Home | History | Annotate | Download | only in disk_cache
      1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "net/disk_cache/sparse_control.h"
      6 
      7 #include "base/format_macros.h"
      8 #include "base/logging.h"
      9 #include "base/message_loop.h"
     10 #include "base/string_util.h"
     11 #include "base/time.h"
     12 #include "net/base/io_buffer.h"
     13 #include "net/base/net_errors.h"
     14 #include "net/disk_cache/backend_impl.h"
     15 #include "net/disk_cache/entry_impl.h"
     16 #include "net/disk_cache/file.h"
     17 
     18 using base::Time;
     19 
     20 namespace {
     21 
     22 // Stream of the sparse data index.
     23 const int kSparseIndex = 2;
     24 
     25 // Stream of the sparse data.
     26 const int kSparseData = 1;
     27 
     28 // We can have up to 64k children.
     29 const int kMaxMapSize = 8 * 1024;
     30 
     31 // The maximum number of bytes that a child can store.
     32 const int kMaxEntrySize = 0x100000;
     33 
     34 // The size of each data block (tracked by the child allocation bitmap).
     35 const int kBlockSize = 1024;
     36 
     37 // Returns the name of of a child entry given the base_name and signature of the
     38 // parent and the child_id.
     39 // If the entry is called entry_name, child entries will be named something
     40 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
     41 // number of the particular child.
     42 std::string GenerateChildName(const std::string& base_name, int64 signature,
     43                               int64 child_id) {
     44   return StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
     45                       signature, child_id);
     46 }
     47 
     48 // This class deletes the children of a sparse entry.
     49 class ChildrenDeleter
     50     : public base::RefCounted<ChildrenDeleter>,
     51       public disk_cache::FileIOCallback {
     52  public:
     53   ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
     54       : backend_(backend), name_(name) {}
     55 
     56   virtual void OnFileIOComplete(int bytes_copied);
     57 
     58   // Two ways of deleting the children: if we have the children map, use Start()
     59   // directly, otherwise pass the data address to ReadData().
     60   void Start(char* buffer, int len);
     61   void ReadData(disk_cache::Addr address, int len);
     62 
     63  private:
     64   friend class base::RefCounted<ChildrenDeleter>;
     65   ~ChildrenDeleter() {}
     66 
     67   void DeleteChildren();
     68 
     69   disk_cache::BackendImpl* backend_;
     70   std::string name_;
     71   disk_cache::Bitmap children_map_;
     72   int64 signature_;
     73   scoped_array<char> buffer_;
     74   DISALLOW_EVIL_CONSTRUCTORS(ChildrenDeleter);
     75 };
     76 
     77 // This is the callback of the file operation.
     78 void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
     79   char* buffer = buffer_.release();
     80   Start(buffer, bytes_copied);
     81 }
     82 
     83 void ChildrenDeleter::Start(char* buffer, int len) {
     84   buffer_.reset(buffer);
     85   if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
     86     return Release();
     87 
     88   // Just copy the information from |buffer|, delete |buffer| and start deleting
     89   // the child entries.
     90   disk_cache::SparseData* data =
     91       reinterpret_cast<disk_cache::SparseData*>(buffer);
     92   signature_ = data->header.signature;
     93 
     94   int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
     95   children_map_.Resize(num_bits, false);
     96   children_map_.SetMap(data->bitmap, num_bits / 32);
     97   buffer_.reset();
     98 
     99   DeleteChildren();
    100 }
    101 
    102 void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
    103   DCHECK(address.is_block_file());
    104   disk_cache::File* file(backend_->File(address));
    105   if (!file)
    106     return Release();
    107 
    108   size_t file_offset = address.start_block() * address.BlockSize() +
    109                        disk_cache::kBlockHeaderSize;
    110 
    111   buffer_.reset(new char[len]);
    112   bool completed;
    113   if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
    114     return Release();
    115 
    116   if (completed)
    117     OnFileIOComplete(len);
    118 
    119   // And wait until OnFileIOComplete gets called.
    120 }
    121 
    122 void ChildrenDeleter::DeleteChildren() {
    123   int child_id = 0;
    124   if (!children_map_.FindNextSetBit(&child_id)) {
    125     // We are done. Just delete this object.
    126     return Release();
    127   }
    128   std::string child_name = GenerateChildName(name_, signature_, child_id);
    129   backend_->DoomEntry(child_name);
    130   children_map_.Set(child_id, false);
    131 
    132   // Post a task to delete the next child.
    133   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    134       this, &ChildrenDeleter::DeleteChildren));
    135 }
    136 
    137 }  // namespace.
    138 
    139 namespace disk_cache {
    140 
    141 SparseControl::~SparseControl() {
    142   if (child_)
    143     CloseChild();
    144   if (init_)
    145     WriteSparseData();
    146 }
    147 
    148 int SparseControl::Init() {
    149   DCHECK(!init_);
    150 
    151   // We should not have sparse data for the exposed entry.
    152   if (entry_->GetDataSize(kSparseData))
    153     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    154 
    155   // Now see if there is something where we store our data.
    156   int rv = net::OK;
    157   int data_len = entry_->GetDataSize(kSparseIndex);
    158   if (!data_len) {
    159     rv = CreateSparseEntry();
    160   } else {
    161     rv = OpenSparseEntry(data_len);
    162   }
    163 
    164   if (rv == net::OK)
    165     init_ = true;
    166   return rv;
    167 }
    168 
    169 int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
    170                            int buf_len, net::CompletionCallback* callback) {
    171   DCHECK(init_);
    172   // We don't support simultaneous IO for sparse data.
    173   if (operation_ != kNoOperation)
    174     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    175 
    176   if (offset < 0 || buf_len < 0)
    177     return net::ERR_INVALID_ARGUMENT;
    178 
    179   // We only support up to 64 GB.
    180   if (offset + buf_len >= 0x1000000000LL || offset + buf_len < 0)
    181     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    182 
    183   DCHECK(!user_buf_);
    184   DCHECK(!user_callback_);
    185 
    186   if (!buf && (op == kReadOperation || op == kWriteOperation))
    187     return 0;
    188 
    189   // Copy the operation parameters.
    190   operation_ = op;
    191   offset_ = offset;
    192   user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
    193   buf_len_ = buf_len;
    194   user_callback_ = callback;
    195 
    196   result_ = 0;
    197   pending_ = false;
    198   finished_ = false;
    199   abort_ = false;
    200 
    201   DoChildrenIO();
    202 
    203   if (!pending_) {
    204     // Everything was done synchronously.
    205     operation_ = kNoOperation;
    206     user_buf_ = NULL;
    207     user_callback_ = NULL;
    208     return result_;
    209   }
    210 
    211   return net::ERR_IO_PENDING;
    212 }
    213 
    214 int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
    215   DCHECK(init_);
    216   // We don't support simultaneous IO for sparse data.
    217   if (operation_ != kNoOperation)
    218     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    219 
    220   DCHECK(start);
    221 
    222   range_found_ = false;
    223   int result = StartIO(kGetRangeOperation, offset, NULL, len, NULL);
    224   if (range_found_) {
    225     *start = offset_;
    226     return result;
    227   }
    228 
    229   // This is a failure. We want to return a valid start value in any case.
    230   *start = offset;
    231   return result < 0 ? result : 0;  // Don't mask error codes to the caller.
    232 }
    233 
    234 void SparseControl::CancelIO() {
    235   if (operation_ == kNoOperation)
    236     return;
    237   abort_ = true;
    238 }
    239 
    240 int SparseControl::ReadyToUse(net::CompletionCallback* completion_callback) {
    241   if (!abort_)
    242     return net::OK;
    243 
    244   // We'll grab another reference to keep this object alive because we just have
    245   // one extra reference due to the pending IO operation itself, but we'll
    246   // release that one before invoking user_callback_.
    247   entry_->AddRef();  // Balanced in DoAbortCallbacks.
    248   abort_callbacks_.push_back(completion_callback);
    249   return net::ERR_IO_PENDING;
    250 }
    251 
    252 // Static
    253 void SparseControl::DeleteChildren(EntryImpl* entry) {
    254   DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
    255   int data_len = entry->GetDataSize(kSparseIndex);
    256   if (data_len < static_cast<int>(sizeof(SparseData)) ||
    257       entry->GetDataSize(kSparseData))
    258     return;
    259 
    260   int map_len = data_len - sizeof(SparseHeader);
    261   if (map_len > kMaxMapSize || map_len % 4)
    262     return;
    263 
    264   char* buffer;
    265   Addr address;
    266   entry->GetData(kSparseIndex, &buffer, &address);
    267   if (!buffer && !address.is_initialized())
    268     return;
    269 
    270   ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_,
    271                                                  entry->GetKey());
    272   // The object will self destruct when finished.
    273   deleter->AddRef();
    274 
    275   if (buffer) {
    276     MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    277         deleter, &ChildrenDeleter::Start, buffer, data_len));
    278   } else {
    279     MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    280         deleter, &ChildrenDeleter::ReadData, address, data_len));
    281   }
    282 }
    283 
    284 // We are going to start using this entry to store sparse data, so we have to
    285 // initialize our control info.
    286 int SparseControl::CreateSparseEntry() {
    287   if (CHILD_ENTRY & entry_->GetEntryFlags())
    288     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    289 
    290   memset(&sparse_header_, 0, sizeof(sparse_header_));
    291   sparse_header_.signature = Time::Now().ToInternalValue();
    292   sparse_header_.magic = kIndexMagic;
    293   sparse_header_.parent_key_len = entry_->GetKey().size();
    294   children_map_.Resize(kNumSparseBits, true);
    295 
    296   // Save the header. The bitmap is saved in the destructor.
    297   scoped_refptr<net::IOBuffer> buf =
    298       new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_));
    299 
    300   int rv = entry_->WriteData(kSparseIndex, 0, buf, sizeof(sparse_header_), NULL,
    301                              false);
    302   if (rv != sizeof(sparse_header_)) {
    303     DLOG(ERROR) << "Unable to save sparse_header_";
    304     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    305   }
    306 
    307   entry_->SetEntryFlags(PARENT_ENTRY);
    308   return net::OK;
    309 }
    310 
    311 // We are opening an entry from disk. Make sure that our control data is there.
    312 int SparseControl::OpenSparseEntry(int data_len) {
    313   if (data_len < static_cast<int>(sizeof(SparseData)))
    314     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    315 
    316   if (entry_->GetDataSize(kSparseData))
    317     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    318 
    319   if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
    320     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    321 
    322   // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
    323   int map_len = data_len - sizeof(sparse_header_);
    324   if (map_len > kMaxMapSize || map_len % 4)
    325     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    326 
    327   scoped_refptr<net::IOBuffer> buf =
    328       new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_));
    329 
    330   // Read header.
    331   int rv = entry_->ReadData(kSparseIndex, 0, buf, sizeof(sparse_header_), NULL);
    332   if (rv != static_cast<int>(sizeof(sparse_header_)))
    333     return net::ERR_CACHE_READ_FAILURE;
    334 
    335   // The real validation should be performed by the caller. This is just to
    336   // double check.
    337   if (sparse_header_.magic != kIndexMagic ||
    338       sparse_header_.parent_key_len !=
    339           static_cast<int>(entry_->GetKey().size()))
    340     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    341 
    342   // Read the actual bitmap.
    343   buf = new net::IOBuffer(map_len);
    344   rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf, map_len,
    345                         NULL);
    346   if (rv != map_len)
    347     return net::ERR_CACHE_READ_FAILURE;
    348 
    349   // Grow the bitmap to the current size and copy the bits.
    350   children_map_.Resize(map_len * 8, false);
    351   children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
    352   return net::OK;
    353 }
    354 
    355 bool SparseControl::OpenChild() {
    356   DCHECK_GE(result_, 0);
    357 
    358   std::string key = GenerateChildKey();
    359   if (child_) {
    360     // Keep using the same child or open another one?.
    361     if (key == child_->GetKey())
    362       return true;
    363     CloseChild();
    364   }
    365 
    366   // Se if we are tracking this child.
    367   bool child_present = ChildPresent();
    368   if (!child_present || !entry_->backend_->OpenEntry(key, &child_))
    369     return ContinueWithoutChild(key);
    370 
    371   EntryImpl* child = static_cast<EntryImpl*>(child_);
    372   if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
    373       child->GetDataSize(kSparseIndex) <
    374           static_cast<int>(sizeof(child_data_)))
    375     return KillChildAndContinue(key, false);
    376 
    377   scoped_refptr<net::WrappedIOBuffer> buf =
    378       new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_));
    379 
    380   // Read signature.
    381   int rv = child_->ReadData(kSparseIndex, 0, buf, sizeof(child_data_), NULL);
    382   if (rv != sizeof(child_data_))
    383     return KillChildAndContinue(key, true);  // This is a fatal failure.
    384 
    385   if (child_data_.header.signature != sparse_header_.signature ||
    386       child_data_.header.magic != kIndexMagic)
    387     return KillChildAndContinue(key, false);
    388 
    389   if (child_data_.header.last_block_len < 0 ||
    390       child_data_.header.last_block_len > kBlockSize) {
    391     // Make sure this values are always within range.
    392     child_data_.header.last_block_len = 0;
    393     child_data_.header.last_block = -1;
    394   }
    395 
    396   return true;
    397 }
    398 
    399 void SparseControl::CloseChild() {
    400   scoped_refptr<net::WrappedIOBuffer> buf =
    401       new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_));
    402 
    403   // Save the allocation bitmap before closing the child entry.
    404   int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
    405                              NULL, false);
    406   if (rv != sizeof(child_data_))
    407     DLOG(ERROR) << "Failed to save child data";
    408   child_->Close();
    409   child_ = NULL;
    410 }
    411 
    412 std::string SparseControl::GenerateChildKey() {
    413   return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
    414                            offset_ >> 20);
    415 }
    416 
    417 // We are deleting the child because something went wrong.
    418 bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
    419   SetChildBit(false);
    420   child_->Doom();
    421   child_->Close();
    422   child_ = NULL;
    423   if (fatal) {
    424     result_ = net::ERR_CACHE_READ_FAILURE;
    425     return false;
    426   }
    427   return ContinueWithoutChild(key);
    428 }
    429 
    430 // We were not able to open this child; see what we can do.
    431 bool SparseControl::ContinueWithoutChild(const std::string& key) {
    432   if (kReadOperation == operation_)
    433     return false;
    434   if (kGetRangeOperation == operation_)
    435     return true;
    436 
    437   if (!entry_->backend_->CreateEntry(key, &child_)) {
    438     child_ = NULL;
    439     result_ = net::ERR_CACHE_READ_FAILURE;
    440     return false;
    441   }
    442   // Write signature.
    443   InitChildData();
    444   return true;
    445 }
    446 
    447 bool SparseControl::ChildPresent() {
    448   int child_bit = static_cast<int>(offset_ >> 20);
    449   if (children_map_.Size() <= child_bit)
    450     return false;
    451 
    452   return children_map_.Get(child_bit);
    453 }
    454 
    455 void SparseControl::SetChildBit(bool value) {
    456   int child_bit = static_cast<int>(offset_ >> 20);
    457 
    458   // We may have to increase the bitmap of child entries.
    459   if (children_map_.Size() <= child_bit)
    460     children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
    461 
    462   children_map_.Set(child_bit, value);
    463 }
    464 
    465 void SparseControl::WriteSparseData() {
    466   scoped_refptr<net::IOBuffer> buf = new net::WrappedIOBuffer(
    467       reinterpret_cast<const char*>(children_map_.GetMap()));
    468 
    469   int len = children_map_.ArraySize() * 4;
    470   int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf, len,
    471                              NULL, false);
    472   if (rv != len) {
    473     DLOG(ERROR) << "Unable to save sparse map";
    474   }
    475 }
    476 
    477 bool SparseControl::VerifyRange() {
    478   DCHECK_GE(result_, 0);
    479 
    480   child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
    481   child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
    482 
    483   // We can write to (or get info from) anywhere in this child.
    484   if (operation_ != kReadOperation)
    485     return true;
    486 
    487   // Check that there are no holes in this range.
    488   int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
    489   int start = child_offset_ >> 10;
    490   if (child_map_.FindNextBit(&start, last_bit, false)) {
    491     // Something is not here.
    492     DCHECK_GE(child_data_.header.last_block_len, 0);
    493     DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
    494     int partial_block_len = PartialBlockLength(start);
    495     if (start == child_offset_ >> 10) {
    496       // It looks like we don't have anything.
    497       if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
    498         return false;
    499     }
    500 
    501     // We have the first part.
    502     child_len_ = (start << 10) - child_offset_;
    503     if (partial_block_len) {
    504       // We may have a few extra bytes.
    505       child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
    506     }
    507     // There is no need to read more after this one.
    508     buf_len_ = child_len_;
    509   }
    510   return true;
    511 }
    512 
    513 void SparseControl::UpdateRange(int result) {
    514   if (result <= 0 || operation_ != kWriteOperation)
    515     return;
    516 
    517   DCHECK_GE(child_data_.header.last_block_len, 0);
    518   DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
    519 
    520   // Write the bitmap.
    521   int first_bit = child_offset_ >> 10;
    522   int block_offset = child_offset_ & (kBlockSize - 1);
    523   if (block_offset && (child_data_.header.last_block != first_bit ||
    524                        child_data_.header.last_block_len < block_offset)) {
    525     // The first block is not completely filled; ignore it.
    526     first_bit++;
    527   }
    528 
    529   int last_bit = (child_offset_ + result) >> 10;
    530   block_offset = (child_offset_ + result) & (kBlockSize - 1);
    531 
    532   // This condition will hit with the following criteria:
    533   // 1. The first byte doesn't follow the last write.
    534   // 2. The first byte is in the middle of a block.
    535   // 3. The first byte and the last byte are in the same block.
    536   if (first_bit > last_bit)
    537     return;
    538 
    539   if (block_offset && !child_map_.Get(last_bit)) {
    540     // The last block is not completely filled; save it for later.
    541     child_data_.header.last_block = last_bit;
    542     child_data_.header.last_block_len = block_offset;
    543   } else {
    544     child_data_.header.last_block = -1;
    545   }
    546 
    547   child_map_.SetRange(first_bit, last_bit, true);
    548 }
    549 
    550 int SparseControl::PartialBlockLength(int block_index) const {
    551   if (block_index == child_data_.header.last_block)
    552     return child_data_.header.last_block_len;
    553 
    554   // This may be the last stored index.
    555   int entry_len = child_->GetDataSize(kSparseData);
    556   if (block_index == entry_len >> 10)
    557     return entry_len & (kBlockSize - 1);
    558 
    559   // This is really empty.
    560   return 0;
    561 }
    562 
    563 void SparseControl::InitChildData() {
    564   // We know the real type of child_.
    565   EntryImpl* child = static_cast<EntryImpl*>(child_);
    566   child->SetEntryFlags(CHILD_ENTRY);
    567 
    568   memset(&child_data_, 0, sizeof(child_data_));
    569   child_data_.header = sparse_header_;
    570 
    571   scoped_refptr<net::WrappedIOBuffer> buf =
    572       new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_));
    573 
    574   int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
    575                              NULL, false);
    576   if (rv != sizeof(child_data_))
    577     DLOG(ERROR) << "Failed to save child data";
    578   SetChildBit(true);
    579 }
    580 
    581 void SparseControl::DoChildrenIO() {
    582   while (DoChildIO()) continue;
    583 
    584   if (pending_ && finished_)
    585     DoUserCallback();
    586 }
    587 
    588 bool SparseControl::DoChildIO() {
    589   finished_ = true;
    590   if (!buf_len_ || result_ < 0)
    591     return false;
    592 
    593   if (!OpenChild())
    594     return false;
    595 
    596   if (!VerifyRange())
    597     return false;
    598 
    599   // We have more work to do. Let's not trigger a callback to the caller.
    600   finished_ = false;
    601   net::CompletionCallback* callback = user_callback_ ? &child_callback_ : NULL;
    602 
    603   int rv = 0;
    604   switch (operation_) {
    605     case kReadOperation:
    606       rv = child_->ReadData(kSparseData, child_offset_, user_buf_, child_len_,
    607                             callback);
    608       break;
    609     case kWriteOperation:
    610       rv = child_->WriteData(kSparseData, child_offset_, user_buf_, child_len_,
    611                              callback, false);
    612       break;
    613     case kGetRangeOperation:
    614       rv = DoGetAvailableRange();
    615       break;
    616     default:
    617       NOTREACHED();
    618   }
    619 
    620   if (rv == net::ERR_IO_PENDING) {
    621     if (!pending_) {
    622       pending_ = true;
    623       // The child will protect himself against closing the entry while IO is in
    624       // progress. However, this entry can still be closed, and that would not
    625       // be a good thing for us, so we increase the refcount until we're
    626       // finished doing sparse stuff.
    627       entry_->AddRef();  // Balanced in DoUserCallback.
    628     }
    629     return false;
    630   }
    631   if (!rv)
    632     return false;
    633 
    634   DoChildIOCompleted(rv);
    635   return true;
    636 }
    637 
    638 int SparseControl::DoGetAvailableRange() {
    639   if (!child_)
    640     return child_len_;  // Move on to the next child.
    641 
    642   // Check that there are no holes in this range.
    643   int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
    644   int start = child_offset_ >> 10;
    645   int partial_start_bytes = PartialBlockLength(start);
    646   int found = start;
    647   int bits_found = child_map_.FindBits(&found, last_bit, true);
    648 
    649   // We don't care if there is a partial block in the middle of the range.
    650   int block_offset = child_offset_ & (kBlockSize - 1);
    651   if (!bits_found && partial_start_bytes <= block_offset)
    652     return child_len_;
    653 
    654   // We are done. Just break the loop and reset result_ to our real result.
    655   range_found_ = true;
    656 
    657   // found now points to the first 1. Lets see if we have zeros before it.
    658   int empty_start = std::max((found << 10) - child_offset_, 0);
    659 
    660   int bytes_found = bits_found << 10;
    661   bytes_found += PartialBlockLength(found + bits_found);
    662 
    663   if (start == found)
    664     bytes_found -= block_offset;
    665 
    666   // If the user is searching past the end of this child, bits_found is the
    667   // right result; otherwise, we have some empty space at the start of this
    668   // query that we have to subtract from the range that we searched.
    669   result_ = std::min(bytes_found, child_len_ - empty_start);
    670 
    671   if (!bits_found) {
    672     result_ = std::min(partial_start_bytes - block_offset, child_len_);
    673     empty_start = 0;
    674   }
    675 
    676   // Only update offset_ when this query found zeros at the start.
    677   if (empty_start)
    678     offset_ += empty_start;
    679 
    680   // This will actually break the loop.
    681   buf_len_ = 0;
    682   return 0;
    683 }
    684 
    685 void SparseControl::DoChildIOCompleted(int result) {
    686   if (result < 0) {
    687     // We fail the whole operation if we encounter an error.
    688     result_ = result;
    689     return;
    690   }
    691 
    692   UpdateRange(result);
    693 
    694   result_ += result;
    695   offset_ += result;
    696   buf_len_ -= result;
    697 
    698   // We'll be reusing the user provided buffer for the next chunk.
    699   if (buf_len_ && user_buf_)
    700     user_buf_->DidConsume(result);
    701 }
    702 
    703 void SparseControl::OnChildIOCompleted(int result) {
    704   DCHECK_NE(net::ERR_IO_PENDING, result);
    705   DoChildIOCompleted(result);
    706 
    707   if (abort_) {
    708     // We'll return the current result of the operation, which may be less than
    709     // the bytes to read or write, but the user cancelled the operation.
    710     abort_ = false;
    711     DoUserCallback();
    712     return DoAbortCallbacks();
    713   }
    714 
    715   // We are running a callback from the message loop. It's time to restart what
    716   // we were doing before.
    717   DoChildrenIO();
    718 }
    719 
    720 void SparseControl::DoUserCallback() {
    721   DCHECK(user_callback_);
    722   net::CompletionCallback* c = user_callback_;
    723   user_callback_ = NULL;
    724   user_buf_ = NULL;
    725   pending_ = false;
    726   operation_ = kNoOperation;
    727   entry_->Release();  // Don't touch object after this line.
    728   c->Run(result_);
    729 }
    730 
    731 void SparseControl::DoAbortCallbacks() {
    732   for (size_t i = 0; i < abort_callbacks_.size(); i++) {
    733     // Releasing all references to entry_ may result in the destruction of this
    734     // object so we should not be touching it after the last Release().
    735     net::CompletionCallback* c = abort_callbacks_[i];
    736     if (i == abort_callbacks_.size() - 1)
    737       abort_callbacks_.clear();
    738 
    739     entry_->Release();  // Don't touch object after this line.
    740     c->Run(net::OK);
    741   }
    742 }
    743 
    744 }  // namespace disk_cache
    745