Home | History | Annotate | Download | only in alloc
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <sys/mman.h>  /* for PROT_* */
     18 
     19 #include "Dalvik.h"
     20 #include "alloc/HeapSource.h"
     21 #include "alloc/Visit.h"
     22 
     23 /*
     24  * Maintain a card table from the the write barrier. All writes of
     25  * non-NULL values to heap addresses should go through an entry in
     26  * WriteBarrier, and from there to here.
     27  *
     28  * The heap is divided into "cards" of GC_CARD_SIZE bytes, as
     29  * determined by GC_CARD_SHIFT. The card table contains one byte of
     30  * data per card, to be used by the GC. The value of the byte will be
     31  * one of GC_CARD_CLEAN or GC_CARD_DIRTY.
     32  *
     33  * After any store of a non-NULL object pointer into a heap object,
     34  * code is obliged to mark the card dirty. The setters in
     35  * ObjectInlines.h [such as dvmSetFieldObject] do this for you. The
     36  * JIT and fast interpreters also contain code to mark cards as dirty.
     37  *
     38  * The card table's base [the "biased card table"] gets set to a
     39  * rather strange value.  In order to keep the JIT from having to
     40  * fabricate or load GC_DIRTY_CARD to store into the card table,
     41  * biased base is within the mmap allocation at a point where it's low
     42  * byte is equal to GC_DIRTY_CARD. See dvmCardTableStartup for details.
     43  */
     44 
     45 /*
     46  * Initializes the card table; must be called before any other
     47  * dvmCardTable*() functions.
     48  */
     49 bool dvmCardTableStartup(void)
     50 {
     51     size_t length;
     52     void *allocBase;
     53     u1 *biasedBase;
     54     GcHeap *gcHeap = gDvm.gcHeap;
     55     void *heapBase = dvmHeapSourceGetBase();
     56     assert(gcHeap != NULL);
     57     assert(heapBase != NULL);
     58 
     59     /* Set up the card table */
     60     length = gDvm.heapSizeMax / GC_CARD_SIZE;
     61     /* Allocate an extra 256 bytes to allow fixed low-byte of base */
     62     allocBase = dvmAllocRegion(length + 0x100, PROT_READ | PROT_WRITE,
     63                             "dalvik-card-table");
     64     if (allocBase == NULL) {
     65         return false;
     66     }
     67     gcHeap->cardTableBase = allocBase;
     68     gcHeap->cardTableLength = length;
     69     /* All zeros is the correct initial value; all clean. */
     70     assert(GC_CARD_CLEAN == 0);
     71 
     72     biasedBase = (u1 *)((uintptr_t)allocBase -
     73                         ((uintptr_t)heapBase >> GC_CARD_SHIFT));
     74     if (((uintptr_t)biasedBase & 0xff) != GC_CARD_DIRTY) {
     75         int offset = GC_CARD_DIRTY - ((uintptr_t)biasedBase & 0xff);
     76         biasedBase += offset + (offset < 0 ? 0x100 : 0);
     77     }
     78     assert(((uintptr_t)biasedBase & 0xff) == GC_CARD_DIRTY);
     79     gDvm.biasedCardTableBase = biasedBase;
     80 
     81     return true;
     82 }
     83 
     84 /*
     85  * Tears down the entire CardTable.
     86  */
     87 void dvmCardTableShutdown()
     88 {
     89     gDvm.biasedCardTableBase = NULL;
     90     munmap(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength);
     91 }
     92 
     93 void dvmClearCardTable(void)
     94 {
     95     assert(gDvm.gcHeap->cardTableBase != NULL);
     96     memset(gDvm.gcHeap->cardTableBase, GC_CARD_CLEAN, gDvm.gcHeap->cardTableLength);
     97 }
     98 
     99 /*
    100  * Returns true iff the address is within the bounds of the card table.
    101  */
    102 bool dvmIsValidCard(const u1 *cardAddr)
    103 {
    104     GcHeap *h = gDvm.gcHeap;
    105     return cardAddr >= h->cardTableBase &&
    106         cardAddr < &h->cardTableBase[h->cardTableLength];
    107 }
    108 
    109 /*
    110  * Returns the address of the relevent byte in the card table, given
    111  * an address on the heap.
    112  */
    113 u1 *dvmCardFromAddr(const void *addr)
    114 {
    115     u1 *biasedBase = gDvm.biasedCardTableBase;
    116     u1 *cardAddr = biasedBase + ((uintptr_t)addr >> GC_CARD_SHIFT);
    117     assert(dvmIsValidCard(cardAddr));
    118     return cardAddr;
    119 }
    120 
    121 /*
    122  * Returns the first address in the heap which maps to this card.
    123  */
    124 void *dvmAddrFromCard(const u1 *cardAddr)
    125 {
    126     assert(dvmIsValidCard(cardAddr));
    127     uintptr_t offset = cardAddr - gDvm.biasedCardTableBase;
    128     return (void *)(offset << GC_CARD_SHIFT);
    129 }
    130 
    131 /*
    132  * Dirties the card for the given address.
    133  */
    134 void dvmMarkCard(const void *addr)
    135 {
    136     u1 *cardAddr = dvmCardFromAddr(addr);
    137     *cardAddr = GC_CARD_DIRTY;
    138 }
    139 
    140 /*
    141  * Returns true if the object is on a dirty card.
    142  */
    143 static bool isObjectDirty(const Object *obj)
    144 {
    145     assert(obj != NULL);
    146     assert(dvmIsValidObject(obj));
    147     u1 *card = dvmCardFromAddr(obj);
    148     return *card == GC_CARD_DIRTY;
    149 }
    150 
    151 /*
    152  * Context structure for verifying the card table.
    153  */
    154 typedef struct {
    155     HeapBitmap *markBits;
    156     size_t whiteRefs;
    157 } WhiteReferenceCounter;
    158 
    159 /*
    160  * Visitor that counts white referents.
    161  */
    162 static void countWhiteReferenceVisitor(void *addr, void *arg)
    163 {
    164     WhiteReferenceCounter *ctx;
    165     Object *obj;
    166 
    167     assert(addr != NULL);
    168     assert(arg != NULL);
    169     obj = *(Object **)addr;
    170     if (obj == NULL) {
    171         return;
    172     }
    173     assert(dvmIsValidObject(obj));
    174     ctx = arg;
    175     if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
    176         return;
    177     }
    178     ctx->whiteRefs += 1;
    179 }
    180 
    181 /*
    182  * Returns true if the given object is a reference object and the
    183  * just the referent is unmarked.
    184  */
    185 static bool isReferentUnmarked(const Object *obj,
    186                                const WhiteReferenceCounter* ctx)
    187 {
    188     assert(obj != NULL);
    189     assert(obj->clazz != NULL);
    190     assert(ctx != NULL);
    191     if (ctx->whiteRefs != 1) {
    192         return false;
    193     } else if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISREFERENCE)) {
    194         size_t offset = gDvm.offJavaLangRefReference_referent;
    195         const Object *referent = dvmGetFieldObject(obj, offset);
    196         return !dvmHeapBitmapIsObjectBitSet(ctx->markBits, referent);
    197     } else {
    198         return false;
    199     }
    200 }
    201 
    202 /*
    203  * Returns true if the given object is a string and has been interned
    204  * by the user.
    205  */
    206 static bool isWeakInternedString(const Object *obj)
    207 {
    208     assert(obj != NULL);
    209     if (obj->clazz == gDvm.classJavaLangString) {
    210         return dvmIsWeakInternedString((StringObject *)obj);
    211     } else {
    212         return false;
    213     }
    214 }
    215 
    216 /*
    217  * Returns true if the given object has been pushed on the mark stack
    218  * by root marking.
    219  */
    220 static bool isPushedOnMarkStack(const Object *obj)
    221 {
    222     GcMarkContext *ctx = &gDvm.gcHeap->markContext;
    223     const Object **ptr;
    224 
    225     for (ptr = ctx->stack.top; ptr != ctx->stack.base; ++ptr) {
    226         if (*ptr == obj) {
    227             return true;
    228         }
    229     }
    230     return false;
    231 }
    232 
    233 /*
    234  * Callback applied to marked objects.  If the object is gray and on
    235  * an unmarked card an error is logged and the VM is aborted.  Card
    236  * table verification occurs between root marking and weak reference
    237  * processing.  We treat objects marked from the roots and weak
    238  * references specially as it is permissible for these objects to be
    239  * gray and on an unmarked card.
    240  */
    241 static void verifyCardTableCallback(void *ptr, void *arg)
    242 {
    243     Object *obj = ptr;
    244     WhiteReferenceCounter ctx = { arg, 0 };
    245 
    246     dvmVisitObject(countWhiteReferenceVisitor, obj, &ctx);
    247     if (ctx.whiteRefs == 0) {
    248         return;
    249     } else if (isObjectDirty(obj)) {
    250         return;
    251     } else if (isReferentUnmarked(obj, &ctx)) {
    252         return;
    253     } else if (isWeakInternedString(obj)) {
    254         return;
    255     } else if (isPushedOnMarkStack(obj)) {
    256         return;
    257     } else {
    258         LOGE("Verify failed, object %p is gray and on an unmarked card", obj);
    259         dvmDumpObject(obj);
    260         dvmAbort();
    261     }
    262 }
    263 
    264 /*
    265  * Verifies that gray objects are on a dirty card.
    266  */
    267 void dvmVerifyCardTable(void)
    268 {
    269     HeapBitmap *markBits = gDvm.gcHeap->markContext.bitmap;
    270     dvmHeapBitmapWalk(markBits, verifyCardTableCallback, markBits);
    271 }
    272