTSC on each processor are consistent with each other, and apply a handful
    292 // of workarounds for known buggy hardware. In other words, QPC is supposed to
    293 // give consistent result on a multiprocessor computer, but it is unreliable in
    294 // reality due to bugs in BIOS or HAL on some, especially old computers.
    295 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
    296 // it should be used with caution.
    297 //
    298 // (3) System time. The system time provides a low-resolution (typically 10ms
    299 // to 55 milliseconds) time stamp but is comparatively less expensive to
    300 // retrieve and more reliable.
    301 class HighResNowSingleton {
    302  public:
    303   HighResNowSingleton()
    304     : ticks_per_microsecond_(0.0),
    305       skew_(0) {
    306     InitializeClock();
    307 
    308     // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
    309     // unreliable.  Fallback to low-res clock.
    310     base::CPU cpu;
    311     if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15)
    312       DisableHighResClock();
    313   }
    314 
    315   bool IsUsingHighResClock() {
    316     return ticks_per_microsecond_ != 0.0;
    317   }
    318 
    319   void DisableHighResClock() {
    320     ticks_per_microsecond_ = 0.0;
    321   }
    322 
    323   TimeDelta Now() {
    324     // Our maximum tolerance for QPC drifting.
    325     const int kMaxTimeDrift = 50 * Time::kMicrosecondsPerMillisecond;
    326 
    327     if (IsUsingHighResClock()) {
    328       int64 now = UnreliableNow();
    329 
    330       // Verify that QPC does not seem to drift.
    331       DCHECK(now - ReliableNow() - skew_ < kMaxTimeDrift);
    332 
    333       return TimeDelta::FromMicroseconds(now);
    334     }
    335 
    336     // Just fallback to the slower clock.
    337     return Singleton<NowSingleton>::get()->Now();
    338   }
    339 
    340  private:
    341   // Synchronize the QPC clock with GetSystemTimeAsFileTime.
    342   void InitializeClock() {
    343     LARGE_INTEGER ticks_per_sec = {0};
    344     if (!QueryPerformanceFrequency(&ticks_per_sec))
    345       return;  // Broken, we don't guarantee this function works.
    346     ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) /
    347       static_cast<float>(Time::kMicrosecondsPerSecond);
    348 
    349     skew_ = UnreliableNow() - ReliableNow();
    350   }
    351 
    352   // Get the number of microseconds since boot in a reliable fashion
    353   int64 UnreliableNow() {
    354     LARGE_INTEGER now;
    355     QueryPerformanceCounter(&now);
    356     return static_cast<int64>(now.QuadPart / ticks_per_microsecond_);
    357   }
    358 
    359   // Get the number of microseconds since boot in a reliable fashion
    360   int64 ReliableNow() {
    361     return Singleton<NowSingleton>::get()->Now().InMicroseconds();
    362   }
    363 
    364   // Cached clock frequency -> microseconds. This assumes that the clock
    365   // frequency is faster than one microsecond (which is 1MHz, should be OK).
    366   float ticks_per_microsecond_;  // 0 indicates QPF failed and we're broken.
    367   int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).
    368 
    369   DISALLOW_COPY_AND_ASSIGN(HighResNowSingleton);
    370 };
    371 
    372 }  // namespace
    373 
    374 // static
    375 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
    376     TickFunctionType ticker) {
    377   TickFunctionType old = tick_function;
    378   tick_function = ticker;
    379   return old;
    380 }
    381 
    382 // static
    383 TimeTicks TimeTicks::Now() {
    384   return TimeTicks() + Singleton<NowSingleton>::get()->Now();
    385 }
    386 
    387 // static
    388 TimeTicks TimeTicks::HighResNow() {
    389   return TimeTicks() + Singleton<HighResNowSingleton>::get()->Now();
    390 }
    391